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Abstract
The time required to identify and confirm risk factors for new diseases and to design an appropriate treatment strategy is

one of the most significant obstacles medical professionals face. Traditionally, this approach entails several clinical studies

that may last several years, during which time strict preventative measures must be in place to contain the epidemic and

limit the number of fatalities. Analytical tools may be used to direct and accelerate this process. This study introduces a six-

state compartmental model to explain and assess the impact of age demographics by designing a dynamic, explainable

analytics model of the SARS-CoV-2 coronavirus. An age-stratified mathematical model taking the form of a deterministic

system of ordinary differential equations divides the population into different age groups to better understand and assess

the impact of age on mortality. It also provides a more accurate and effective interpretation of the disease evolution,

specifically in terms of the cumulative numbers of infected cases and deaths. The proposed Kermack-Mckendrick model is

incorporated into a non-linear least-squares optimization curve-fitting problem whose optimized parameters are numeri-

cally obtained using the Levenberg-Marquard algorithm. The curve-fitting model’s efficiency is proved by testing the age-

stratified model’s performance on three U.S. states: Connecticut, North Dakota, and South Dakota. Our results confirm that

splitting the population into different age groups leads to better fitting and forecasting results overall as compared to those

achieved by the traditional method, i.e., without age groups. By using comprehensive models that account for age, gender,

and ethnicity, regional public health authorities may be able to avoid future epidemics from inflicting more fatalities and

establish a public health policy that reduces the burden on the elderly population.
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1 Introduction

Demographics, particularly age, are key factors in pre-

dicting mortality risk during public health emergencies,

such as the current COVID-19 pandemic. According to

early estimates, the COVID-19 pandemic would be

responsible for at least 3 million deaths globally in 2020,

which is 1.2 million more deaths than were officially reg-

istered (Wang et al. 2022). Authorities throughout the

globe reacted to the issue by establishing a variety of steps

to limit the spread of the disease. Measures include of fast

diagnostic testing of suspected cases, contact tracking and

isolation of people, social distance, face mask use in pub-

lic, and a community-wide lockdown; see for example

Torres-Signes et al. (2021), Eikenberry et al. (2020) and

the references therein.

The effects of these actions led in unthinkable disrup-

tions to the economic and social well-being of communities

around the globe (United Nations Development Pro-

gramme 2020). For instance, according to the U.S. Bureau

of Labor Statistics, the United States (US) unemployment

rate rose by 10:3% to a record 14:7% in April 2020 as a

result of these mitigating efforts (Fairlie et al. 2020). This

was the highest rate and most substantial over-the-month

increase in history. According to the data, the number of

jobless climbed by 15.9 million to around 23.1 million in

April 2020. Furthermore, data obtained earlier during the

pandemic revealed that COVID-19 disease caused more

severe sickness and mortality among older people and

those with commodities (Wenjun et al. 2020; Chen 2023).

The probability of death from COVID-19 illness grows
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with age, according to a report from a rigorous examination

of the disease’s effects on persons of various ages (Mal-

lapaty 2020).

In addition, the pandemic has had a more severe effect

on the health outcomes of those who are older than those

who are younger. This is particularly true for elderly adults.

According to the findings of a recent study, the COVID-19

mortality rate is much higher among persons over the age

of 65 than it is among younger age groups (Christopher

et al. 2020). This is due to a number of reasons, including

age-related changes in the immune system as well as the

presence of underlying health disorders, all of which can

raise the risk of severe disease and death as a result of the

virus. To establish efficient treatment and prevention

strategies to manage the outbreak, it is of the utmost

importance to determine the effect of age on mortality risk

(Bonanad et al. 2020; Behrooz et al. 2022). Traditional

experimental clinical research, on the other hand, may not

be the most effective strategy for identifying important risk

factors for emerging diseases. These studies frequently

depend on limited samples of patients and put their atten-

tion solely on confirming a small number of possible risk

variables. A lack of generalization may also be present, as

well as an inability to evaluate the identified risk variables

in terms of the impact they have on patients.

Pandemic-related restrictions and lockdowns have made

it much more difficult for older folks to receive medical

care, despite the fact that access to healthcare is already

difficult for many older adults owing to mobility concerns

or lack of transportation. This can result in a delayed

diagnosis and treatment, which further exacerbates the

health problems experienced by older persons. Moreover,

due to the rapid increase in COVID-19 incidence and

mortality rates reported in Europe, the United States, and

Latin American countries in the weeks following the initial

outbreak (O’Driscoll et al. 2021), as well as COVID-19-

related deaths and deaths from other diseases that were

found to increase with age, which were higher in men 60

years of age and older compared to women (Bilinski and

Emanuel 2020; Banerjee et al. 2020), this study addresses

the limitations of pandemic mortality risk analysis by

developing an age-stratified compartmental model that

considers the age-dependent progression of pandemics.

Our model employs a comprehensive multi-category model

framework to classify the population into several age

groups and study potential risk variables linked with pan-

demic deaths from a dynamic standpoint.

As a proof of concept for our proposed paradigm, using

actual data from the U.S. states of Connecticut, North

Dakota, and South Dakota, we evaluated the performance

of our age-segregated model using widely accepted

numerical measures. Our research provides valuable

insights for healthcare administrations looking to better

comprehend and manage the mortality risk associated with

COVID-19. By constructing an age-stratified model that

takes into account the complicated interaction between age

and pandemic, we provide a more complete method for

assessing mortality risk that is easily understood and

applicable in intervention.

The following sections of our study explain in detail our

suggested age-stratified model as well as the computational

methods we employed to tackle the fitting optimization

problem. Section 2 reviews related studies from the liter-

ature. In Sect. 3, we describe the design of the model and

the methodology used to divide the population into several

age groups. We also describe the methods used to look into

possible risk factors linked to COVID-19 deaths. Section 4

displays the simulation results achieved by using our pro-

posed methodology. We present a detailed analysis of these

findings and provide insights into the factors influencing

the observed patterns. In the last sect. (Sect. 5), we provide

an in-depth discussion of our findings, draw conclusions

based on the results of our analysis, and suggest directions

for future research.

2 Background

The COVID-19 pandemic has underlined the role of

demographic factors in determining mortality risk. As a

result of the pandemic, researchers have focused on iden-

tifying risk factors and developing treatment protocols.

Age, gender, and race play a significant role in determining

the mortality risk associated with COVID-19. Particularly,

older adults have been shown to be at a greater risk of

severe illness and death from the virus, while certain racial

and ethnic groups have been disproportionately impacted

(Bonanad et al. 2020). For this reason, several theoretical

and experimental research on Covid-19 disease outbreak

has been carried out to better understand the mechanisms

of transmission and control, as well as to assess the effect

of mitigation measures and the mortality risk posed by the

COVID-19 disease; see Lai et al. (2021), MK and Antoni

(2022). However, many of these studies have limitations

that do not adequately account for the complexity of the

interaction of multiple health factors on the severity of the

outcome, especially for vulnerable populations.

Contributing to the advancement of public health policy

and comprehension, mathematical modeling has been

essential in advancing our knowledge of the transmission

mechanisms and burden of the COVID-19 disease. The

majority of mathematical models of the COVID-19 pan-

demic can be broadly classified as population-based, SIR

(Kermack-McKendrick)-type models driven by (potentially

stochastic) differential equations (Hamam et al. 2022; Raza

et al. 2022), or agent-based models, in which individuals
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typically interact on a network structure and exchange

infection stochastically (Calatayud et al. 2022; Raza et al.

2022). For example, Ahmed et al. (2021) recently extended

an SEIR model to account for nonlinear incidence rates and

the effects of random movement of individuals from dif-

ferent compartments in their environments, resulting in a

novel reaction-diffusion model for the spread of COVID-

19. The observed dynamic and steady-state stability of

virus spread is found to be substantially influenced by

individuals’ random motions.

Risk factors for COVID-19 associated mortality and

mental health issues have been studied; see, for example,

Aritz et al. (2022), Ziyadidegan et al. (2022). In Zhou et al.

(2020) published a retrospective cohort analysis that

revealed many risk factors for mortality among hospital-

ized COVID-19 patients in Wuhan. The research found

older age, a high Sequential Organ Failure Assessment

(SOFA) score, and d-dimer levels over one lg/mL as

possible risk indicators that might assist doctors in identi-

fying patients with a poor prognosis. Fadoua and Dirk

(2020) developed an age-stratified discrete-time model of

the COVID-19 outbreak that examined the effect of easing

lockdown measures and forecasted the overall history of

the number of infected, hospitalized, and died people in

Switzerland. Their data indicate an average infection

mortality rate of 0:4%, with a striking maximum of 9:5%

among those aged 80 and older (Fadoua and Dirk 2020).

Using K-means clustering and classification techniques,

Ziyadidegan et al. (2022) present a comprehensive list of

factors that influence the risk level of COVID-19 across all

United States counties. These variables were found to

influence the risk level. It was discovered that among the

most significant characteristics are the percentage of

elderly individuals, the percentage of uninsured individu-

als, the number of intensive care unit beds per 10,000

individuals, and the percentage of smokers. Aritz et al.

(2022) identified regions with high mortality risks for

COVID-19 in small English areas during the first wave of

the epidemic in the first half of 2020 by evaluating various

statistical models. Ethnic isolation, air quality, and area

morbidity were identified as covariates with a significant

and comparable impact on COVID-19 mortality, whereas

nursing home location appears to be marginally less

significant.

Furthermore, Ramı́rez-Soto et al. (2022) used weekly

death data extracted from 25 Peruvian regions to conduct a

meta-analysis study, which revealed a continuous age-de-

pendent increase in the number of excess deaths in men and

women, as shown in Table 1. Men and women had 2.08

(95% CI 1.59–2.73) and 1.67 (95% CI 1.41 to 1.96) times

higher odds of excess mortality when compared to expec-

ted mortality, respectively. Men aged 40–79 had a twofold

increase in the risk of premature death. Men aged 60–69

had 3.23 (95% CI 3.15�3.31) times the odds of excess

mortality, while women had 2.23 (95% CI 2.16�2.29)

times the odds.

Since the studies mentioned above either relied on

clinical data and were conducted in a clinical setting or

were restricted to the use of a basic dynamical model, there

is currently no well-established and intuitive model

accepted and used in determining age-based mortality. In

addition, most of these models are based on complex cal-

culations and parameters that can be difficult for the

healthcare administration to comprehend. Table 2 provided

some statistical data from early clinical studies on the

effect of age on mortality in COVID-19 patients; see David

Yanez et al. (2020) for more information. It reported the

total number of COVID-19 deaths and COVID-19 mor-

tality rates (per week per million) for the six age and

gender groups.

We utilize these previously established model frame-

works for transmission dynamics to explore the potential

risk factors associated with fatalities from a dynamic point

of view using real data from the United States. In partic-

ular, we propose to investigate a generalized multi-cate-

gory model grouped by age that stratifies the whole

population into different age group. There are three key

contributions made by this study: First, we develop an age-

stratified model of the COVID-19 illness for the United

States that considers the age-dependent course of COVID-

19 in order to better analyze the influence of age on mor-

tality and determine the number of cases and deaths.

Table 1 Reported odd ratio with

95% CI for excess death rates

stratified by age for men and

women in Peru in 2020

(Ramı́rez-Soto et al. 2022)

Men Women

Age group Odds ratio 95% CI Age group Odds ratio 95% CI

1. 0–29 years 0.99 [0.96, 1.02] 0–29 years 1.02 [0.98, 1.06]

2. 30–39 years 1.56 [1.49, 1.63] 30–39 years 1.53 [1.44, 1.63]

3. 40–49 years 2.26 [2.18, 2.35] 40–49 years 1.72 [1.64, 1.80]

4. 50–59 years 2.88 [2.79, 2.97] 50–59 years 1.98 [1.91, 2.06]

5. 60–69 years 3.23 [3.15, 3.31] 60–69 years 2.23 [2.16, 2.29]

6. 70–79 years 2.57 [2.51, 2.63] 70–79 years 1.86 [1.82, 1.91]

7. 80–89 years 2.02 [1.98, 2.06] 80–89 years 1.61 [1.58, 1.64]
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Second, we evaluate the performance of the age-stratified

model by solving the fitting optimization problem using the

Levenberg-Marquardt method; and then we compare the

outcome to the comparable model without age stratifica-

tion. Using commonly accepted numerical measures, we

evaluate the age-dependent model using real-world

COVID-19 data from the U.S. states of Connecticut, North

Dakota, and South Dakota.

3 Materials and methods

3.1 Data collection

The Center for Systems Science and Engineering at Johns

Hopkins University and the Connecticut Health and Human

Services Department compiled the data for this study

(Ensheng et al. 2022; Connecticut Health and Human ser-

vices Department 2021). Beginning on April 12, 2020 and

ending on November 16, 2020, North and South Dakota

state-level time series data were collected. After the initial

surge of COVID-19 cases across the two states and through

the summer of that year, when the two Dakotas experienced a

massive second wave of the pandemic, these dates are con-

sidered to represent when the U.S. government partially

lifted its lockdown measures. It consists of 219 observations

and populations for each state, in addition to their reported

cumulative cases of confirmed infection, recovery, and

death. While data were collected for the state of Connecticut

between October 5, 2020 and January 19, 2021. It includes

the cumulative confirmed infection, the probable confirmed

infection, the cumulative death, the probable death, and the

total daily death, all stratified by age group.

3.2 Model with no age stratification

Firstly, we present the non-age-stratified model, which is

based on the model in Eikenberry et al. (2020), with some

modifications. The current model divides the entire human

population at time t, denoted by N(t), into six distinct

categories. These categories include S(t), E(t), I(t), A(t),

R(t), and D(t). Hence,

NðtÞ ¼ SðtÞ þ EðtÞ þ IðtÞ þ AðtÞ þ RðtÞ þ DðtÞ

.

The resulting model (as depicted in Fig. (1) and the

variables as described in Table 3 with model parameters in

Table 4 is represented by the following nonlinear systems of

deterministic ordinary differential equations (ODE) below,

dS

dt
¼ �b I þ gAð Þ S

N
;

dE

dt
¼ b I þ gAð Þ S

N
� rE;

dI

dt
¼ arE � ðcI þ dÞI;

dA

dt
¼ ð1 � aÞrE � cAA;

dR

dt
¼ cI I þ cAA;

dD

dt
¼ dI:

ð2:1Þ

Table 2 Total deaths and

weekly death rates per million,

stratified by age and gender

(David Yanez et al. 2020)

Women Men

0–54 55–64 65? 0–54 55–64 65?

United States

Population (mil.) 115.6 22.1 31.0 118.2 20.7 25.0

Total deaths 51,435 2,765 17,186 2,436 3,779 23,487

Death rate 25.7 20.9 92.4 3.4 30.4 156.6

United Kingdom

Population (mil.) 22.1 4.2 6.7 23 4.1 5.5

Total deaths 592 477 8,605 1,071 899 12,345

Death rate 4.5 18.9 214.1 7.7 36.5 374.1

China

Population (mil.) 504.4 83.6 90.5 549.2 84.8 81.6

Total deaths 137 233 716 243 414 1,273

Death rate 0.0 0.5 1.3 0.1 0.8 2.6

Italy

Population (mil.) 20.0 4.5 7.8 19.9 4.2 5.9

Total deaths 208 513 6,225 386 953 11,562

Death rate 1.7 19.0 133.0 3.2 37.8 326.6
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The transmission rate, represented by the parameter, b, is

the rate at which susceptible individuals transition into the

exposed state. cI and cA represent, respectively, the rates at

which symptomatic (infected with symptoms) and asymp-

tomatic (infected with mild or no symptoms) individuals

recover from the disease. The parameter r represents the

disease’s incubation period, which is the rate at which an

exposed individual transitions into an infectious state. The

parameter g represents the relative infectiousness of

asymptomatic individuals relative to symptomatic indi-

viduals, while a represents the proportion of symptomatic

cases. Approximately 40%–45% of reported cases of

SARS-Cov-2 infection involve asymptomatic individuals

(Oran and Topol 2020), who are equally capable of trans-

mitting the disease as symptomatic cases (Kimball et al.

2020; Zou et al. 2020). In Tables 3, 4, and 5, detailed

descriptions of the model’s state variables and parameters,

as well as their likely ranges based on numerous modeling

and clinical studies, are provided.

3.3 Age-stratified model

According to early data on COVID-19 infection reported

by early studies, such as citepbonanad2020ef-

fect,deutschbein2022age, and the Centers for Disease

Control and Prevention (CDC), hospitalization and mor-

tality rates among SARS-CoV-2 infected people are

strongly correlated with age. Infected people aged 50–64,

according to the report, are four times more likely to be

hospitalized and thirty times more likely to die from the

disease than those aged 18–29. For these reasons, we

propose a dynamical model that categorizes the entire

population based on age groups, based on the models

investigated previously in Eikenberry et al. (2020), Fadoua

and Dirk (2020). Figure 2 depicts the proposed detailed

model that stratifies the population based on age groups

and describes the dynamics of the SARS-CoV-2 disease:

dSk
dt

¼ �bk
XK

j¼1

Ij þ gAj

 !
Sk
N
; for all k;

dEk

dt
¼ bk

XK

j¼1

Ij þ gAj

 !
Sk
N

� rkEk; for all k;

dIk
dt

¼ akrkEk � ðcIk þ dkÞIk; for all k;

dAk

dt
¼ ð1 � akÞrkEk � cAk Ak; for all k;

dRk

dt
¼ cIkIk þ cAk Ak; for all k;

dDk

dt
¼ dkIk; for all k;

ð2:2Þ

where k ¼ 1; 2; 3; . . .;K, and K is the number of different

classes of age groups. Figure 2 depicts the flow diagram of

the model with age groups. The parameters cIk and cAk are

the rates at which symptomatic and asymptomatic indi-

viduals recovers associated to age group k, respectively.

The parameter g in this case, is the relative infectiousness

of asymptomatic persons (in comparison to symptomatic

persons) for the age group k, while ak is the fraction of

cases that are symptomatic for the age group k under

considerations. Finally, the parameter dk is the associated

death rates for the age group k.

Observe that each age group is defined with its own

parameters and rates because, in practice, the evolution of

the COVID-19 differs between individuals and age groups.

Also note that, as depicted in Fig. 2, each age group can

Table 3 Description of the state

variables for models (2.1) and

(2.2)

Variable Description

N Total humans population

S Susceptible humans with risk of SARS-CoV-2 virus infection

E Population of humans exposed to SARS-Cov-2 virus infection

I Population of humans infected by SARS-CoV-2 virus with symptoms

A Population of asymptomatically infected humans with SARS-CoV-2

R Population of recovered humans

D Population of individuals who died

Sk Susceptible humans with risk of infection for age group k

Ek Population of humans exposed to the virus for age groug k

Ik Population of symptomatic humans for age group k

Ak Population of asymptomatic humans for age group k

Rk Population of recovered humans for the age group k

Dk Population of humans that died from the virus in age group k
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contaminate the others in the model. In fact, any member

of age group k can be infected by a symptomatic or

asymptomatic member of the same age group k or a dif-

ferent age group k0 6¼ k. Therefore, the transmission rate bk
of an age group k is multiplied by

PK
k¼1 Ik þ gAk

� �
. This is

expected to improve the evaluation of the COVID-19

evolution and its forecast, as detailed in the section on

simulation results.

3.4 Curve fitting optimization problem

This section describes the optimization problem that our

curve-fitting model attempts to solve. The Levenberg-

Marquard algorithm is used to solve the optimization

problem numerically. To fit the model curve to the

observed data, we minimize a utility function that includes

the mean squared error (MSE) between the observed and

estimated data at each day, denoted by j. J represents the

number of training days for the model that fits curves. As a

result, the optimization problem can be expressed as

follows:

ðPÞ bX ¼
X

XJ

j¼1

XK

k¼1

�
ðbI kðj;XÞ � IkðjÞÞ2

þ ð bDkðj;XÞ � DkðjÞÞ2
�
;

subject to:

ODE model in: Eq: ð2:2Þ;
Initialization: Skð0Þ ¼ Sk0;

Ekð0Þ ¼ Ek
0;

Ikð0Þ ¼ Ik0 ;

Akð0Þ ¼ Ak
0;

Rkð0Þ ¼ Rk
0;

Dkð0Þ ¼ Dk
0;

ð1Þ

where vk represents the initialization value of the observed

state v for the age group k with v 2 fS;E; I;A;R;Dg. Note

that when K is set to 1, (P) is converted to a curve fitting

problem for the non age-stratified model. The element

Îkðj;XÞ and ^Dkðj;XÞ denote the estimated values of the

state Ik and Dk for the age group k at day j given the

Table 5 Estimates of the model

parameters used in the

simulation

Parameter Unit Estimated value Source

bk day�1 0.5-1.5 Read et al. (2020), Mingwang et al. (2020)

rk Dimensionless 1
5:1

Ferguson et al. (2020)

g Dimensionless 0.4-0.6 Li et al. (2020), Friji et al. (2021)

ak Dimensionless 0.15-0.7 Ferguson et al. (2020), Li et al. (2020)

cIk day�1 1/14–1/3 Eikenberry et al. (2020), Tang et al. (2020)

cAk day�1 1/30–1/3 Eikenberry et al. (2020), Tang et al. (2020)

dk day�1 0.001 - 0.1 Ferguson et al. (2020)

Table 4 Description of

parameters for models (2.1) and

(2.2)

Parameter Interpretation/Description

b Transmission rate of infection of humans

g The relative infectiousness of cases that are asymptomatic

r Rate of transition from a state of being exposed to one of infection

a Fraction of infectious cases that manifest symptoms

cI Rate of recovery among those cases without symptoms

cA Rate of recovery among those who were exhibiting symptoms

d Rate of mortality

bk Transmission rate of infection of humans for age group k

rk Rate of transition from exposed to infection for age group k

ak Fraction of cases that are symptomatic for the age group k

cIk Rate at which symptomatic individuals recovers for age group k

cAk Rate at which asymptomatic individuals recovers for age group k

dk Associated death rates for the age group k
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optimized vector X̂ that includes the list of the target

parameters of the ODE model as follows:

bX ¼ fbX1; . . .; bXKg ð2Þ

where bXk ¼ fb̂k; r̂k; âk; ĉIk; ĉ
A
k ; d̂kg; for all k: ð3Þ

The above optimization problem is formulated as a Non-

Linear Least Square (NLLS) problem that cannot be ana-

lytically and optimally solved. The problem is solved using

the Levenberg-Marquard (LM) (Ramos-Llorden et al.

2018; Lourakis 2005) algorithm, which is one of the most

popular NLLS optimization algorithms. In practice, we

employed the ‘‘lmfit’’ function in Python.

4 Results

In this section, we compare the fitting and forecasting

results for the age-dependent and independent models to

assess their efficacy and highlighted the significance of the

design that was utilized in the present study. Firstly, we

start by fitting the two models to the observed data using

the Levenberg-Marquardt algorithm and simulate the North

and South Dakota data in order to determine the viability of

the traditional model (2.1) before using real data to assess

our suggested age-stratified model (2.2). Then, we

demonstrated the superiority of the proposed approach by

comparing our results with other recently established age-

dependent COVID-19 studies.

In Fig. 3, we illustrate the results of fitting and fore-

casting of the cumulative infectious, recovered, and death

rates for the states of North and South Dakota using the

previously introduced traditional non-age-stratified model

(2.1). Our initial assessment of the non-age model

demonstrated that when the model parameters are

optimized on real data during the training process, it pro-

duces good simulation results. In addition, the predicted

results for the next 45 days are displayed without any prior

knowledge of the actual data. The purple vertical line

marks the distinction between fitting and forecasting. These

graphical results for the states of North and South Dakota,

as shown in Fig. 3, validate the accuracy of the fitting for

the traditional non-age-dependent model. Furthermore, the

model correctly fits the actual data during the training

phase and follows the virus’s evolution trend during the

forecasting phase. In the following section, we show how

the proposed age-dependent model approach outperforms

other recently established studies by fitting age-stratified

real data from the state of Connecticut in the United States

and providing different comparison scenarios.

4.1 Comparison of the proposed age dependent/
independent models: the case of Connecticut

This section examines the situation in Connecticut due to

the availability of data for various age groups. We evaluate

the efficacy of curve fitting for the proposed age-stratified

SEIARD model (2.2) and compare its results (predictions)

to those of the traditional model (2.1), which does not

include age groups. But first, we use the traditional model

to simulate the data to determine its viability. According to

the original data obtained from the Connecticut health and

human services department, the population is assumed to

be divided into eight distinct age groups indexed by (1) the

first band representing 0–39 years and (2) the second rep-

resenting 10-year age bands (40’-49’, 50’-59’, 60’-69’,

70’-79’, and 80?). Recent studies have also used age

stratification to estimate contact rates and excess all-cause

deaths of the COVID-19 pandemic; see, for example,

Pooley et al. (2022), Ramı́rez-Soto et al. (2022). Ramı́rez-

Soto et al. (2022), in particular, designed a cross-sectional

study for twenty-five Peruvian regions that included mor-

tality data and estimated excess all-cause deaths and excess

death rates during the COVID-19 pandemic. In their study,

the P-score was used as the primary outcome measure to

estimate excess deaths and excess death rates (observed vs.

expected deaths) in 2020 by gender and age (0–29, 30–39,

40–49, 50–59, 60–69, 70–79, and 80? years). Men were

found to have higher age-stratified excess death rates than

women, with approximately 100,000 excess all-cause

deaths occurring in Peru in 2020. However, given the

complexity of the pandemic, a novel dynamic

Fig. 1 Flow diagram of the non age-stratified ODE model (2.1),

indicating the transition of individuals from susceptible state to the

recovered or death states through symptomatic and asymptomatic

states
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compartmental model that enables efficient inference for

different age-structured multiple data sources (demo-

graphic, operational, and survey data) arising from the

COVID-19 epidemic is required to fill this gap. Motivated

by the above previously mention studies and for the sake of

readability and clarity, we divided the population into two

sub-age groups based on Fig. 2 as follows:

• First Age Group (AG1): this group contains people

aged between 0 and 39.

• Second Age Group (AG2): this group contains people

aged 40 and more.

Figure 4a, b show the fitting (between October 1, 2020 and

February 28, 2021) and forecasting (between February 28,

2021 and April 14, 2021) results for the state of Con-

necticut using the traditional, non-age-dependent model. It

represents both the total number of infected people and

deaths. Indeed, these graphs show that the traditional

model is capable of fitting actual data (blue curve), learning

the trend of actual data (red curve), and producing accurate

forecasts. In Fig. 4c–f we present the fitting and forecasting

results for age group 1 (with an age range of 0–39 years)

and age group 2 (with an age range of 40 and more) for the

State of Connecticut. The graphical results show that, after

fitting its parameters to the real data, the proposed model

forecasts the data with reasonable accuracy. Notable is the

fact that our results for both AG1 and AG2 indicated a

near-perfect match with Connecticut cases reported. Due to

the success of our age-stratified model in modeling the

complex dynamics of the COVID-19 epidemic, this

extends the work of Fields et al. (2021), in which three

Fig. 2 Flow diagram of the age-

stratified ODE model (2.2),

indicating the transition of

individuals between the

different states. Each sub-

diagram corresponds to an age

group k. The dashed lines

indicate that the susceptible

state of an age group Sk might

be contaminated by

symptomatic and asymptomatic

cases belonging to all the age

groups
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Fig. 3 Fitting and forecasting results for (cumulative) infectious, recovered, and death tolls for the States of North and South Dakota, using the

non age-stratified model
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Fig. 4 Prediction results for (cumulative) infectious and death tolls for the state of Connecticut, using the age-stratified model
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different age groups were considered but their age-strati-

fied model did not fit the data.

To validate the effectiveness of including age groups in

our analysis, we compare the results obtained by the tra-

ditional non-age-stratified (non AG) and proposed age-

stratified (AG) models. These results are shown in Fig. 5.

In fact, Fig. 5a, b represent the fitting and forecasting

results for the state of Connecticut by analyzing the

cumulative number of infected and deaths, respectively.

The red line represents the observed data in the graph,

while the blue and green lines represent the predicted data

for the non AG and AG models, respectively. The blue

curve in both Fig. 5a, b closely follows the red curve,

indicating that the AG model performs similarly to the

traditional model (non-AG) with a slight improvement

during the forecasting phase.

In the subsequent paragraph, we intend to validate the

graphical results using the numerical metrics provided in

Tables 6 and 7. In fact, the tables contain three distinct

types of metrics, each of which investigates a distinct

aspect of the model’s performance. The tables evaluate

both ODE models for these metrics to determine their fit-

ting and forecasting effectiveness. We defined the metrics

as follows:

(a) Normalized Root Mean Squared Error (NRMSE):

This metric provides insights about the difference

between the predicted (denoted by ŷ) and the

measured values denoted by y, see for example

Mahmoud et al. (2020). It is expressed as follows:

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

PM

m ¼ 1
ðym � ŷmÞ2

vuut

maxðymÞ � minðymÞ
;

ð4Þ

where M is the total number of observed

realizations.

(b) Mean Symmetric Absolute Percent Error (MSAPE):

This metric provides insights about the percentage of

the difference between the approximated and

observed values, see, for example, Seo et al.

(2018). It is expressed as follows:

MSAPE ¼ 1

M

XM

m ¼ 1

jym � ŷmj
ymþŷm

2

� � ; ð5Þ

(c) R2: This metric provides insights about the error with

regards to its real observed values, see, for example,

Sardar et al. (2022). It is expressed as follows:

R2 ¼ 1 �

PM

m ¼ 1
ðym � ŷmÞ2

PM

m ¼ 1
ðym � �yÞ2

; ð6Þ

where �y is the mean value of the observed data.

The metrics in the two Tables 6 and 7 indicate that the

proposed AG model outperforms the non-AG model in

both the fitting and forecasting scenarios. As indicated by

Fig. 5 Comparison of the fitting and forecasting results for the cumulative number of infected and deaths for AG and non AG models for the state

of Connecticut
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the R2 metric, the forecasting results have improved sig-

nificantly. For instance, the R2 metric associated with the

infected cases increases from approximately 0.672 to

approximately 0.892 when the age-stratified model is uti-

lized instead of the traditional non-AG model. Similar

observations can be made about the cumulative number of

deaths, although the difference in this case is minimal.

Therefore, by separating the data into distinct age groups,

the model is able to better fit the curve and provide accu-

rate forecasts for each age group because it is executed on

homogeneous categories with very similar characteristics,

unlike the traditional non-AG model.

5 Discussion and conclusions

This paper proposes a generalized age-stratified Kermack-

Mckendrick epidemic model for the transmission dynamics

of COVID-19 to more precisely assess the effect of age on

mortality in North Dakota, South Dakota, and Connecticut.

Six states comprise the model: susceptible, exposed,

infectious with symptoms, infectious without symptoms,

recovered, and death. The model consists of deterministic

nonlinear differential equation systems. This model was

used to investigate the potential risk factors associated with

COVID-19 spread and mortality using data from the Johns

Hopkins University Center for Systems Science and

Engineering and the Connecticut Health and Human Ser-

vices Department. In particular, we evaluated the perfor-

mance of the age-segregated model by solving the fitting

optimization problem with the Levenberg-Marquardt

algorithm, and then comparing the results to those of the

model without age stratification.

In addition to concerns about the different COVID-19

variants and influenza viruses that typically circulate dur-

ing the fall and winter seasons, numerous questions have

been raised about their potential effects on various age

groups. According to the United States Center for Disease

Control and Prevention (CDC), COVID-19 is more likely

to cause severe illness in elderly people. These individuals

require hospitalization, intensive care, or a respirator due to

severe illness. According to the CDC, the death rate for

30–39-year-olds is four times that of 18–29-year-olds, 35

times that of 50–64-year-olds, and 610 times that of those

85 or older (Hosseini-Motlagh et al. 2023; Taylor and

Taylor 2023).

In summary, our findings indicate that by age-stratifying

the COVID-19 model describing the spread of the illness, a

more accurate evaluation and prediction of the disease’s

progression may be produced compared to those derived

from the non-age stratified model. Based on the findings of

our study, the age group most likely to be affected by the

COVID-19 epidemic in the United States (or elsewhere)

was the senior population. It provides age-dependent

models that are based on real-time epidemiological data

from the different states in the United States. When poli-

cymakers make decisions on how to curb outbreaks of

similar infectious diseases while reducing pressures on the

healthcare system in the future, their choices can be tai-

lored to account for population demographics and specifi-

cally consider the prevalence of people age 65 or older by

utilizing our age-dependent compartmentalization model in

the population in specific regions or communities where

nursing homes are located (David Yanez et al. 2020). Our

findings lend credence to the usefulness of the proposed

model; we can see that it provides an accurate

Table 7 Numerical validation

of the forecasting results
Infected Deaths

NRMSE SMAPE R2 NRMSE SMAPE R2

Traditional model 0.177 0.017 0.672 0.314 0.012 0.781

Age-stratified model 0.102 0.013 0.892 0.283 0.009 0.830

Table 6 Numerical validation

of the fitting results
Infected Deaths

NRMSE SMAPE R2 NRMSE SMAPE R2

Traditional model 0.02 0.032 0.996 0.048 0.021 0.981

Age-stratified model 0.01 0.013 0.999 0.025 0.018 0.989
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representation of the training data and that it tracks the

progression of the virus over the course of the forecasting

period. According to our research, an older population is

not only more likely to become infected but also more

likely to exhibit clinical symptoms.

The age-stratified model forecasts have implications for

the anticipated global burden of COVID-19. These differ-

ences in demographics are the reason for these implica-

tions. It is possible that areas with older populations will

experience a disproportionate number of deaths if appro-

priate control measures are not implemented. These real-

time estimates may help regional public health officials

make decisions, and they highlight the importance of

implementing holistic models that take into consideration

age as well as other demographics such as gender, eth-

nicity, and other similar factors. Future research could be

conducted to create a dynamical model that analyzes fac-

tors that, aside from age, make the elderly population

particularly susceptible and vulnerable to a serious infec-

tion with complications and a higher mortality rate. Lastly,

our method can be applied to a variety of domains,

including stochastic gonorrhea epidemic models (see, for

example, Raza et al. 2019), and nonlinear stochastic Nipah

virus epidemic models (see, for example, Raza et al. 2021),

and can be augmented with additional epidemic data.
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Adin A, Congdon P, Santafé G, Ugarte MD (2022) Identifying extreme

covid-19 mortality risks in english small areas: a disease cluster

approach. Stoch Environ Res Risk Assess 36(10):2995–3010

Ahmed N, Elsonbaty A, Raza A, Rafiq M, Adel W (2021) Numerical

simulation and stability analysis of a novel reaction-diffusion

covid-19 model. Nonlinear Dyn 106:1293–1310

Arti MK, Wilinski A (2022) Mathematical modeling and estimation

for next wave of covid-19 in poland. Stoch Environ Res Risk

Assess 36(9):2495–2501

Balabdaoui F, and Mohr D (2020) Age-stratified model of the covid-

19 epidemic to analyze the impact of relaxing lockdown

measures: nowcasting and forecasting for switzerland. MedRxiv

Banerjee A, Pasea L, Harris S, Gonzalez-Izquierdo A, Torralbo A,

Shallcross L, Noursadeghi M, Pillay D, Sebire N, Holmes C et al

(2020) Estimating excess 1-year mortality associated with the

covid-19 pandemic according to underlying conditions and age:

a population-based cohort study. Lancet 395(10238):1715–1725

Bilinski A, Emanuel EJ (2020) Covid-19 and excess all-cause

mortality in the us and 18 comparison countries. JAMA

324(20):2100–2102

Bonanad C, Garcı́a-Blas S, Tarazona-Santabalbina F, Sanchis J,
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