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Abstract
The paper presents the possibility of using data mining tools — artificial neural networks — in prediction of hydrometer

reading after 24 h in order to limit the duration of the test to 4 h. The authors analysed a database of 693 granulometric

composition analysis results of genetically different soils with the use of radial basis function network (RBF) and

multilayer perceptron (MLP). The calculations performed showed that it is possible to use MLP to shorten the test time

without affecting the quality of the results. The presented accuracy of the model, in the range of 0.55–0.72, allows one to

determine the content of silt and clay fractions with an accuracy of 0.49% for equivalent diameter (dT) and 1.50% for

percentage of all particles with a diameter smaller than dT (ZT). The results were better than that achieved using linear re-

gression models with all predictors (REG), stepwise regression models (SREG), and classification and regression trees

(CRT). Taking into account the uncertainty of hydrometric determinations, the obtained forecast values is lower than this

uncertainty, therefore neural networks can be used to predict the results of this type of research.

Keywords Determination of soil grain composition � Linear regression models � Stepwise regression models �
Classification and regression trees � Artificial neural networks � Radial basis function network and multilayer perceptron

1 Introduction

Data mining methods, including regression analysis and

artificial neural networks (ANNs) are increasingly used to

predict the physical and mechanical properties of soils and

to optimize techniques of reconnaissance soil engineering

properties (Yuanyou et al. 1997; Yang & Rosenbaum 2002;

Boadu et al. 2013; Varghese et al. 2013).

The literature review conducted by the authors showed

that often statistical tools are used to specify the relation-

ship between individual geotechnical parameters of natural

soils and rock, determined in laboratory tests (Penumadu

and Zhao 1999; Lee et al. 2003; Park and Lee 2011;

Gurocak et al. 2012; Khanlari et al. 2012; Tizpa et al. 2015;

Kim et al. 2021). Such correlations are also successfully

used to assess the relationship between the mechanical

properties of various soil mixtures and substances aimed at

improving or changing them (Najjar and Basheer 1996;

Debnath and Dey 2017; Dehghanbanadaki et al. 2019). The

use of artificial neural networks in in-situ research is also

known (Zhou and Wu 1994; Chan et al. 1995; Abu Kiefa

1998, Nejad et al. 2009; Emami and Yasrobi 2017). Sta-

tistical methods and the use of ANN are also widely used in

the interpretation of geotechnical data to assess the slope

stability using numerical modelling methods (Sakellariou

and Ferentinou 2005; Wang et al. 2007; Mustafa et al.

2012; Lian et al. 2015; Ray et al. 2020; Li et al. 2022) or

subsidence (Kanayama et al. 2014; Ghiasi and Koushki

2020).

The soil particle size analysis is performed to determine

the particle size composition (ISO 2017). It allows for the

determination of the percentage content of individual

fractions occurring in the soil, and thus the type and name

of the soil tested. Knowing the type of the tested soil is an

initial laboratory test and allows to predict its properties

and determine the scope of further laboratory steps to
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specify physical and mechanical properties (Vangla and

Latha 2015; Liu et al. 2020; Guo et al. 2020).

Particle size analysis can be performed by (1) the

mechanical method — sieve analysis or (2) the sedimen-

tation method — hydrometer analysis, or by using a

combination of these two methods. In the case of cohesive

soils, it is necessary to use the hydrometer method, which

is a much more labour-intensive and time-consuming

method (Barman and Choudhury 2020). In the case of sieve

analysis, the preparation of the test sample is limited to

drying it. Performing the hydrometer analysis requires

additionally washing the dried sample, boiling the sus-

pension and then bringing it to the ambient temperature.

The further testing process for sieve analysis takes

approximately 30 min. For hydrometer analysis, this time

is extended to more than 24 h (Myślińska 1992, ISO 2016).

The basic objective of the article was to verify the

possibility of using ANN (radial basis function network—

RBF and multilayer perceptron – MLP) to predict the

hydrometer reading after 24 h based on the results of

measurements carried out within 4 h of mixing the sus-

pension, which would significantly accelerate the time to

conduct this type of research. An additional question was

whether the measurement time could be reduced even more

and how this would affect the quality of the prediction of

subsequent measurements. The results obtained with the

use of ANN were compared to the results obtained with the

use of linear regression models with all considered pre-

dictors (REG), stepwise regression models (SREG), and

classification and regression trees (CRT).

2 Materials and methods

The granulometric composition analysis were carried out at

the Geotechnical and Geomechanical Research Laboratory

of the Department of Hydrogeology and Engineering

Geology, Faculty of Geology, Geophysics and Environ-

mental Protection of the AGH University of Krakow. The

research was conducted in 2020–2021. The database

included analyses for 693 samples of natural soils of var-

ious genesis and type (from low-cohesive to very cohe-

sive). The samples were collected at a depth between 0.5 m

and 9.7 m below ground level at various points in the

Śląskie, Świętokrzyskie, Małopolskie and Podkarpackie

provinces. The specific density range of these soils ranged

from 2.66 to 2.70, which is a typical value for cohesive

soils with different content of the clay fraction. All the

tested soils were mineral or low-organic soils with an

organic substance value not exceeding 4.3%. The weight of

the tested soil was prepared from the material previously

dried to a constant weight at 105 �C and ranged from

41.25 g for very cohesive soils to 152.28 g for low-

cohesive soils with a high content of sand fraction. The

average weight value was about 60 g.

The study was carried out using a combination of

mechanical (sieve analysis) and sedimentation (hydrometer

analysis) methods according with ISO 17892-4 (2016). Soil

particles larger than 0.063 mm were subjected to sieve

analysis, while smaller fractions were used to prepare the

suspension and tested using the hydrometer method.

Sedimentation methods based on the fractionation of

soil in water suspension are based on the Stokes law, which

determines that the free-fall velocity of spherical particles

is directly proportional to their diameter and specific den-

sity, and depends on the specific density and viscosity of

the liquid (water) in which the particles fall and due to

gravitational acceleration (Myślińska 1992).

Since Stokes law determines the falling velocity of

spherical particles, and most ground particles are irregular

but not spherical, the concept of equivalent diameter (dT)

is introduced.

Assuming that, at the beginning of sedimentation anal-

ysis, the carefully mixed soil suspension is homogeneous

and the particles fall freely, independently of each other,

we can transform the formula from Stokes’s law and obtain

data on the size of the falling particles. Knowing the values

of the viscosity and specific density of water, the specific

density of the soil skeleton, the acceleration of gravity,

which are constant values for a given research, and sub-

stituting the road to time ratio for velocity, it is possible —

by conducting hydrometric analysis — to determine the

equivalent diameter (dT) that has travelled the distance

(HR) after the time (T). This time is specified in the ISO

14688-2 standard (ISO 2017). Hydrometer descent read-

ings are taken after 30 s, 1, 2, 5, 15, 30 min, and after 1, 2,

4, and 24 h. The temperature of the slurry is also recorded

for each reading. The percentage of particles of the cal-

culated diameter is determined by a formula that includes

measuring the density of the suspension with a hydrometer.

As a result, it is obtained as a percentage of all particles

with diameter smaller than dT.

Table 1 summarizes the basic descriptive statistics of the

analysed variables.

The hydrometer readings decrease over time, on average

from 23.8 after 30 s to 1.0 after 24 h. The interquartile

range also decreases, from 9.7 after 30 s to 3.3 after 24 h.

Comparison of skewness and its standard error indicates

left-skewness of hydrometer readings after 30’’, 1’ and 2’,

and right-skewness of hydrometer readings after 15’, 30’,

1 h, 2 h, 4 h, 24 h and temperature. Therefore, the median

and interquartile range are more adequate sample

characteristics.

The hydrometer reading after 24 h is strongly positively

correlated (Table 2) with earlier measurements, especially

with those obtained at a shorter time interval. On the one
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hand, this can make linear methods such as linear regres-

sion very useful for predicting measurement values after

24 h from previous measurements. On the other hand, these

methods may be contraindicated by the collinearity of the

predictors, which is noticeable here. The hydrometer

reading after 24 h is not statistically significantly correlated

with temperature, which may mean that the inclusion of

this predictor in the model will not translate into an

improvement in its quality. The dependence of the

hydrometer reading after 24 h on other features and the

distributions of these features are presented in Figures S1a–

j (Supplementary Material).

Several models were built for the hydrometer reading

after 24 h prediction, including:

• linear regression models with all predictors (REG)

• Stepwise regression models (SREG)

• Classification and regression trees (CRT)

• Artificial neural networks — radial basis function

network (RBF) and multilayer perceptron (MLP).

In all models, the predictors were the hydrometer

readings after 30’’, 1’, 2’, 5’, 15’, 30’, 1 h, 2 h and 4 h.

The usefulness of temperature as a predictor in the model

was also checked.

The linear regression model for a target variable Y and

predictors X1;X2; . . .;Xp has the form:

Y ¼ b0 þ b1X1 þ b2X2 þ . . .þ bpXp þ e;

where e is a random error with centered normal distribution

and b1; b2; . . .; bp are estimated with the least squares

method. As some predictors may turn out to be statistically

Table 1 Descriptive statistics of analysed variables

Variable Mean Std. deviation Skewness Skewness SE Median Q1

(1st quartile)

Q3

(3rd quartile)

Reading time 30’’ 22.49 6.84 - 0.61 0.09 23.80 17.80 27.50

1’ 21.03 6.50 - 0.67 0.09 22.40 16.50 26.00

2’ 18.72 6.19 - 0.58 0.09 20.00 14.30 23.50

5’ 15.16 6.04 - 0.06 0.09 15.10 10.95 20.00

15’ 11.54 5.93 0.39 0.09 10.60 7.00 16.30

30’ 9.56 5.62 0.56 0.09 8.40 5.30 13.90

1 h 7.87 5.18 0.68 0.09 6.60 4.00 11.65

2 h 6.28 4.62 0.82 0.09 5.00 2.90 9.30

4 h 4.83 4.06 0.95 0.09 3.70 2.00 7.15

24 h 1.83 2.98 1.28 0.09 1.00 - 0.15 3.15

Temperature [�C] 23.84 23.84 1.95 0.01 0.09 24.00 22.50

Table 2 Pearson’s correlations. * Correlation is significant at 0.05 level (2-tailed). ** Correlation is significant at 0.01 level (2-tailed)

Reading after Temp. [�C]

30’’ 1’ 2’ 5’ 15’ 30’ 1 h 2 h 4 h

Reading time 1’ 0.991**

2’ 0.939** 0.973**

5’ 0.757** 0.828** 0.928**

15’ 0.584** 0.670** 0.807** 0.963**

30’ 0.520** 0.610** 0.755** 0.934** 0.994**

1 h 0.486** 0.575** 0.723** 0.912** 0.984** 0.996**

2 h 0.462** 0.551** 0.698** 0.889** 0.969** 0.986** 0.995**

4 h 0.450** 0.536** 0.680** 0.868** 0.951** 0.971** 0.984** 0.994**

Temp. [�C] 0.018 0.021 0.037 0.068 0.076* 0.070 0.060 0.033 0.002

Reading after 24 h 0.418** 0.492** 0.617** 0.778** 0.854** 0.876** 0.897** 0.920** 0.942** -0.073

All analyses were performed using PS IMAGO PRO v. 7 software (based on the IBM SPSS Statistics v. 27 analytical engine)
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insignificant, the stepwise method of selecting variables

was used. In this method, in each subsequent step, a vari-

able is added or removed according to the criterion based

on the value of the F statistic. For details, see Larose and

Larose (2015) and IBM SPSS (2021).

The classification and regression trees (CRT) method

(Breiman et al. 1984) recursively partitions the records into

subsets with similar values for the target variable. In this

way, it produces graphs in which, from each decision node,

starting from the initial one called the root, exactly two

edges come out to the nodes on the lower level. The CRT

algorithm builds the tree by conducting for each decision

node an exhaustive search of all available predictors and all

possible splitting values, selecting the optimal split for

quantitative target variable prediction according to the least

squares deviation impurity measure. The prediction of the

value of the quantitative target variable for an observation

that is in a given node is based on the average value of this

variable for the records of the training set in that node. This

means that weaker (in comparison to other methods) pre-

diction results should be expected, since in fact the number

of different possible outcomes for estimating the quanti-

tative target variable is limited by the number of terminal

nodes (leaves) in the tree. For details, see (Larose and

Larose 2015; IBM SPSS 2021).

There are two models of ANN implemented in PS

IMAGO PRO (IBM SPSS Statistics). The first one is the

multilayer perceptron (MLP), which has an input layer, one

or two hidden layers, and an output layer. For each quan-

titative predictor, there is one neuron in the input layer. The

number of neurons in hidden layers can be automatically

chosen. The output layer has one neuron for the quantita-

tive target variable. Each neuron from a given layer is

connected to all neurons from the next layer. The con-

nections have weights assigned, which are initially num-

bers in the range [0; 1]. As an output from each neuron of

the hidden and output layers, we obtain the value of the

activation function on the linear combination of input

signals and weights. The activation function for the hidden

layers can be a hyperbolic tangent or sigmoid function and

for the output layer additionally identity. The weights are

corrected in the learning process by the backpropagation

algorithm so that the error function defined as the sum of

the squared errors reaches a minimum (Larose and Larose

2015; Rojas 1996).

The second model of ANN is the radial basis function

(RBF) network. Compared to MLP, it has only one hidden

layer in which the number of neurons depends on the

number of groups that form the observations in the pre-

dictor space. Only connections between the hidden layer

and the output layer have assigned weights. The weights do

not require multiple corrections and are fitted by the least-

squares method (IBM SPSS 2021).

Model quality was assessed using the repeated cross-

validation method, which effectively increases the preci-

sion of the error estimates while still maintaining a small

bias (Kuhn and Johnson 2013; James et al. 2017). The

records are divided m times into k groups of similar size.

For each such split, the following procedure is repeated k

times. Successively, each of the k groups of records

becomes a test set, and the remaining groups together are

treated as a training set, on which a model is built. Then the

model is checked on the test set. In this way, k measures of

model quality are obtained for each of the m considered

partitions. This gives together k � m measures of model

quality, which are finally averaged.

As a measure of model quality, mean absolute error

(MAE) and mean squared error (MSE) were considered.

MAE for target variable Y is defined as:

MAE Yð Þ ¼ 1

n

Xn

i¼1

yi � byij j;

and MSE is defined as:

MSE Yð Þ ¼ 1

n

Xn

i¼1

yi � byið Þ2;

where yi denotes the observed and byi denotes the predicted

value of the target variable Y for the i th observation

(i ¼ 1; 2; . . .; n, where n is the sample size) (Larose and

Larose 2015).

3 Results

The final regression model built on the entire dataset is

presented in Table 3. The fit of the model is very high, with

the determination coefficient R2 ¼ 0:921, but, as was

Table 3 Coefficients b of the regression model built on the entire

dataset and their significances

Predictor b Significance

Constant -0.129 0.758

Reading after 30’’ 0.020 0.754

1’ 0.008 0.933

2’ 0.056 0.445

5’ 0.053 0.461

15’ 0.302 0.005

30’ 0.627 \ 0.001

1 h 0.136 0.282

2 h 0.069 0.586

4 h 1.382 \ 0.001

Temp. [�C] -0.027 0.118
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initially supposed, most of the variables, except the read-

ings after 15’, 30’ and 4 h, are statistically insignificant.

The same was the case with models built in the cross-

validation procedure.

Therefore, it was necessary to select variables and build

models using the stepwise method with the probability of

including equal to 0.05 and the probability of removing

equal to 0.1. The models obtained in the cross-validation

procedure contained the readings after 15’, 30’ and 4 h and

usually one additional variable, which could be e.g. reading

after 30’’, 2’ or 1 h. This model instability is due to the

observed collinearity of the predictors.

The classification and regression tree models had a

maximum depth of 5, where the minimum number of cases

in the parent node was set to 10 and in the child node to 5.

Most of the splits in the trees based on the reading after

4 h, and the importance of the predictors, measured as the

sum of the improvements in the splits based on a given

variable, was lower for the earlier measurements.

Predictors introduced into the ANN were standardized

by subtracting the mean and dividing by the standard

deviation (Z-score standardisation). The RBF network had

softmax as the activation function in the hidden layer and

identity in the output layer. The obtained networks had 4

neurons in the hidden layer, which was set automatically.

The analysis assumed a comparison of MLP models

with one and two hidden layers and different activation

functions in hidden (the hyperbolic tangent and the sigmoid

function) and output (the hyperbolic tangent, sigmoid

function and identity) layers. The entire network training

procedure was carried out only on the training set. In

addition, the test set was not used to determine the moment

of stopping learning. The stop condition was determined by

setting the number of learning epochs to 1000.

The quality of all models was evaluated using tenfold

cross-validation method repeated 5 times. The average

values of MAE and MSE were calculated and are presented

in Table 4.

The best models of multilayer perceptrons with one and

two hidden layers with sigmoid activation function in

hidden layers and identity in the output layer adequately

predict the hydrometer readings after 24 h, especially their

positive values. For negative readings, the prediction may

be slightly overestimated (Figs. 1 and 2).

MLP models with the sigmoid function in the hidden

layers (one or two) and the identity function in the output

layer were used to test the possibility of observation time

reduction to 2 and 1 h. In each of these cases, the mea-

surement values were predicted at further points in time.

The results are presented in Tables 5 and 6.

The square root of the mean square error is 0.8264 for

MLP with one hidden layer and 0.8334 for MLP with two

hidden layers.

Table 4 Average MAE and MSE values obtained as a result of

repeating tenfold cross-validation procedure 5 times for models of

regression (REG), stepwise regression (SREG), classification and

regression tree (CRT), radial basis function network (RBF), multi-

layer preceptron (MLP) with one (1) or two (2) hidden layers,

hiperbolic tangent (tanh) or sigmoid (sig) activation function for

hidden layers and identity (id), hyperbolic tangent (tanh) or sigmoid

(sig) activation function for output layer

Model With temperature Without temperature

MAE MSE MAE MSE

REG 0.5654 0.7284 0.5664 0.7290

SREG 0.5648 0.7287 0.5640 0.7267

CRT 0.7286 1.1670 0.7345 1.2057

RBF 1.0859 2.2518 1.0952 2.3126

MLP 1 tanh id 0.5575 0.7056 0.5475 0.7302

MLP 1 tanh tanh 0.5551 0.7081 0.5665 0.7621

MLP 1 sig id 0.5464 0.6830 0.5473 0.7024

MLP 1 sig sig 0.5539 0.7077 0.5564 0.7469

MLP 2 tanh id 0.5537 0.7268 0.5593 0.7531

MLP 2 tanh tanh 0.5571 0.7188 0.5602 0.7516

MLP 2 sig id 0.5447 0.6946 0.5469 0.7219

MLP 2 sig sig 0.5568 0.7241 0.5554 0.7326

Fig. 1 Scatterplot of hydrometer reading after 24 h predicted by

multilayer perceptron with one hidden layer and sigmoid activation

function for the hidden layer by the true value of this reading.

Predicted values obtained for one (of five) exemplary repetition of the

tenfold cross-validation procedure. The line by ¼ y is marked
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4 Discussion

The labor-consumption and high cost of examining the

particle size distribution using the hydrometer method has

long led scientists to search for alternative methods of

determining its particle size distribution. On the one hand,

it is a basic research in engineering geology, however, it is

of key importance in the further classification and selection

of more advanced laboratory tests.

Attempts to create alternative methods for determining

the particle size composition were made, for example, by

Barman and Choudhury (2020), who presented classifica-

tion of soil images using multi SVM and linear kernel

function. However, they emphasize the adequacy of the use

of this method solely for the purpose of determining the

texture characteristics of soils for the purposes of agricul-

ture. The accuracy of the system has not be verified in the

case of determining the content of the exact sizes of indi-

vidual soil fractions which is of key importance in the

geotechnical classification. Ghasemy et al. (2019) proposed

a mathematical approach based on comparing the results of

the combination of sedimentation and spectrophotometric

methods. However, laboratory tests were performed on

only 17 samples and despite the confirmation of the initial

assumptions, the accuracy of the results was not deter-

mined. This makes it impossible to compare the results of

this experimental method for all types of soil.

Owji et al. (2014) in their publication showed that in the

case of hydrometer readings using the Bouyoucos method,

it is possible to shorten the reading time to 2 h, but only to

determine the overall texture of the soil. However, such a

procedure is not sufficiently precise. They also showed that

each subsequent hydrometer reading significantly influ-

ences the determination of the content of the finer fractions.

And it is their number that is of key importance in the final

classification of cohesive soils, which is very extensive and

requires the specification of the content of clay and silt

fractions with high accuracy. Adiku et al. 2005 indicated

Fig. 2 Scatterplot of hydrometer reading after 24 h predicted by

multilayer perceptron with two hidden layers and sigmoid activation

function for the hidden layers by the true value of this reading.

Predicted values obtained for one (of five) exemplary repetition of the

tenfold cross-validation procedure. The line by ¼ y is marked

Table 5 Average MAE and MSE values obtained as a result of

repeating the tenfold cross-validation procedure 5 times for MLP

models with one hidden layer. The observation time was successively

shortened to 4 h, 2 h and 1 h, and on this the remaining readings were

predicted by the model

Observation time reduced to MAE for reading after MSE for reading after

24 h 4 h 2 h 24 h 4 h 2 h

4 h 0.5464 0.6830

2 h 0.6322 0.2589 0.9258 0.1258

1 h 0.7221 0.3763 0.2575 1.1695 0.2748 0.1359

Table 6 Average MAE and

MSE values obtained as a result

of repeating the tenfold cross-

validation procedure 5 times for

MLP models with two hidden

layers

Observation time reduced to MAE for reading after MSE for reading after

24 h 4 h 2 h 24 h 4 h 2 h

4 h 0.5447 0.6946

2 h 0.6293 0.2643 0.9413 0.1323

1 h 0.7058 0.3867 0.2626 1.1384 0.2895 0.1417

The observation time was successively shortened to 4 h, 2 h and 1 h, and on this the remaining readings

were predicted by the model

3802 Stochastic Environmental Research and Risk Assessment (2023) 37:3797–3805
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that the hydrometer readings at any time can be predicted

from the exponential equation provided that the reading

after 4.5 min (R4.5) and the experimentally determined

exponent B are known. The accuracy between the calcu-

lated and measured R values was determined using the

equations defined by them as R2 = 0.96. However, this

method is not universal for all types of soils, but only for

those that are similar in type and genesis.

Used by Fragomeni et al. (2021) multiple regression

analysis and stepwise regression analysis in the evaluation

of the relationship between different geotechnical param-

eters showed the possibility of developing predictive

models, the effectiveness and reliability of which are better

than others. They also indicated that their use saves time

and money in laboratory research. On the other hand,

Gołębiowska and Hyb (2008) formulated conclusions

regarding the uncertainty of the parameters determined in

the hydrometer analysis, i.e. the equivalent diameter (dT)

and their content (ZT). They determined the mean uncer-

tainty of dT equal to 3% (dT ± 3% dT) and the uncertainty

of the particle content (ZT) equal to 8% of the particle size

at R hydrometer readings below 5 (ZT ± 8% ZT) and at

larger readings equal to 3% particle size (ZT ± 3% ZT).

The determination of the uncertainty of the dT and ZT

values for the models made in this research was carried out

by comparing the actual value of the equivalent grain

diameter (dT_real), calculated on the basis of the actual R

reading (R_real), to the dT values calculated on the basis of

the R value provided in the models. The predicted R value

obtained as a result of the fivefold validation was averaged

for MLP with the sigmoid function in the hidden layers

(one – R_ONE or two – R_TWO) and the identity function

in the output layer. Then, on their basis, dT_ONE,

dT_TWO, ZT_ONE and ZT_TWO were calculated.

Subsequently, the differences between the real dT and

ZT values and the calculated value from the predicted R

readings were determined. The results are summarized in

Table 7.

The presented results show that both the dT and ZT

values, calculated on the basis of the predicted values of

the R, are within the acceptable limits for the uncertainty of

these determinations. In the case of ZT, a higher error is

noticeable for R_real[ 5 readings. This is due to the much

smaller number of samples whose reading after 24 h

exceeded this value. A similar value of the mean error for

the entire data set to the error value for the R readings B 5

shows that the solution presented in the article can be used

successfully for the entire data set without differentiating

the samples due to the value of the last R reading.

The machine learning methods used in the analyses in

this article (linear regression, CRT and MLP) treat the

hydrometer readings as separate predictors, they do not

take into account in any way the fact that they were read in

a specific order, at moments of time separated by a known

number of minutes. Probably the problem of predicting

hydrometer readings could also be analysed as time series

forecasting problem, for which dedicated more advanced

techniques can be used (eg. recurrent neural networks).

This may be the subject of further research. However, it

should be borne in mind that the results may not be satis-

factory. This is due to the fact that the studied time series

are short and consist of observations at only a few time

points. Moreover, the analysed time series (hydrometer

readings) are monotonic (non-increasing) what simplifies

the situation and means that less advanced methods may be

sufficient.

5 Conclusions

Optimization of the research process can be achieved

through the construction of new equipment or the

improvement of existing equipment or research method.

However, the process is not simple and fast. They are also

often unfavorable or not financially optimal solutions. The

use of statistical tools, including neural networks, is a much

Table 7 The mean values of the differences between the real dT and

ZT values and the dT and ZT values calculated from the predicted R

values based on MLP with one hidden layer (MLP 1 sig id) and MLP

with two hidden layers (MLP 2 sig id) with sigmoid activation

function in hidden layers and identity in the output layer

Parameter Number of analysed

samples

MLP 1

sig id

MLP 2

sig id

The mean value of the difference between the real dT value and the value calculated from the

predicted R readings

693 0.49 0.49

The mean value of the difference between the real ZT value and the value calculated from the

predicted R readings for the entire data set

693 1.50 1.49

The mean value of the difference between the real ZT value and the value calculated from the

predicted R readings for R_real B 5

594 1.38 1.37

The mean value of the difference between the real ZT value and the calculated value from the

predicted R readings for R_real[ 5

99 2.24 2.15
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simpler, faster and cheaper solution. It only requires a

sufficient amount of data and basic statistical software.

The methodology presented in the article presents the

possibility of using neural networks in the prediction of

hydrometer readings after 24 h, which allows for signifi-

cant shortening of the test and optimization of laboratory

procedures without compromising the credibility of the

obtained results. The calculations performed also showed

the possibility of predicting the hydrometer readings after

1 h, 2 h and 4 h. In the case of readings for these times, the

accuracy is lower, but it can still be used to determine the

grain size composition for soils with less differentiation

and a lower content of clay and silt fractions.

Considering the uncertainty of hydrometric determina-

tions, the obtained forecast value is lower than this

uncertainty, therefore neural networks can be used to pre-

dict the results of this type of research. However, the

condition for the laboratory to use neural networks to

predict readings is to collect a sufficiently large database of

full hydrometric test readings for soils that may differ in

type and origin, but occur in a defined geographical area. It

is also recommended to periodically update and calibrate

the results by performing control tests.
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