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Abstract
Extreme precipitation events can lead to severe negative consequences for society, the economy, and the environment. It is

therefore crucial to understand when such events occur. In the literature, there are a vast number of methods for analyzing

their connection to meteorological drivers. However, there has been recent interest in using machine learning methods

instead of classic statistical models. While a few studies in climate research have compared the performance of these two

approaches, their conclusions are inconsistent. To determine whether an extreme event occurred locally, we trained models

using logistic regression and three commonly used supervised machine learning algorithms tailored for discrete outcomes:

random forests, neural networks, and support vector machines. We used five explanatory variables (geopotential height at

500 hPa, convective available potential energy, total column water, sea surface temperature, and air surface temperature)

from ERA5, and local data from the Danish Meteorological Institute. During the variable selection process, we found that

convective available potential energy has the strongest relationship with extreme events. Our results showed that logistic

regression performs similarly to more complex machine learning algorithms regarding discrimination as measured by the

area under the receiver operating characteristic curve (ROC AUC) and other performance metrics specialized for unbal-

anced datasets. Specifically, the ROC AUC for logistic regression was 0.86, while the best-performing machine learning

algorithm achieved a ROC AUC of 0.87. This study emphasizes the value of comparing machine learning and classical

regression modeling, especially when employing a limited set of well-established explanatory variables.
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1 Introduction

Extreme precipitation events can cause significant damage,

especially in densely populated regions (Jonkman 2005).

An example was in July 2011, when a cloudburst hit the

capital of Denmark, Copenhagen, leading to widespread

flooding and substantial harm to society, the environment,

and the economy (Ziersen et al. 2017). Extreme

precipitation events are caused by specific atmospheric

processes and can be correlated to both local and large-

scale meteorological drivers. Knowledge about these

mechanisms will improve our understanding of the local

physical climate and our ability to infer under what con-

ditions extreme precipitation events occur and thus enable

better predictions of occurrences in the future. Numerous

studies have related extreme rainfall to meteorological

drivers. North Atlantic Oscillation (NAO) was linked to the

variability of the Mediterranean precipitation (Xoplaki

et al. 2004), to the occurrence and intensity of extreme

precipitation events over northeast Spain (Vicente-Serrano

et al. 2009), and to the change in the European winter

precipitation and other extremes (Scaife et al. 2008). The

East Atlantic Pattern (EA) was related to the convective

anomalies in the tropical Atlantic (Maidens et al. 2021) and

to the spatial and temporal changes in the frequency of

extreme rainfall events over Denmark (Gregersen et al.
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2013a). Extreme precipitation events have been charac-

terized using Convective Available Potential Energy

(CAPE) and Dew-Point temperature in the eastern United

States (Lepore et al. 2015) and South-Central Andes

(Ramezani Ziarani et al. 2019). Furthermore, previous

research has related extreme rainfall events with humidity-

related variables over the Mediterranean (Hertig et al.

2014; Hertig and Jacobeit 2013) and sea surface tempera-

ture (SST) in tropical regions (Dittus et al. 2018).

Many different methods can be used to develop models

that explore these relationships. Classic statistical models

such as linear (Li and Wang 2018) or logistic (Chan et al.

2018) regression (LR) are commonly applied depending on

whether the outcomes are continuous or binary. Regression

models are based on theory and explicit assumptions and

benefit from domain knowledge for model specification

providing a clear framework for understanding the rela-

tionships between explanatory variables (Hastie et al.

2009).

Recently the use of machine learning (ML) algorithms is

becoming more widespread as an alternative approach for

classification and prediction. ML is a subfield of artificial

intelligence based on non-linear algorithms adapting and

learning from data (Mitchell 1997). These algorithms can

process vast amounts of multidimensional data such as

reanalysis, satellite, or radar data. ML has been used in

predicting extreme rainfall intensities (Davenport and

Diffenbaugh 2021; Lee et al. 2012) and for rain/no-rain

classification (Liu et al. 2001; Shi 2020).

The differences between ML and classic regression have

been extensively explored in the literature (Breiman

2001a). For example, ML automatically includes non-lin-

ear associations and interaction terms, whereas for

regression methods, they must be specified by the user

(Boulesteix and Schmid 2014). Because of this adaptabil-

ity, ML is claimed to offer superior predictive performance

relative to traditional statistical modeling and better han-

dling of a greater number of explanatory variables (Deo

and Nallamothu 2016). However, as a downside of this

flexibility, ML algorithms tend to overfit the data used for

training, which must be compensated for by penalization of

the complexity of identified models. In scenarios where

data is limited, feature engineering, and feature selection

becomes even more important when using ML models to

ensure optimal performance and mitigate the risk of over-

fitting (Chen et al. 2020; Guth and Sapsis 2019).

In this study, the term ‘‘prediction’’ refers specifically to

the outcomes generated by statistical and ML models,

rather than a forecast of the future state of variable (such as

a weather forecast).

Although many studies in other fields (e.g., health sci-

ences) compare the performance of classic statistical

models to different ML algorithms, there are only a few

within climate sciences. Wei et al. (2020) showed that a

decision tree performs better than LR for extreme rainfall

event classification. Meyer et al. (2016) proved that a

Neural Network (NNET) is a more suitable algorithm for

satellite-based rainfall retrievals than Random Forest (RF)

and Support Vector Machine (SVM), but LR was not part

of the comparison. Lastly, Moon et al. (2019) suggested

using LR as an effective early warning system for very

short-term heavy rainfall in South Korea instead of ML

models.

Even the most sophisticated machine learning algo-

rithms rely on the quality of data. In case of low-quality

input data, the reliability of the results will be compro-

mised (Budach et al. 2022). Extreme events are very

localized, so choosing a densely monitored study area with

rain gauges, such as Copenhagen (Thomassen et al. 2022),

is crucial for accurately capturing these events.

The novelty of the present work is two-fold: (i) To

identify relationships between meteorological explanatory

variables selected based on a priori domain knowledge and

extreme events in the densely monitored Copenhagen area.

This includes considering both variables previously linked

to extreme precipitation events in various regions around

the globe and local variables that capture the unique

characteristics of the Copenhagen area. By examining the

importance of these two types of variables, we aim that our

findings can gain valuable insights into the specific drivers

of extreme precipitation occurrences in this region and

serve as a foundation for extending our analysis to other

regions. (ii) To systematically compare the explanatory

performance of classification models developed using tra-

ditional LR and three ML models and assess the similari-

ties and differences of the most influencing explanatory

variables between models. The hypothesis is that tradi-

tional LR would result in the lowest performance. In

summary, we address the following research questions:

1. Which meteorological drivers can explain local

extreme rainfall events in a densely monitored region?

2. What is the relative importance of the drivers across

different statistical models?

3. Do ML models lead to improved performance com-

pared to traditional statistical modeling?

2 Data and study area

2.1 Precipitation

Extreme precipitation events are often very localized

(\ 10 km horizontal scale), and a dense network of rain

gauges is therefore needed to record extreme events when

they occur. At the same time, to link explanatory variables
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with the occurrence of extreme precipitation events in a

robust way requires long time series of observations. In this

study, the precipitation data set consists of hourly obser-

vations for the period 1979–2020 from 15 gauges located

in the Copenhagen area. The geographical location of the

stations appears in Fig. 1.

The gauges are part of a national network run by the

Water Pollution Committee of The Society of Danish

Engineers and have a measurement resolution of 0.2 mm

(Gregersen et al. 2013a). The gauges have an average

uptime of 95.8%, and data has been quality controlled by

the Danish Meteorological Institute (DMI). This study only

considers the five months of May to September each year,

which define the main season of convective rainfall

extremes in Denmark (Pedersen et al. 2012).

2.2 Extreme precipitation explanatory variables

This study employs explanatory variables that relate to the

physics of convective rainfall events and have been iden-

tified in previous research as influential factors for extreme

precipitation events. Additionally, local predictors that

capture the unique characteristics of the study area are also

investigated. The chosen meteorological variables from

various sources utilized as explanatory variables over dif-

ferent spatial domains (Fig. 1) are:

1. Observed Surface air temperature (SAT) data for

1979–2020 from one station in the middle of the

island Zealand. The temporal resolution changes over

time, from 3-hourly observations in the first years to

hourly observations in at least the last 20 years. The

choice of this variable is motivated by the experience

of local meteorologists that extreme precipitation

events occur on days with high inland afternoon

temperatures when convection may be released. The

data were quality controlled by DMI. More information

about the observation protocols can be found in the

supplementary material.

2. The daily-mean sea surface temperature (SST) for the

North Sea and Baltic Sea from the Copernicus Marine

Service Information (DMI 2015) for the period

1982–2020. This is motivated by the idea that SSTs

could influence convection if the air mass passes over

the sea.

3. The rest of the extreme precipitation explanatory

variables have been extracted from ERA5, the fifth-

generation global reanalysis product by European

Fig. 1 Overview of the

geographical data domains of

the explanatory variables and

the location of the rain gauge

stations in the subplot. There are

a total of fifteen stations in an

area of 525.50 km2 (12–12.65

W and 55.57–55.84 N)
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Centre for Medium-range Weather Forecasts

(ECMWF) (Hersbach et al. 2020) for the period

1979–2020. The data are generated at hourly time

steps with a spatial resolution of roughly 30 km 9 30

km. The selected explanatory variables are:

• Geopotential height at 500 hPa (Z500), which

determines flow strength and direction at 500 hPa,

which is usually considered the steering level for

meso-scale weather systems.

• Convective available potential energy (CAPE) as a

measure of atmospheric instability and the potential

for convection due to the vertical temperature

gradients and humidity in combination (further

details in supplementary material).

• Total Column Water (TCW) as a measure of the

maximum amount of water available for precipita-

tion in case of strong convection (further details in

supplementary material).

3 Methodology

3.1 Preprocessing data

3.1.1 Definition of an extreme precipitation event

To develop a classification model for predicting extreme

precipitation events, class labels first need to be generated.

To ensure the independence of events for each station, an

11-h dry period is required between events (Thomassen

et al. 2022). For each station, the most extreme events

based on the maximum hourly intensity are sampled using

a Peak Over Threshold method (POT) with type II cen-

soring (Coles 2001), resulting in 3 events per year on

average (Gregersen et al. 2013b). The date of the event was

the date when the maximum intensity was observed. Any

day with an extreme recorded in at least one station is

labeled as an extreme day. This led to a total of, on aver-

age, thirteen days with extremes per year for the region.

3.1.2 Explanatory variables

The purpose of including Z500 in this analysis is to

examine whether specific patterns in the large-scale,

regional atmospheric flow fields are associated with

extreme precipitation events in the case area. The daily

climatology of Z500 is determined in each grid point by

first applying a 5-day centered moving window and then

calculating the simple average of all values corresponding

to each day of the year. Calculating the climatology of

variables with a 5-day smoothing window is a common

technique used in climatological studies to reduce the

impact of day-to-day variability and reveal long-term pat-

terns. Then anomalies are derived by subtracting the daily

climatology from each corresponding day in the selected

period, which leads to a regional 2D field of Z500

anomalies for each day. Including Z500 anomaly values

from all grid cells in the 2D field would be a huge increase

in the number of input predictors for the models. It is

therefore common practice in studies like this one to per-

form Principal Component Analysis (PCA) on the Z500

anomalies as a dimensionality reduction technique (Mas-

trantonas et al. 2021; Merino et al. 2019; Storch and Zwiers

1984). This way of processing Z500 fields is also referred

to as EOF (Empirical Orthogonal Functions) analysis in the

field of climatology (Sun and Wang 2018; Yang et al.

2013). PCA enables the representation of the data in a

lower-dimensional space, with significantly fewer variables

than the original dataset while ensuring independence

among these variables. We weigh the data by the square

root of the cosine of the latitude to provide equal-area

weighting in the covariance matrix. We retain the first

Principal Components (PCs), which explain at least 90% of

the total variability in the anomaly field. Combining with a

scree plot as a graphical representation can provide an

adequate validation of the 90% criterion. During explora-

tory analysis, we also analyzed larger domains than shown

in Fig. 1 (i.e., North Atlantic), but this only resulted in

weaker ability to explain occurrences of extreme events.

Moreover, we followed the domain size recommendations

by Chen and Wang (2014) to optimize the effectiveness of

PCA.

We then performed K-means clustering as suggested by

(Mastrantonas et al. 2021) on the retained PCs, but the

performance of the classification models was not improved

compared to just including the retained principal compo-

nents, so for all the analysis hereafter, we use the retained

PCs. See Supplementary Material for details.

For CAPE and TCW we are interested in the daily

means at the location of the case study, and therefore the

data were bilinearly interpolated from the original ERA5

grid cells to the exact geographical position of Copen-

hagen. For SAT, we extracted the daily maximum (SAT-

max), the daily difference between the maximum and the

minimum (SATamplitude), and the daily maximum of the

previous day (SATlag1). Lastly, for SST, the mean, the

maximum, and the previous day’s maximum value of the

North Sea and Baltic Sea (Fig. 1) were tested as individual

explanatory variables and as their combinations. An over-

view of the preprocessing methods can be found in Table 1.

3.2 Classification models

We use four algorithms that can classify a discrete outcome

based on continuous input: LR as a traditional statistical
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modeling approach and RF, NNET, and SVM as ML

algorithms. All ML algorithms have one or more hyper-

parameters that control how well the model fits the data,

and the optimal values for these parameters can vary from

dataset to dataset. We do not impose pre-determined

interactions on the ML models to allow them to leverage

their inherent capabilities in handling variable interactions.

This approach enables fair comparisons and allows each

model to utilize variables and their interactions in the

manner that best complements its underlying algorithm.

3.2.1 Logistic regression models

LR analysis is the most frequently used modeling approach

for analyzing dichotomous response variables (i.e., occur-

rence or non-occurrence of an extreme event). It belongs to

the family of generalized linear models (GLM). In a GLM,

the three building blocks are (Lindsey 2000): a random

component, a systematic component, and a link function. In

LR, the random component Y follows a binomial distri-

bution and can be represented by the model:

G E Yð Þð Þ ¼ XbT þ e ð1Þ

where G is a link function, X is the design matrix of n

systematic components (explanatory variables), bT is a

vector of coefficients, and e is the residual vector term.

In this study, we use the logit link function (Cox et al.

1999):

G pð Þ ¼ ln
p

1� p

� �
ð2Þ

which monotonically maps the domain (-!, ?!) to (0,1)

where p is the probability of an extreme event and p
1�p is

the corresponding odds of an event being extreme. The

estimate of p is then given by:

p ¼
exp XbT
� �

1þ exp XbT
� � ð3Þ

The coefficients bi, i ¼ 1; . . .; p are estimated using the

maximum likelihood method (ML). The significance of the

individual coefficients is assessed with the Wald statistic,

which is simply the ratio:

Z ¼ b̂i

s:e: b̂i
� � ð4Þ

which can be used to test if bi ¼ 0. The standard normal

distribution is used to determine the p value of the test, and

the confidence intervals are given by:

b̂i � z1�a=2s:e: b̂i
� �

ð5Þ

In addition to estimating the probability of an extreme

event, LR also provides a measure of association between

the response variable and the explanatory variables in the

form of odds ratios. The odds ratio represents the change in

the odds of the response for a one-unit increase in the

explanatory variable, holding all other variables constant.

In LR, the odds ratio is calculated as the exponentiated

coefficient of the explanatory variable. An odds ratio with a

value equal to one indicates no association between the

explanatory variable and the response, while a value

higher/lower than one indicates a positive/negative

association.

Understanding the strength of the relationships between

the explanatory variables in a regression model is crucial

since it may affect the reliability of the model’s estimated

coefficients. Variance Inflation Factors (VIF) is one way to

assess the potency of these connections (VIF). The VIF

(O’brien 2007) is a statistical measure that quantifies the

degree to which the variance of the estimated regression

coefficient bi, increases due to the presence of multi-

collinearity among the explanatory variables in the model.

The calculation of VIF involves regressing each explana-

tory variable on all the other variables in the model, and the

VIF is for the ith explanatory variable is determined as:

Table 1 Overview of the preprocessing methods for each explanatory variable

Explanatory variable Preprocessing analysis

500 hPa geopotential height (Z500) 1) PCA

2) PCA ? k-Means

Convective available potential energy (CAPE) 1) Daily average ? bilinear interpolation

Surface air Temperature (SAT) 1) Daily max

2) Daily amplitude

3) Daily max lag one day

Total Column Water (TCW) 1) Daily average ? bilinear interpolation

Sea surface temperature (SST) 1) Daily mean of North/Baltic/ North & Baltic Sea

2) Daily max of North/Baltic/ North & Baltic Sea

3) Daily max lag one day of North/Baltic/ North & Baltic Sea

Stochastic Environmental Research and Risk Assessment (2023) 37:4337–4357 4341

123



VIFi ¼
1

1� R2
i

ð6Þ

where R2
i is the R2-value obtained by regressing

the ith explanatory variable on the remaining variables. A

VIF value of 1 indicates no collinearity, while values

greater than 1 indicate an increasing degree of

multicollinearity.

Since we are analyzing time series data, it is important

to examine the possibility of serial correlation in the

regression residuals, which means the deviation from the

expected characteristics of white noise residuals in LR.

Serial correlation does not prevent precise predictions of

the response within the model’s scope, but the standard

errors of the estimated odds ratios will, in general, be

underestimated. To evaluate the impact of serial correla-

tion, we examine the significance of the regression odds

ratios for the model fitted to all data versus to a thinned

data set that sub-samples every third and every fifth day,

respectively. Thinning the data this way reduces the serial

correlation in the response and, therefore, likely also in the

regression residuals. By doing so, we aim to examine the

robustness of our results to different levels of serial cor-

relation. The choice of this thinning scheme is based on the

partial autocorrelation function (See Supplementary

Material).

Lastly we did experiments with modeling the explana-

tory variables with restricted cubic splines (Gauthier et al.

2020) to address potential nonlinearity, but the use of

splinesdid not lead to any significant increase in the per-

formance of the final model.

3.2.2 Random forest

Since its introduction in 2001 (Breiman 2001b), the RF

supervised machine learning algorithm for classification

has seen a significant increase in popularity. RF is an

ensemble learning method consisting of multiple decision

trees that result in reduced variance compared to single

decision trees (James et al. 2021). Each of the trees fit in a

different bootstrap sample of the original dataset (bagging)

to increase the diversity in the decision trees. To further

decorrelate the decision trees, RF randomly re-samples the

explanatory variables at each split. In contrast to LR, RF is

not restricted by the assumption of independence between

explanatory variables, captures the interactions between

explanatory variables without specifying them, and can

model complicated non-linear effects. One of the primary

hyperparameters is the number of trees. It is often regarded

as best practice to grow as many trees as computationally

possible.

We use the Gini impurity (Nembrini et al. 2018) to

determine how the explanatory variables of the dataset

should optimally split nodes when training a decision tree:

Gini ¼ 1�
X2
r¼1

prð Þ2 ð7Þ

where r represents the index of the classes in the dataset.

3.2.3 Support vector machine

A SVM is a supervised ML model for classification

(Cristianini and Shawe-Taylor 2000). The objective of

SVM is to find a hyperplane in the n-dimensional space

(n = the number of explanatory variables) that distinctly

classifies the data. The hyperplane is defined as the set of

points x satisfying:

w � xþ b ¼ 0 ð8Þ

The vector w and scalar b for the best hyperplane are

determined by an optimization procedure that maximizes

the margin between two classes in the n-dimensional space.

We use a soft margin technique that allows for a number

of misclassified cases. This number is controlled by a

hyperparameter (cost) which imposes a penalty on the

model for making an error. Moreover, since the classifi-

cation problem is non-linear, we use a kernel function that

returns the dot product of the transformed vectors in the

higher dimensional space. We used the Gaussian radial

basis function

G xi; xj
� �

¼ exp �
xi � xj
�� ���� ��2

2r2

 !
ð9Þ

where r is the bandwidth of the kernel function hyperpa-

rameter and xi and xj represent two different data points

from the dataset.

The SVM model performs poorly on imbalanced data-

sets (Fernández 2018), so we use an extension to the

algorithm in order to increase its performance: we create

weights for our data samples such that each sample is

weighted according to its corresponding class (extreme/

non-extreme) size. Samples of bigger classes will be

assigned smaller weights and vice versa.

3.2.4 Feed-Forward neural network

NNET is a family of ML algorithms that use one or more

layers of nodes (also known as neurons) coupled by non-

linear functions with adjustable parameters (weights) to

map inputs to outputs (Bishop 2006). Network training

aims to find a set of weights that minimizes the difference

between the NNET output and the training labels. The loss

function in classification models is usually cross-entropy
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(Eq. 4.90 in Bishop 2006). The loss function is then min-

imized using one of the gradient descent techniques,

whereby a step is made in the direction of the steepest fall

(the negative of the gradient), with the size of the step

regulated by the learning rate. However, even though

NNETs may approximate any smooth non-linear function

and allow for collinearity among the explanatory variables,

they are challenging to understand and can also be com-

putationally expensive to train.

3.3 Model tuning and validation

The data set is divided into training/validation data (80%)

and testing data (20%). Within the training/validation

subset, a tenfold cross-validation technique is applied to

select the best model (Kohavi 1995). Training data are used

for model training and fitting internal model parameters,

while validation data are used for tuning model hyperpa-

rameters and variable selection. In the tenfold cross-vali-

dation process, the training/validation data are randomly

partitioned into ten folds of approximately equal number of

years. Following that approach, there are samples with

specific physical properties for generating extreme pre-

cipitation events in all subsets. At each iteration, one of the

folds is chosen as the validation set, while the remaining

folds are used for the training set. The model is fitted in the

training set, and the performance metric is computed based

on the validation set. Finally, the performances are aver-

aged across the ten iterations, and for each algorithm, the

model that performs best across all the iterations is selected

as the final model. This final model is then evaluated on the

independent testing data, which was initially set aside.

3.4 Performance metrics

Given the rarity of extreme events, the data are charac-

terized by a very low fraction of days with extremes. In

light of this, the dataset is imbalanced, so using a tradi-

tional performance metric such as accuracy ðACCÞ could

be misleading since it can be maximized by simply pre-

dicting the majority class and thus omitting the minority

class (Liu et al. 2009). ACC is defined as:

ACC ¼ TPþ TN

TPþ TN þ FPþ FN
ð10Þ

where TP = True Positives, TN = True Negatives, FP =

False Positives, and TN = False Negatives, which are the

four possible outcomes of binary predictions.

The receiver operating characteristic curve (ROC)

(Mason and Graham 2002) is a commonly used validation

tool for classification problems and consists of a two-di-

mensional graph that shows the true positive rate ðTPRÞ:

TPR ¼ TP

TPþ FN
ð11Þ

versus the false positive rate ðFPRÞ:

FPR ¼ 1� TN

TNþ FP
ð12Þ

for all possible probability thresholds.

A random model will produce the diagonal line as its

ROC curve, and a perfect model will have a ROC curve

composed of the left and upper boundary lines. The

‘‘steepness’’ of ROC curves is hence important since

maximizing the benefits ðTPRÞ and minimizing the costs

ðFPRÞ is ideal. ROC AUC measures the area underneath

the entire ROC curve and is the measure of the ability of a

model to distinguish between two classes. It provides the

total performance measure across all potential classifica-

tion thresholds and varies between zero and one. The

higher the ROC AUC, the better the model is at making

classifications. The Mann–Whitney U test (Wilks 2011) is

applied to estimate whether the model performs statisti-

cally better than a random model in terms of ROC AUC.

The DeLong test (DeLong et al. 1988) was used to make

pairwise comparisons in ROC AUC between LR and ML

models. Statistical significance is defined at a= 0.05.

On the other hand, the area under the Precision-Recall

(PR) curve (Saito and Rehmsmeier 2015) summarizes the

trade-off between precision and TPR at all possible prob-

ability thresholds, taking into account the imbalance in the

dataset. Precision is the fraction of TP predictions among

the positive predictions made by the model:

Precision ¼ TP

TPþ FP
ð13Þ

In imbalanced datasets, it is possible for a classifier to

achieve a high ROC AUC by making a large number of

false positive predictions, especially when the positive

class is rare. In this case, the PR AUC will be much lower,

reflecting the low quality of the positive predictions.

Therefore, it is important to consider both the ROC AUC

and the PR AUC when evaluating the performance of a

binary classifier in imbalanced datasets, as they capture

different aspects of the classifier’s behavior (Davis and

Goadrich 2006).

To assess if the models are well-calibrated, we use the

Brier score. The score is given by:

Brier score ¼
Xn
t¼1

yt � otð Þ2 ð14Þ

where yt is the predicted value,ot is the true value, and n is

the number of observations. The Brier score also has

shortcomings for imbalanced datasets (Benedetti 2010), but

it can be used as a relative measure for model comparison.
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We will use ROC AUC as the primary measure of model

performance, and the secondary measures of performance

are the PR AUC, the Brier score, and ACC together with

TPR and FPR at the optimal threshold, which is the

threshold that maximizes the sum of TPR and 1� FPR.

In this study the variable selection on ML models is

done in same way as with the regression model. This

decision has been made to establish a consistent and

comparable framework for evaluating the different mod-

eling approaches. By using the same set of variables across

all models, we could directly compare the performance of

the ML models against the LR model, highlighting the

potential benefits of ML methods in terms of capturing

complex interactions.

3.5 Variable importance

The contribution of the different explanatory variables to

the overall performance was quantified for all models. For

LR, we study the variable importance of the explanatory

variables in explaining extreme events by using the dif-

ference in the deviance of the full model (Pawitan 2014)

and a model without the explanatory variable whose

importance we want to assess. The deviance test statis-

tic,D�, is given as:

D� ¼ �2ð‘ðb0Þ � ‘ bð ÞÞ ð15Þ

where ðb0Þ is the log-likelihood of the reduced model, and

ðbÞ is the log-likelihood of the full model. This test statistic

has a chi-square distribution with 1 degree of freedom. If

H0 is rejected, there is evidence that the left-out explana-

tory variable contributes significantly to the prediction of

the outcome.

For RF and SVM, the variable importance is the

decreased ROC AUC after the permutation of the variable

series (Breiman 2001b). The idea is that if the values of an

important variable are permuted, keeping all other vari-

ables the same, the performance would degrade. An

explanatory variable is important if permuting its values

decreases the model ROC AUC relative to the other vari-

ables and unimportant if permuting its values keeps the

ROC AUC almost unchanged. There can be cases where

permuting a variable with very little explanatory power can

cause an increase in ROC AUC due to random noise. This

will end up with negative importance scores equivalent to

zero importance. Since the model includes only continuous

explanatory variables, there is no bias in the permutation

importance measure (Strobl et al. 2007). We repeat the

same process five times to increase the stability of our

estimates.

Finally, for NNET, the variable importance is assessed

by the ‘‘weights’’ method (Gevrey et al. 2003). The method

entails decomposing the hidden-layer connection weights

of each output neuron into components associated with

each input neuron.

In addition to the previously described methods for

assessing variable importance in our study, we acknowl-

edge that even if these methods are widely used, they might

not capture complex interactions and dependencies among

variables in the model. To overcome these limitations, we

have used the SHAP (Shapley Additive Explanations)

method (Lundberg and Lee 2017) as a complementary

analysis in our study. SHAP leverages game theory prin-

ciples to identify the relative importance value of each

explanatory variable, considering all possible combinations

of variables. This approach allows us to capture both linear

and non-linear effects, as well as interactions between

variables, providing a more accurate and inter-

pretable measure of variable importance. SHAP values

offer insights not only into the global importance of vari-

ables but also into how variables contribute to the predic-

tion of each individual instance. The global importance can

be obtained as the average of absolute SHAP values for

each explanatory variable. Moreover, the SHAP method is

agnostic, as it can be applied to a wide range of models,

including LR, RF, SVM, and NNET. This property enables

us to assess variable importance consistently across dif-

ferent models, improving the comparability and general-

izability of our results.

3.6 Computation

The Principal Component analysis was conducted with the

Python package eofs (Dawson 2016). All the classification

models have been developed using the R package caret

(Kuhn 2008). We used the R package vip (Greenwell and

Boehmke 2020) to quantify the variable importance of RF

and SVM and kernelshap R package for finding the SHAP

values (Mayer and Watson 2023). ROC AUC curve com-

parisons were conducted using the R package pROC

(Robin et al. 2011).

4 Results

4.1 Resolving geopotential height into principal
components

Figure 2 shows the eigenvalues for each PC. We can see

that the elbow flattens out at nine PCs. In addition, the first

nine PCs account for 90% of the total variability for Z500.

Therefore, we regard the first nine PCs as adequate to

describe the spatiotemporal variation of the geopotential

height.

Figure 3 shows the spatial patterns associated with, and

the proportion of the overall variance explained by each of
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Fig. 2 Scree Plot showing variance explained by Principal Component Analysis on Z500, with cumulative variance on the secondary y-axis

Fig. 3 The first nine principal components of daily anomalies at a geopotential height at 500 hPa
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the PCs. The first two PCs, which collectively describe

45% of the variance, exhibit spatial structures that are very

similar to well-known circulation patterns over Europe.

PC1 corresponds to the summer North Atlantic Oscillation

(SNAO) described in (Folland et al. 2009). The SNAO is a

dipole pattern with nodes of opposite polarity over central

Scandinavia and over Greenland. The positive (negative)

phase of SNAO results in warm (cool) and dry (wet)

summers in Scandinavia. PC2 corresponds to the East

Atlantic pattern (EA), which, unlike the SNAO, exists

throughout the entire year (Wulff et al. 2017). Here one

node is located west of England, and the other (of opposite

polarity) over Eastern Europe and the Mediterranean.

4.2 Variable selection

For variable selection, we used the data from 1982 to 2020

to have a complete record of all explanatory variables

identified in Sect. 2.2. We first investigate dependencies

between explanatory variables, and then we fit and train LR

and ML models to different combinations of the explana-

tory variables. For SAT, the SATmax, and for SST, the

Daily max lag of one day of North & Baltic Sea manipu-

lations gave the best results. If CAPE and SATmax were in

the model, then their interaction is added in the LR models

as an explanatory variable. It is important to note that

during the variable selection process on ML models, we

found that the chosen explanatory variables are the same as

those employed by LR. Therefore, this section presents the

variable selection results for only the LR model. For ML

models, see supplementary material.

It can be seen from Fig. 4 that all the VIFs except

SATmax, SST, and TCW are less than two, which suggests

a weak correlation between a given explanatory variable

and other variables in the model. To better understand why

SATmax, SST, and TCW have higher VIFs, we calculated

the matrix of correlations between all possible pairs of

explanatory variables. The correlation matrix shows that

SATmax is moderately correlated to SST and TCW, and

SST is moderately correlated with TCW, which explains

why they have higher VIF values. We also reproduce the

positive correlation between PC1 and SATmax reported in

(Folland et al. 2009). PC2 is a pattern of strong north-

westerly flow over Denmark at 500 hPa, and therefore the

negative correlation between PC2 and both CAPE and

TCW means that unstable and moist air comes with strong

southeasterly flow, and this is in accordance with domain

knowledge (e.g., Solantie et al. 2006). Furthermore, PC3

has positive correlations with SATmax and TCW. This is

not straightforward to explain since PC3 represents a

northeasterly flow with its maximum intensity north of

Denmark.

Table 2 shows the performance metrics of each

explanatory variable independently and the combinations

of variables with the best performance. The Brier score is

close to zero and almost the same for all combinations of

explanatory variables, which means that the models are

equally well-calibrated. In the ROC curve analysis, the

mean AUC for all models except SATmax and SST alone

is above 0.70, which shows that models based on CAPE,

PC Z500, or TCW have good discriminative ability. The

Mann–Whitney U test also suggests skillful models with

p\ 0.05 (not shown). However, these single-variable

models have FPR values around 0.29, which for an

imbalanced dataset like the one used in our analysis means

a lot of false positives. That also shows up in a poorer PR

curve in Fig. 5.

The model combining CAPE, PC Z500, and TCW as

explanatory variables outperform the single-variable mod-

els. Adding SATmax as an explanatory variable increases

the PR AUC only a little, but because the interaction with

CAPE is statistically significant (Table 3), we choose to

include this variable in the model. On the other hand,

adding SST provides no additional performance improve-

ments. It can be seen from Fig. 5 that the models ‘‘PC Z500

& CAPE & SATmax & TCW’’ and ‘‘PC Z500 & CAPE &

SATmax & TCW & SST’’ have almost the same PR AUC

(the highest). Therefore, PC Z500, CAPE, SATmax, and

TCW are considered the most important explanatory vari-

ables, and we use them in further evaluation.

Following the model evaluation procedures of

Sect. 3.2.1, CAPE, TCW, PC1, PC3, PC4, PC6, the inter-

action of CAPE and SATmax are found to be statistically

significant explanatory variables for the model trained with

all and the thinned data (Table 3). We can conclude that for

these explanatory variables, the serial correlation of

residuals does not affect the confidence intervals to the

extent that inference results are at risk of being misinter-

preted. The variables CAPE and TCW stand out as having

a positive influence on the probability of extreme rainfall;

the odds ratios of SATmax are larger than unity, meaning

that high SATmax favors extreme precipitation, although

the odds ratio is not robust across the subsampled datasets.

These findings are in accordance with the arguments we

gave in Sect. 2.2 for including these explanatory variables.

The interaction of CAPE and SATmax seems to have a

(slightly) negative impact on the probability of an extreme

event. In this case, a significant odds ratio of 0.99 for the

interaction term suggests that the effect of CAPE on the

probability of an extreme event becomes weaker as SAT-

max increases. Therefore, even though the odds ratios of

CAPE and SATmax are both larger than unity, the inter-

action term decreases the overall effect of CAPE and

SATmax on the probability of an extreme event. The

interaction term is best understood by examining how the
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odds ratio of CAPE in the LR changes as the values of

SATmax change (Fig. 6).

Turning to the PCs of Z500, the odds ratio of PC1 is

smaller than unity, and the odds ratio of PC3 is larger than

unity, and by conferring with Fig. 3, we can interpret that

as easterly flows increase the probability of an extreme

precipitation event. Similarly, the odds ratio of PC4 being

below unity can be interpreted as southeasterly flow

increases the probability of extreme precipitation events.

This is in agreement with local experience.

The PC6 has a pattern, which implies a stagnant atmo-

sphere over Denmark. Therefore it is surprising that it has a

significant odds ratio. That said, the exact shape of the

higher-order PC usually is sensitive to the data. This effect

is not included in the uncertainty intervals in Table 3,

which, therefore, may be underestimated.

Fig. 4 Correlation matrix

depicting correlation of

explanatory variables (lower

right corner) and VIFs between

all explanatory variables (left)

Table 2 Performance metrics for LR models with different (combinations of) explanatory variables for 1982–2020. Data are displayed as mean

(Cross-validation values of the first quartile/third quartile)

ACC FPR TPR ROC AUC PR AUC Brier

CAPE 0.72 (0.68–0.76) 0.29 (0.24–0.33) 0.87 (0.84–0.91) 0.84 (0.81–0.87) 0.29 (0.25–0.36) 0.07 (0.06–0.09)

PC Z500 0.62 (0.56–0.7) 0.4 (0.31–0.48) 0.78 (0.69–0.89) 0.72 (0.7–0.74) 0.17 (0.15–0.2) 0.08 (0.07–0.09)

TCW 0.64 (0.56–0.71) 0.37 (0.29–0.48) 0.74 (0.64–0.83) 0.72 (0.71–0.74) 0.19 (0.15–0.24) 0.08 (0.07–0.09)

SATmax 0.42 (0.3–0.55) 0.61 (0.45–0.76) 0.75 (0.58–0.9) 0.53 (0.5–0.57) 0.09 (0.08–0.11) 0.08 (0.07–0.09)

SST 0.52 (0.44–0.65) 0.49 (0.35–0.58) 0.71 (0.64–0.74) 0.59 (0.55–0.62) 0.11 (0.08–0.14) 0.08 (0.07–0.09)

CAPE & TCW 0.73 (0.7–0.79) 0.27 (0.19–0.31) 0.75 (0.69–0.8) 0.79 (0.78–0.8) 0.24 (0.21–0.29) 0.07 (0.07–0.09)

PC Z500 & CAPE & TCW 0.77 (0.73–0.82) 0.24 (0.18–0.28) 0.81 (0.76–0.87) 0.84 (0.83–0.86) 0.33 (0.29–0.39) 0.07 (0.06–0.08)

PC Z500 & CAPE &

SATmax & TCW

0.78 (0.73–0.83) 0.23 (0.16–0.28) 0.81 (0.81–0.84) 0.86 (0.84–0.87) 0.38 (0.34–0.42) 0.06 (0.06–0.08)

PC Z500 & CAPE & SST &

TCW

0.77 (0.73–0.81) 0.23 (0.19–0.28) 0.8 (0.78–0.87) 0.84 (0.83–0.86) 0.33 (0.29–0.38) 0.07 (0.06–0.08)

PC Z500 & CAPE &

SATmax & SST & TCW

0.78 (0.74–0.82) 0.22 (0.18–0.27) 0.81 (0.78–0.84) 0.86 (0.84–0.87) 0.38 (0.34–0.42) 0.06 (0.06–0.08)

The best model based on each individual metric score is bold
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4.3 Variable importance

Regarding hyperparameter tuning for RF, an ensemble of

700 trees was found to be sufficient for achieving good

performance, with negligible benefits for larger forests.

The optimal hyperparameters for each ML algorithm can

be found in the supplementary material. We do not impose

pre-determined interactions on the ML models to allow

them to leverage their inherent capabilities in handling

variable interactions. This approach enables fair compar-

isons and allows each model to utilize variables and their

interactions in the manner that best complements its

underlying algorithms.

CAPE and TCW obtained the highest importance across

all models, with CAPE being the first by RF, NNET, and

TCW for LR and SVM. The explanatory variables PC1 and

PC6 were consistently rated among the top six variables of

the models. A difference was that PC2 was among the top 3

variables in the NNET model, but it had a minor contri-

bution to LR, RF, and SVM. The most notable difference

was observed regarding the SATmax, which played no role

in LR and a minor role in the RF model, while it was the

fourth most important explanatory variable for predicting

extreme events in the NNET, SVM model (Fig. 7).

Regarding SHAP values (Fig. 8) CAPE and TCW also

obtained the highest importance across all models, with

CAPE being also the first by RF, NNET, and TCW by LR

and SVM. PC1 was among the top four variables of all the

models. SATmax has a larger importance for NNET and

SVM compared to LR, and RF, which is in accordance

with Fig. 7. In Fig. 8, SATmax is ranked higher for all

models except NNET compared to its ranking in Fig. 7.

Fig. 5 ROC curves (a) for the models with the highest ROC AUC and the corresponding PR curves (b) for the period 1982–2020. The dashed

lines represent the baseline. The colored bands indicate the 95% CI estimated with stratified bootstrapping

Table 3 The LR odds ratios and

the corresponding confidence

intervals in parenthesis for all

data, and thinned to every third

and every fifth day, respectively

Explanatory variable All data (95% CI) 1/3 Days (95% CI) 1/5 Days (95% CI)

CAPE 1.04 (1.03–1.05) 1.04 (1.03–1.06) 1.03 (1.02–1.05)

TCW 1.18 (1.15–1.21) 1.2 (1.14–1.25) 1.17 (1.11–1.24)

SATmax 1.01 (0.96–1.05) 1.05 (0.97–1.14) 0.99 (0.9–1.1)

PC1 0.51 (0.43–0.59) 0.55 (0.42–0.71) 0.58 (0.42–0.79)

PC2 0.91 (0.8–1.04) 0.99 (0.78–1.24) 0.9 (0.68–1.18)

PC3 1.47 (1.29–1.67) 1.57 (1.25–1.98) 1.47 (1.13–1.93)

PC4 0.73 (0.64–0.83) 0.76 (0.61–0.94) 0.69 (0.53–0.9)

PC5 0.98 (0.87–1.11) 1.05 (0.85–1.29) 1.16 (0.91–1.49)

PC6 1.66 (1.45–1.89) 1.66 (1.33–2.09) 1.73 (1.33–2.28)

PC7 0.93 (0.83–1.05) 0.96 (0.78–1.19) 0.96 (0.75–1.24)

PC8 1.15 (1.01–1.31) 1.19 (0.95–1.49) 1.27 (0.97–1.67)

PC9 0.96 (0.85–1.09) 0.98 (0.79–1.21) 0.9 (0.69–1.18)

CAPE* SATmax 0.999 (0.998–0.999) 0.998 (0.998–0.999) 0.999 (0.998–1)

Significant p values are indicated in bold. Significance is evaluated at a 5% level. Confidence intervals are

based on the profiled log-likelihood function
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This difference suggests that SATmax is more important in

predicting extreme precipitation events when considering

the SHAP values. Figure 8 (right) shows the bee swarm

plots where the explanatory variables are not only ordered

by their effect on the prediction but also provide insights

into how higher and lower values of each variable will

affect the outcome. Each dot represents an observation. It

can be seen that for all models, higher values of CAPE and

TCW have a positive effect on the prediction, while higher

values of PC1 have a negative effect. In general, the results

for all models in Fig. 8 (right) agree with the LR model

coefficients of the statistically significant explanatory

variables that are robust across the subsampled datasets

(Table 3).

The SHAP interaction values for CAPE and SATmax

across all models demonstrate that the importance of CAPE

on extreme events decreases as SATmax increases (see

supplementary material). This observation is consistent

with the findings presented in Fig. 6 where the relationship

between the interaction and extreme events was specifi-

cally examined within the LR model.

4.4 LR versus ML

In contrast to LR and NNET, ROC AUC decreased for RF

and SVM when applied to the test set (Table 4) compared

to the training set, but all models still showed high per-

formance (ROC AUC greater than 0.80). In the test dataset,

the ML algorithms with the greatest ROC AUC were RF,

NNET (AUC = 0.87) (Fig. 9), followed by LR (AUC =

0.86), and SVM (AUC = 0.80). However, the Delong-test

results in Table 4 indicated that there were significant

differences only between ROC AUC of SVM and that of

the other models. For accuracy at the optimal threshold, LR

and RF were the best-performing algorithms for predicting

extremes events (ACC = 0.75, 0.73), and they had the

smallest FPR (FPR = 0.26, 0.28), but NNET had the

Fig. 6 CAPE odds ratio as a function of SATmax. The solid line is the

central estimate; dashed lines are the 95% confidence interval

calculated using the Delta Method (Oehlert 1992). The trend indicates

that the overall effect of CAPE on extremes decreases with increasing

values of SATmax

Fig. 7 Importance of explanatory variables in predicting extreme

precipitation events. The Type II Chi-square deviance test statistic for

LR, permutation-based performance for RF, SVM, and Gevrey

Importance for NNET. The dashed line signals statistical significance

threshold (p values B 0.05). If a particular explanatory variable is

absent from the plot, it indicates that it was considered unimportant

by the model
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highest TPR (TPR = 0.90 while TPR = 0.87 and 0.83 for

RF and LR). RF had the best area under the PR curve (PR

AUC = 0.39), followed by LR (PR AUC = 0.38) and

NNET (PR AUC = 0.37). Brier score did not show any

difference among models. SVM had the worst performance

in terms of all metrics.

When non-linear effects were incorporated into LR via

restricted cubic splines, there was more overfitting, and the

performance of LR was not increased compared to tradi-

tional LR (see supplementary material).

Figure 10 highlights that the best-performing models

give similar predictions. LR, RF, and NNET predictions

are strongly correlated (LR-RF, 0.84; LR- NNET, 0.92;

RF- NNET, 0.92). On the other hand, the correlations of

LR, RF, and NNET predictions with SVM ditto are weak.

The predictions for the observed extreme events only fol-

low the same pattern: high correlation between LR and RF,

NNET, and low correlation with SVM. The distribution of

predicted probabilities for non-extreme events coincides

with the expected left-skewed pattern in all models. In

contrast, the distribution of the expected probabilities for

extreme event occurrences deviates from the ideal case of a

highly right-skewed distribution.

5 Discussion

5.1 Physical interpretation and importance
of the explanatory variables

We found that CAPE, TCW, some PCs of Z500, and the

interaction term of CAPE and SATmax are significant

variables for explaining the occurrence of extreme pre-

cipitation events in the Copenhagen area. As deduced

theoretically, CAPE and TCW are the most important

variables. Larger values of CAPE mean a larger amount of

potential energy to be released by convection, and we

expect this to have a positive effect on the probability of an

event. Our analysis confirms this since the confidence

interval of the odds ratio of CAPE is entirely above unity.

Furthermore, also TCW has a confidence interval for the

odds ratio, which is entirely above unity, which is as

expected since we expect a larger TCW to mean a larger

probability of extreme precipitation. The fact that these

conclusions for CAPE and TCW are stable under

bFig. 8 In the left: variable importance, evaluated using the mean ab-

solute SHAP values, for all models. In the right: Beeswarm plots of

SHAP-values for the explanatory variables for all models. Variables

are sorted by their mean absolute SHAP value in descending order

with the most important variables at the top. Each dot represents an

observation in the study

Table 4 ROC AUC (95% CI) performance comparison of the four

models applied to the training and test sets. 95% CI is computed with

2000 stratified bootstrap replicates

Model Training Test

LR 0.86 (0.85–0.88) 0.86 (0.83–0.89)a

RF 0.998 (0.997–1) 0.87 (0.85–0.9)a

NNET 0.87 (0.86–0.89) 0.87 (0.84–0.89)a

SVM 0.96 (0.95–0.97) 0.80 (0.76–0.84)b

abDifferent letters in the same column indicate significant statistical

differences (p\ 0.05, Delong Test)

Fig. 9 Performance metrics of four models predicting the outcomes of extreme precipitation events
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subsampling and that these explanatory variables were

found to be the most important variable by both established

and more modern variable importance metrics for LR and

ML models underlines the robustness of this conclusion.

The rank of these explanatory variables may differ (e.g.,

CAPE is the first for NNET, RF, and second for LR, SVM)

because each algorithm has a different approach to mod-

eling the relationship between the explanatory variables

and the response.

Furthermore, some of the Z500 PCs have odds ratios

different from unity. A closer examination of these reveals

that easterly and southeasterly flow favors extreme events,

even on days where values of CAPE and TCW are low. We

interpret this as already active convective systems being

advected into the areas. This is, however, a less dominant

mechanism since the PCs have much lower variable

importance than CAPE and TCW.

We regarded SST as an explanatory variable of extreme

precipitation events. However, after incorporating TCW,

we found that SST had no significant impact. This is

probably because SST variability is too small to influence

the formation of extreme precipitation events, and that SST

and TCW are correlated. On the other hand, SATmax

improved the PR AUC slightly, but different models dis-

agree on its importance.

The odds ratio for the interaction term of CAPE and

SATmax is less than unity, which is surprising. We would

have expected that the combination of large CAPE and

high SATmax was in favor of releasing extreme events, but

this conflicts with our results. The fact that the ML models

also learn the same relationship consolidates this finding.

It is interesting to note that the most important

explanatory variables; (CAPE, TCW, and Z500 PC’s) all

describe the state of the free atmosphere over the region

Fig. 10 Correlation coefficients for all data, extremes, non-extremes, and scatter plots of the probabilistic model predictions between the different

models. In the diagonal are the density plots of probabilistic predictions of extremes/non-extremes for each model
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without regard to the detailed geography. This suggests that

the models presented here and the conclusions about their

comparison can be applied to other regions (with other

fitted parameter values). Also, the physical arguments

given earlier for choosing these as potential explanatory

variables support this view. Given the limitations in the

variable selection, it is possible to argue that expanding the

set of variables used in the ML models could potentially

yield different results in terms of variable importance.

Including more variables may uncover additional interac-

tions that were not captured by the original subset of

variables.

The model with PC Z500, CAPE, SATmax & TCW as

explanatory variables had high scores in all performance

metrics except PR AUC. The reason for this is the high

FPR values. Although we have a dense network of rain

gauges in this case study, it is still possible to miss events

that actually occurred. For the Copenhagen case, we would,

e.g., miss any cloudburst that hits right off the coast in the

sea. This fact could contribute to high FPR values. To

validate this hypothesis, we conducted the analysis using

data just from one gauge (the gauge with the least missing

data). The results showed (see supplementary material) that

the PR AUC is significantly lower even if the ROC AUC is

comparable with the full network performance. These

findings support our claim for higher FPR values attributed

to missed events. Future work should therefore focus on

augmenting the database by testing the sensitivity towards

defining a region, e.g., by using fewer gauges and/or using

bias-corrected weather radar data.

5.2 LR versus ML

We hypothesized that ML would be superior to traditional

LR in predicting extreme events. Our hypothesis was par-

tially supported in that LR performed worse than RF and

NNET but better than SVM. Differences in the AUC

between LR and the best-performing algorithms were not

statistically significant, indicating only minor differences in

overall fair explanatory performance across all models.

Moreover, LR and NNET did not exhibit overfitting in

contrast to RF and SVM. LR models might be more ben-

eficial in this study than ML methods due to their trans-

parency and interpretability. LR models also have a solid

theoretical background, which allows for the use of well-

defined statistical tests to assess the statistical significance

of the explanatory variables.

Our findings may have implications for the design of

future ML applications. Despite the simple model, data-

driven ML methods yielded to a small performance benefit

compared to the LR model. Finally, the difficulty of

interpreting ML models is a barrier to their use in extreme

event prediction. Future research could extract information

from the black box to create interpretable but accurate

statistical models. Each dataset is unique, and there is no

‘free lunch’ (Wolpert and Macready 1997), i.e., an algo-

rithm performing well on a particular class of problems.

Evaluating multiple algorithms against LR is critical to see

if one outperforms the other; if performance is comparable,

the simplest and most interpretable model should be

employed.

5.3 Strengths and limitations

A systematic comparison between LR and several machine

learning algorithms was conducted with a focus on their

suitability in our setting of studying extreme precipitation

events. Performance metrics specifically designed for

unbalanced data were employed, and the ML models were

optimized through a grid search approach. An independent

dataset was utilized as the test dataset to enhance the

validity of the findings, and variable importance metrics for

all models were also employed to complement one another.

Extreme precipitation events are rare occurrences by

nature, resulting in a limited amount of available data for

training and evaluating models. The presented case area

has an excellent climatological data set of 15 rain gauges

within a relatively small geographical area and 42 years of

recordings, yet the total number of observed extreme

events that we are training models on is just 557. The lack

of comprehensive, long-term observations is a general

problem when studying the climatology of extreme rainfall,

and relevant methods have to deal with this. The scarcity of

extreme events restricts the number of variables that can

reasonably be included in the analysis and the ability to

employ very complex models. This is due to identifiability

issues and that the risk of overfitting increases (Kuhn and

Johnson 2013). In this study, we have thought it important

to leverage domain expertise for selecting and engineering

features that capture various aspects of extreme event

behavior. Regarding variable selection, this study’s

approach may favor the LR model to some extent, as the

process of selecting variables for ML models aligns with

that of the LR model. This makes the model performance

comparison straightforward and allows us to investigate

how well LR and ML models are able to utilize information

based on a mix of data and domain expertise. However, this

may also be considered a limitation of our study since one

of the most significant advantages of ML over LR is its

ability to model complex, non-linear relationships between

several explanatory variables and outcomes. The explana-

tory variables-outcome complexity should not be too low

for ML to provide a meaningful advantage over LR, which

is likely one the main reasons why the ML models are not

able to outperform LR here. We hypothesize that this is

likely to hold for other similar studies due to the lack of
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comprehensive observational records. For ML methods, it

has been stated as a rule of thumb that almost ten times as

many events per variable are required to get consistent

results compared to traditional statistical modeling (van der

Ploeg et al. 2014). Future research could delve more into

how far we can push the number of features in different

types of ML models without running into lack of identifi-

ability and over-fitting issues in studies of extreme pre-

cipitation events. It would also be interesting to see if ML

models with more variables allow for physically inter-

pretable insights that enhance our understanding of the

climate system, such as drawing clear conclusions on

variable importance. This introduces the challenge of

deciding which variable selection method to employ for the

ML models, potentially leading to variations in the selected

variables and confounding a fair comparison across

models.

Additionally, it is important to note that the neural

network model used in this study is not particularly com-

plex, as the cross-validation process limited the size of the

hidden layer to only two. This could reduce the ability of

the neural network to capture more complex relations in the

data, but increasing the depth of the network also leads to

lack of identifiability and over-fitting on small data

sets.Furthermore, the LR depends on the fulfillment of

specified assumptions (i.e., observation independence, no

multicollinearity). Violating these may impact the quality

of the analysis. The results of this study imply that any

assumption violations with respect to LR do not signifi-

cantly influence the performance quality because LR per-

formed quite similarly to ML. Since non-linear effects were

tested for LR via cubic splines without increasing the

performance, their difference in performance is likely due

to the lack of inclusion of variable interactions, which have

to be included manually in LR by the user, while the ML

models capture them automatically.

Lastly, CAPE, Z500, and TCW are simulated reanalysis

outputs, which come with their own uncertainties and

errors. One source of uncertainty is the used data assimi-

lation method since different methods can yield to different

results. Therefore the choice of method can impact the

accuracy of the reanalysis data. Another source of uncer-

tainty is the quality and consistency of the used observa-

tions. Older observations might not be as accurate as

current ones because the observational methods have

changed. This can impact the quality of the reanalysis data,

particularly for earlier periods. Finally, the numerical

models to produce the reanalysis data, including their

spatial and temporal resolution, also have their own

uncertainties.

6 Conclusion

In conclusion, the logistic regression framework was found

to be an effective tool in modeling the occurrence of

extreme precipitation events using meteorological drivers

as explanatory variables. Considerable effort was put into

improving model performance, generalization, and inter-

pretation. The results showed that CAPE and TCW were

the most important explanatory variables, while some of

the PCs of Z500 and the interaction term of CAPE and

SATmax were also significant. Our analysis confirmed the

relationship between larger values of CAPE and TCW and

a higher probability of extreme precipitation. The results

also indicated that certain flow directions are favorable for

extreme events. The results showed that SST had no sig-

nificant impact, while SATmax improved the PR AUC

slightly. The interaction term of CAPE and SATmax was

found to be less than unity, which was surprising and

requires further investigation. The model with PC Z500,

CAPE, SATmax, and TCW as explanatory variables had

high scores in most performance metrics, but high FPR

values indicate a need to augment the precipitation data in

future studies.

A classic LR performs similarly to more complex ML

algorithms in a classification setting with four explanatory

variables. This study demonstrates the value of comparing

standard regression modeling to ML, mainly when a small

number of well-understood, strong explanatory variables

are used. Given the increasing availability of data tech-

nologies, ML may play a more significant role in prediction

in the future. However, we still recommend caution in the

optimism of using ML since its benefits depend on various

criteria such as sample size, number of explanatory vari-

ables, and the complexity of the interactions of the

explanatory variables. All of which are significant obsta-

cles when working with rare extreme events and limited

observational records.

In this study, a simple dataset gives reliable information

on what circumstances lead to hourly precipitation

extremes. Application to other locations to test transfer-

ability in both model structure and actual model remains to

be tested, but early results are promising. This approach

could be useful in data-sparse regions or for predicting the

impacts of climate change where the physical understand-

ing of convective rainfall is limited.
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