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Abstract
Dependencies between variables are often very complex, and may for high values, be different from that of the low values.

As the normal distribution and the corresponding copula behave symmetrically for low and high values the frequent

application of the normal copula for the description of the dependence may be inappropriate. In this contribution a new way

of defining high dimensional multivariate distributions with changing correlations is presented. The method can also be

used for a flexible definition of tail dependence. Examples of copulas with linear changing correlations illustrate the

methodology. Parameter estimation methods and simulation procedures are discussed. A five dimensional example using

groundwater quality data and another four dimensional one using air pollution data, are used to illustrate the methodology.

Keywords Multivariate copulas � Tail dependence � Asymmetry

1 Introduction

The dependencies between two or more variables, can be

very complex. In the case of environmental variables

physical, chemical and biological processes have a major

influence on the variables of interest. These processes are

often not explicitly understood and are non-linear. Statis-

tical investigations of dependence are frequently based on

correlations between the variables of interest. This however

may lead to a sub-optimal recognition and description of

dependencies.

Multivariate distributions relating variables are often

considered to be normal or normal after data transforma-

tions. Popular transformations like the log transformation

or Box–Cox transformations, transform the one dimen-

sional marginals to normal, which does not imply that the

bi- or multivariate marginal distributions also become

normal. Relationships between variables are often more

complex, even non-monotonic and frequently deviate from

normal.

An elegant possibility to describe complex relationships

between continuous variables is possible by using copulas

(Sklar 1959). Copulas enable the investigation of the

dependence independently of the one dimensional marginal

distributions. A large number of different theoretical cop-

ulas are described in different publications such as (Joe

1997) or (Nelsen 1999).

Copulas are frequently used in many different disci-

plines such as finance, economy, environmental studies or

hydrology. In hydrology they are used for describing

multivariate flood frequencies (Gräler et al. 2013) rela-

tionships between flood characteristics (Chen and Guo

2019) precipitation (Favre et al. 2018) or drought (Won

et al. 2020) just to mention a few. In Bárdossy (2006)

copulas were used for the spatial statistics for groundwater

quality parameters. In Brunner et al. (2019) the Fisher

copula was used to investigate the complex dependencies

of flood occurrences.

Some of the well known copulas are derived from

known multivariate distributions such as the Gaussian or

the t-distribution. Another way to construct complex

dependencies is to use vine-copulas (Czado and Nagler

2022). While the vine copulas offer a very flexible way to

describe dependence, their construction and application for

high dimensional cases is relatively complicated.
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The purpose of this paper is to introduce a very flexible

family of distributions with value dependent (asymmetri-

cal) dependence and varying tail dependence. The paper is

divided into 8 sections. After the introduction the definition

of copulas is presented, and a new family of multivariate

distributions with non-Gaussian copulas is introduced.

Parameter estimation issues and simulation procedures are

presented. Theoretical examples illustrate the flexibility of

the methodology. Two data sets, one five dimensional on

groundwater, the other four dimensional on air pollution

are used as real-life examples to demonstrate the method-

ology. A short discussion and conclusions section com-

pletes the paper.

2 Methodology

2.1 Copulas

A copula C is defined as a multivariate distribution on the n

dimensional unit cube:

C : ½0; 1�n ! ½0; 1� ð1Þ

which has to have uniform marginals:

CðuðiÞÞ ¼ ui if uðiÞ ¼ ð1; . . .; 1; ui; 1; . . .; 1Þ

Copulas are related to multivariate distributions through

Sklar’s theorem (Sklar 1959): Each multivariate distribu-

tion Fðt1; . . .; tnÞ can be represented with the help of a

copula:

Fðt1; . . .; tnÞ ¼ CðFt1ðt1Þ; . . .;FtnðtnÞÞ ð2Þ

where FtiðtÞ represents the i-th one dimensional marginal

distribution of the multivariate distribution. If the marginal

distributions are continuous then the copula C in (2) is

unique. Hence, copulas can be regarded as the pure

expression of the dependence without the influence of the

marginal distributions.

Copulas can be defined explicitly using their density

functions or another possibility is to define copulas using

multivariate distributions by inverting (2). This means the

copula is defined as:

Cðu1; . . .; unÞ ¼ FðF�1
t1
ðu1Þ; . . .;F�1

tn
ðunÞÞ ð3Þ

Many well known copulas such as the normal, the t-copula

and the skew-normal copula are constructed using this

method.

2.2 Distributions with value dependent
correlations

In this paper a very flexible way of defining the multi-

variate distributions which define copulas with interesting

non-Gaussian properties is presented. The basic idea

behind the construction of the distribution is to gradually

change the dependence structure depending on the values

of the variables. As described in Guthke and Bárdossy

(2012) one can obtain very similar spatial fields if one uses

the same set of random numbers to generate them. A

similar methodology was used in Bardossy and Pegram

(2012) to exchange correlation structures of simulated

precipitation. This idea combined with continuity can be

used to define random variables with changing dependence

structure. Formally:

Definition A matrix valued function

F : R ! Rk�k

is called continuous if each element i, j of the matrix FðsÞi;j
is a continuous function

Definition Let RðsÞ be a in s continuous function of cor-

relation matrices of dimension k � k. Let Xs be a k-di-

mensional normal random variable with the correlation

matrix RðsÞ and standard normal marginal distributions. In

this case XðsÞ can be coupled with the help of independent

standard normal variables U ¼ ðU1; . . .;UkÞ in the form:

XðsÞ ¼ RðsÞ
1
2U ð4Þ

If the correlation matrices RðsÞ are continuous in s than
U defines a set of interdependent XðsÞ random variables

which are continuous in s. A random vector Z ¼
ðZ1; . . .; ZkÞ is defined as:

Zi ¼ minfU�1ðsÞ ; ðRðsÞ
1
2UÞi ¼ U�1ðsÞg ð5Þ

Note that as U�1ð0Þ ¼ �1\Xð0Þi and U�1ð1Þ ¼
þ1[Xð1Þi and XðsÞi is by definition a continuous

function for any i and U, the above definition leads to well

defined Zi-s.

This k-dimensional vector variable has, by this defini-

tion a dependence structure which is different for small and

large values, resulting in a non-Gaussian multivariate

distribution.

Figure 1 explains the construction. For a given vector of

random numbers ðu1; . . .; ukÞ and for two selected pairs of

variables ði1; i2Þ and ðj1; j2Þ the corresponding

ðXi1ðsÞ;Xi2ðsÞÞ and ðXj1ðsÞ;Xj2ðsÞÞ are plotted as a function

of U�1ðsÞ. The ðZi1 ; Zi2Þ and ðZj1 ; Zj2Þ values correspond to

the first intersection of the diagonal and the ðXi1ðsÞ;Xi2ðsÞÞ
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and ðXj1ðsÞ;Xj2ðsÞÞ functions. The ðX�ðsÞ functions are

continuous due to the continuity of the function of corre-

lation matrices. The intersection with the diagonal repre-

sents the value assigned to Z1 and Z2. As the Figure shows

the two different pairs get values from different XðsÞs.
If RðsÞ ¼ R is constant for all s values, then the

resulting random variable is multivariate normal with the

correlation matrix R.

3 Construction of continuous R(s) functions

For the definition of the random variables in equation (5) a

continuous correlation matrix valued function is required.

The construction of such a function is a non trivial task as

these matrices should not have negative eigenvalues to be

valid correlation matrices.

3.1 Construction using the square roots
of the matrices

In order to define such matrices one can use the fact that C
is a covariance matrix if and only if it can be written as a

product of a matrix Y and its transpose YT : C ¼ YT � Y .
(Y is the square root of the covariance matrix.)

If YðsÞ is a continuous matrix valued function then

CðsÞ ¼ YðsÞT � YðsÞ is also a continuous matrix valued

function. All these matrices are valid covariance matrices.

By defining RðsÞ ¼ ðrðsÞi;jÞ from CðsÞ ¼ ðcðsÞi;jÞ as:

ri;jðsÞ ¼
ci;jðsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ci;iðsÞcj;jðsÞ
q ð6Þ

one obtains a continuous matrix valued function of corre-

lation matrices due to the continuity of the transformation

in (6).

The general construction uses infinitely many matrices.

For practical use one has to find simplifications. The most

simple construct is to use two parameters for each pair of

variables - a starting and a final correlation, called two-

correlations model in the subsequent text. Formally:

Let Rð0Þ and Rð1Þ two valid correlation matrices. If

RðiÞ ¼ YðiÞT � YðiÞ for i ¼ 0; 1 then

Y�ðsÞ ¼ sYð1Þ þ ð1� sÞYð0Þ ð7Þ

can be used to define CðsÞ ¼ Y�ðsÞTY�ðsÞ covariance

matrices. The correlation matrices RðsÞ corresponding to

these covariance matrices form a continuous function of

correlation matrices connecting Rð0Þ and Rð1Þ. This model

is called the two correlation linear model.

This construction can be generalized to produce a set of

mþ 1 correlation matrices, the mþ 1 correlation model:

Rðs0Þ;Rðs1Þ; . . .;Rðsm�1Þ;RðsmÞ

with

0 ¼ s0\s1\. . .\sm�1\sm ¼ 1

.

Then:

Y�ðsÞ ¼ s� sj
sjþ1 � sj

Yðsjþ1Þ

þ 1� s� sj
sjþ1 � sj

� �

YðsjÞ if sj � s� sjþ1

ð8Þ

defines the sequence of covariance, and a subsequent

continuous sequence of correlation matrices.

For any continuous function F of matrices the and

continuous function h : ½0; 1� ! ½0; 1�, F(h(t)) is also a

continuous function of matrices. This new matrix function

defines a different random variable ZðhÞ with a different

copula. The choice of the function h(t) can change the

shape of the corresponding copula even if all correlation

matrices remain the same. The left and right hand deriva-

tives of the transformation function h at 0 h0ð0�Þ and at 1

h0ð1þÞ are responsible for the tail behavior of the corre-

sponding copula.

For those pairs where the starting Rð0Þ and or the ending
Rð1Þ correlation matrix contain non diagonal values equal

to 1, upper and/or lower tail dependence may occur. The

value of the tail dependence can be anything between 0 and

1 by adjusting the speed of convergence of s to 1 or 0

respectively. The corresponding proof is in the Appendix

of this paper.

Fig. 1 Definition of the random variable Z: XiðsÞ functions for two

given u1; u2 pairs and their intersection with the diagonal defining the

values
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If all correlations are positive then another geometric

construction could be used for the definition of the matrix

function.

3.2 Construction using spatial statistics

In this case the correlation matrices are constructed using

curves in an m dimensional space. All curves are param-

eterized with s in [0, 1] and the correlation matrices are

defined using a stationary spatial covariance function.

Let ðy1ðsÞ; . . .; ðykðsÞÞ be such that yiðsÞ is a point in an

m\k dimensional space, and yiðsÞ is a line continuous in s.
If C(h) is a valid continuous correlation function in space

then:

RðsÞ ¼

Cðy1ðsÞ � y1ðsÞÞ � � � Cðy1ðsÞ � ykðsÞÞ
..
. . .

. ..
.

CðykðsÞ � y1ðsÞÞ � � � CðykðsÞ � ykðsÞÞ

0

B

B

@

1

C

C

A

ð9Þ

is a valid correlation matrix, and due to the continuity of

the yiðsÞ-s the corresponding matrices are continuous in s.

4 Simulation

The simulation of a realization of the model is quite simple.

One only has to know the correlation matrices for each s
and has to simulate k independent standard normal

variables.

The exact simulation can be done using the following

procedure:

1. Select the starting Rð0Þ and ending Rð1Þ correlation

matrices.

2. Draw k independent normally distributed random

numbers ðu1; . . .; ukÞ
3. Solve the linear equation (refeq:regu) for si for each

i ¼ 1; . . .k. Assign xi ¼ U�1ðsiÞ. The vector

ðx1; . . .; xkÞ is a simulated member.

4. Repeat steps 2–3 N times

This procedure is slightly slower than an approximate

simulation using a discrete set of possible s values. For the
simulation of the linear model (7) the following step-by-

step procedure can be used.

1. Select the starting Rð0Þ and ending Rð1Þ correlation

matrices.

2. Calculate the square roots of the starting and end

correlation matrices.

3. Select a set of s values 0 ¼ sð0Þ\s1\. . .\sm ¼ 1.

4. Calculate the in-between correlation matrices for each

si using linear interpolation of the square roots and

renorming.

5. Draw k independent normally distributed random

numbers ðu1; . . .; ukÞ
6. For each variable i find the simulated value is the xi for

which:

xi ¼ U�1ðsjÞ kU�1ðsjÞ � ðRðsjÞ
1
2ðu1; . . .; ukÞik minimal

the vector ðx1; . . .; xkÞ is the simulated member.

7. Repeat steps 5–6 N times

Both algorithms are very simple and large samples can be

generated with little computational effort.

5 Examples

As a first example consider a bi-variate distribution with

correlation matrices

Rð0Þ ¼
1 0:2

0:2 1

� �

Rð1Þ ¼
1 0:9

0:9 1

� �

ð10Þ

with normal marginals and linearly changing correlation

matrices according to (7). The Pearson correlation of the

two variables (with normal marginals) is 0.60.

For comparison the multivariate normal distribution

with the same Pearson correlation (0.60) is considered. For

both bi-variate distributions a sample of N ¼ 2000 was

generated. Figure 2 shows the corresponding empirical

copulas. One can see the effect of changing correlations

leading to weak dependence for low values and a strong

dependence for high values.

Another example is a tri-variate distribution with two

variables being independent and the third having a lower

tail dependence with one of the variables and an upper tail

dependence with the other one. The value of both tail

dependencies can be arbitrary. This distribution can be

constructed using the correlation matrices:

Rð0Þ ¼
1 0 1

0 1 0

1 0 1

0

B

@

1

C

A

Rð1Þ ¼
1 0 0

0 1 1

0 1 1

0

B

@

1

C

A

ð11Þ

Figure 3 shows the result of a simulation with N ¼ 3000

points. One can see that variables Z1 and Z2 are indepen-

dent, while Z1 and Z3 have some kind of upper tail

dependence and Z2 and Z3 have some kind of lower tail

dependence. Such copulas are difficult to construct with

other methods. Note that the exact value of the tail
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dependence is determined by the speed of convergence to

the matrices Rð0Þ and Rð1Þ.
To show the high flexibility of the copulas obtained by

this construction two three-correlations examples in the

sense of (8) are shown. They correspond to the three cor-

relation matrices:

Rð0Þ ¼
1 0:95

0:95 1

� �

R
1

2

� �

¼
1 0:65

0:65 1

� �

Rð1Þ ¼
1 0:95

0:95 1

� �

ð12Þ

and

Rð0Þ ¼
1 0:65

0:65 1

� �

R
1

2

� �

¼
1 0:95

0:95 1

� �

Rð1Þ ¼
1 0:65

0:65 1

� �

ð13Þ

The first shows a relationship weaker than a normal

dependence for the medium values. For the second the

relationship is reversed; the medium values show a stron-

ger dependence than the extremes (Figure 4).

The construction of similar examples in higher dimen-

sions is not difficult, one only has to be careful that the

Fig. 2 Simulated empirical copulas corresponding to the two-correlations model (q(0)=0.2?q(1)=0.9) with Pearson correlation = 0.60 left, and

corresponding to the normal copula with the same Pearson correlation (0.60)

Fig. 3 Simulated empirical copulas corresponding to the 3 dimensional two-correlations model with Rð0Þ ¼
1 0 1

0 1 0

1 0 1

0

@

1

A

Rð1Þ ¼
1 0 0

0 1 1

0 1 1

0

@

1

A
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correlation matrices corresponding to the m breakpoints are

chosen so that they are positive semidefinite.

6 Parameter estimation

The parameters of the distributions depend on how the

changing correlation structure of the random variable is

chosen, as there is no general analytic expression for the

density and distribution function of the corresponding

random variable, allowing a straightforward maximum

likelihood estimation. Instead specific procedures have to

be used.

For the simplest two-correlations linear model two

matrices Rð0Þ and Rð1Þ have to be estimated. This can be

done in a pairwise manner as is done in the case of the

multivariate normal distribution. The random variable

inherits the pairwise definition of the dependence. For each

pair of variables (i, j) the two correlation coefficients

qi;jð0Þ and qi;jð1Þ have to be estimated. For this purpose

two parameters describing properties of the dependence are

needed. One possibility is to pick two classical dependence

measures from Pearson’s correlation of the normal score

transformed data, Spearman’s rank correlation or Kendall’s

s. However these parameters all focus on the strength of

dependence and not on value-related differences in

dependencies. As an alternative, one may use the measure

of dependence asymmetry as introduced for spatial statis-

tics in Bárdossy (2008)

ai;j ¼
X

n

m¼0

ðFiðxm;iÞ �
1

2
Þ2ðFjðxm;jÞ

�

� 1

2
Þ þ ðFiðxm;iÞ �

1

2
ÞðFjðxm;jÞ �

1

2
Þ2
�

ð14Þ

where n is the number of samples and Fi and Fj are the

empirical distribution functions of variables i and j.

This measure describes the difference between the

dependence of high values and that of the low values. It is

well suited for variables with positive dependence, but for

negative dependence it is better to first invert one of the

variables.

The bi-variate two correlation linear model is the sim-

plest model. Its parameters can be estimated using the

Pearson correlation and the dependence asymmetry. The

estimation can be done by using large simulated samples.

The algorithm is as follows:

1. The observed data are transformed to normal using the

normal score transformation.

2. The Pearson correlation q and the asymmetry a of the

transformed data are calculated.

3. A pair of correlations ðrð0Þ; rð1ÞÞ is selected
4. A random sample of the size N of the two correlations

model is simulated with the correlations ðrð0Þ; rð1ÞÞ
denoted as SZ ¼ fðz�1ðnÞ; z�2ðnÞÞ; n ¼ 1; . . .;Ng.

5. The correlation and the asymmetry q� and a� of the

simulated data are calculated.

6. The difference function:

Dðq�; a�Þ ¼ ðq� q�Þ2 þ ða� a�Þ2

is then minimized using an appropriate algorithm (for

example steepest descent method). In the minimization

at each new evaluation an new random sample of the

size N is generated. The optimal ðrð0Þ; rð1ÞÞ is taken
as parameters of the model.

As the simulation of the two correlations model is very

simple and fast very large sample sizes N can be generated

to assure that the parameters become stable. The Chebysev

Fig. 4 Simulated empirical copulas corresponding to the three-correlations model with correlation matrices defined in (12) and (13)
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inequality can be used to estimate the appropriate sample

size.

As the above procedure is computationally intensive a

numerical approximation of the function

Gðrð0Þ; rð1ÞÞ ! ðq; aÞ

can be done using a regular grid of ðrð0Þ; rð1ÞÞ values via
simulation. The obtained table can then be used to estimate

the two parameters of the two correlations model.

Figure 5 shows the Pearson correlation and the asym-

metry as a function of the lower (rð0Þ) and the upper (rð1Þ)
correlation for the two-correlation linear model. The two

measures are kind of orthogonal allowing a simple esti-

mation of qð0Þ and qð1Þ from the observed Pearson cor-

relation and asymmetry.

For the multivariate case the parameters of the two

correlations model are estimated in a pairwise manner as in

the case of the multivariate normal distribution.

An interesting case is where correlations change their

sign - for example low values show a negative correlation

and high values are positively correlated. The overall

Pearson correlation of such variables is usually close to

zero, but the dependence is present and can be detected by

other measures such as entropy.

Note that the number of parameters for the simplest two

correlations linear model is only twice as much as for the

multivariate normal distribution.

For the estimation of the parameters of a more complex

dependencies additional measures have to be used. These

could correspond to higher moments. As an alternative one

may also use a set of indicator correlations. These are

defined for different thresholds 0\h\1:

IhðZkÞ ¼
1 if FkðZkÞ[ h

0 else

�

ð15Þ

The indicator correlations

qIðhÞi;j ¼ Corr ðIhðZiÞ; IhðZjÞÞ ð16Þ

considered as a function of h can also be used to to see if a

dependence is symmetrical or not.

For copulas like the Gaussian or the t these functions are

symmetrical around 0.5, the indicator correlations qIðhÞ
and qIðð1� hÞ should be equal.

The parameter estimation of the more complex models

is also based on large simulated random samples. In this

case the difference function of the form:

DðwÞ ¼ ðq� q�Þ2 þ ða� a�Þ2 þ
Z 1

0

ðqIðhÞ � q�I ðhÞÞ
2 dh

should be minimized.

For the mþ 1 correlation model for m[ 1 the break-

points si also have to be estimated. This changes the

parameter estimation problem - as a pairwise estimation is

not possible due to the common breakpoints. In order to

simplify this problem it is reasonable to select for a given m

the sj ¼ j
m for j ¼ 0; . . .;m.

Note that as the third example in Sect. 5 defines random

variables symmetrical dependence with respect to the

values, thus one cannot use the asymmetry measure defined

in (14) for the estimation of the parameters. Instead one

could use indicator correlations for the parameter

estimation.

Fig. 5 Pearson correlation (left) and asymmetry (right) as a function of the lower q(0) and the upper q(1) correlation for the two-correlations

model
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7 Application

As an example groundwater quality data from the state of

Baden-Württemberg in Germany are considered. In the

framework of regular groundwater observation samples of

more than 2300 wells were collected. These were analysed

for their chemical composition. The parameters selected

are chloride, nitrate, pH, sulfate and oxygen. The basic

statistics of the data are listed in Table 1. The data are

highly skewed, with the exception of pH, which has a small

negative skew.

Due to the high skew the Pearson correlation of the data

is strongly influenced by the large values of the data, and

thus it is an imperfect description of the strength of the

pairwise dependence. In order to investigate the interde-

pendence between the different parameters the data were

transformed to normal using the normal score transforma-

tion. As a next step the Pearson correlations (Table 2) and

the dependence asymmetry according to equation (14)

were calculated for each pair of parameters. In order to

investigate the Gaussianity of the dependence, the asym-

metry of the Gaussian distribution was calculated for

simulated samples with the same size and Pearson corre-

lations N ¼ 1000 times. The corresponding asymmetries

were calculated and the 95 % confidence interval was

identified. For all 10 pairs of parameters the asymmetry

was outside the confidence interval of the Gaussian, with

the same correlation, indicating that the dependence is not

normal.

A two-correlations linear model was fitted to the data

using the Pearson correlations and the asymmetries as

parameters. The two correlation matrices Rð0Þ and Rð1Þ
were estimated in a pairwise manner (Table 3).

It is interesting to observe that the Pearson correlation

between pH and Sulfate is very low, while the two-corre-

lation model shows a relationship with changing sign. The

lower correlation (corresponding to s ¼ 0) is positive 0.70

while the upper corresponding to s ¼ 1 is negative �0.52.

This changing relationship cannot be captured by the

normal copula (and also not by any other commonly used

copulas). The indicator correlations shown on Fig. 6 con-

firms the changing relationship between the two variables,

which is reasonably well captured by the two-correlations

model, and are not captured by the normal model. This

leads to a loss of information when applying the normal

copula based model. A three correlation model was also

fitted to the data, such that only the relationship between

pH and Sulfate was altered. The three correlations were

assessed using the indicator correlations. The new rela-

tionship is now 0.85 ! 0.00 ! �0.3 (corresponding to si
=0, 0.5 and 1). Note that the correlation for the low values

corresponding to s ¼ 0 increased, but decreases faster.

Figure 6 shows the improvement of the fit to the indicator

correlations.

A comparison of the two dimensional marginals of the

simulated data with the observed ones shows that in all

cases the Kolmogorov distance between the simulated two-

correlations model and the observations, is lower than for

the normal copula based simulations.

For the second example, air quality measurements taken

near Zurich-Schimmelstrasse in Switzerland were used.

Four parameters NOx, SO2, NO2 and PM10 were selected.

These data are publicly available for the time period of

2011–2021 on the internet under opendata.swiss. Basic

statistics of the data are listed in Table 4. The Pearson

correlations of the normal score transformed data are given

in Table 5. The correlations are higher than those of the

groundwater example.

The matrices of the two-correlations model were fitted

to the data by using the Pearson correlation and the

asymmetry as measures using the algorithm described in

Sect. 6. The fit was done numerically by using large sim-

ulated samples for the estimation of the parameters. The

pairwise calculated asymmetries showed that out of the 6

pairs, 4 are significantly different from the normal. The

theoretical model is in this case contains two pairs for

which ri;jð0Þ ¼ ri;jð1Þ. In order to investigate the appro-

priateness of the model, N ¼ 1000 simulations of the 4

dimensional distributions were considered using the two-

correlation linear model with parameters listed in Table 6.

Table 1 Basic statistics of the observed groundwater quality data

Chloride Nitrate pH Oxygen Sulfate

mg/l mg/l [-] mg/l mg/l

Mean 32.37 31.97 7.34 8.03 67.07

Standard deviation 41.10 27.98 0.41 3.00 120.68

Skewness 7.11 2.30 2.28 - 0.53 6.93

Minimum 0.60 0.20 5.10 0.20 0.70

Maximum 759.00 265.00 13.10 16.70 1628.00

Sample size 2537 2537 2537 2537 2537

Table 2 Pearson correlations of the normal score transformed

observed groundwater quality data

Chloride Nitrate pH Oxygen Sulfate

Chloride 1.00 0.45 0.04 0.35 0.63

Nitrate 0.45 1.00 0.14 � 0.12 0.37

pH 0.04 0.14 1.00 � 0.16 0.12

Oxygen 0.35 � 0.12 � 0.16 1.00 0.35

Sulfate 0.63 0.37 0.12 0.35 1.00
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The same number of simulations were carried out for the

normal copula case. As an example Fig. 7 shows the

empirical copula a simulated normal and a simulated

changing correlation copula. The sample sizes are in all

cases the same. As one can see, the strong dependence of

the low values is not captured by the normal simulation,

but well captured by the two-correlations model. A com-

parison of the two dimensional marginals shows that the

two-correlation linear model captures the asymmetrical

dependence well. Note that in contrast to the previous

example in this case all correlations are positive.

Deviations from the Gaussian dependence are very fre-

quent, and both examples include cases where the high

values have stronger dependence than the low ones and the

reverse case too.

8 Discussion and conclusions

In this paper a method to construct multivariate non-

Gaussian distributions was presented. The construction is

very general and special cases with 2 or more parameters

for the description of dependence of the pairs can be used.

The copulas obtained via these distributions are not only

useful for monotonic dependence but can also represent

dependencies with changing character, for example nega-

tive dependence for small values and positive dependence

for high values.

Copulas were most frequently used for the investigation

and description of the dependence of extremes. However,

the dependence of the variables might be applied to non-

extreme values and also deviations from the normal.

The copulas defined in this paper can describe arbitrary

upper and lower tail dependence, and can also be used for

the description of asymmetrical dependence even without

focusing on the extremes.

A disadvantage of this construction is that the distribu-

tion functions do not have a general closed analytical form.

This makes the estimation of the parameters difficult. The

distributions defined using this construction may have

many parameters, but due to the increasing data volumes of

Fig. 6 Indicator correlations for pH and Sulfate - blue = observed,

orange = two-correlations model, red = three-correlations model and

green dashed = normal model

Table 4 Basic statistics of the observed air quality data

NOx SO2 NO2 PM10

measurement unit ppb lg/m3 lg/m3 lg/m3

Mean 39.65 18.61 43.92 28.93

Standard deviation 15.12 10.84 27.44 26.18

Skewness 0.56 1.77 1.99 2.64

Minimum 6.17 1.94 4.87 1.77

Maximum 109.44 109.14 272.87 271.14

Sample size 3903 3903 3903 3903

Table 5 Pearson correlations of the normal score transformed air

quality data

NOx SO2 NO2 PM10

NOx 1.00 0.70 0.93 0.85

SO2 0.70 1.00 0.66 0.59

NO2 0.93 0.66 1.00 0.98

PM10 0.85 0.59 0.98 1.00

Table 3 Changing correlations

of the normal score transformed

observed groundwater quality

data with the two-correlations

model. (qijð0Þ ! qijð1Þ)

Chloride Nitrate pH Oxygen Sulfate

Chloride 1.00 0.68 ! 0.22 0.58 ! -0.54 0.38 ! 0.36 0.84 ! 0.40

Nitrate 0.68 ! 0.22 1.00 0.52 ! -0.26 0.14 ! -0.38 0.56 ! 0.16

pH 0.58 ! -0.54 0.52 ! -0.26 1.00 0.08 ! -0.42 0.70 ! -0.52

Oxygen 0.38 ! 0.36 0.14 ! -0.38 0.08 ! -0.42 1.00 0.38 ! 0.36

Sulfate 0.84 ! 0.40 0.56 ! 0.16 0.70 ! -0.52 0.38 ! 0.36 1.00

Pairs with non-normal dependence at 95 % significancance level are in boldface
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environmental variables may be well used for the investi-

gation of big data.

The development of parameter estimation methods for

more complex models requires further research.

The presented construction yields bi-variate marginal

copulas which are symmetrical with respect the main axis

addedof the copula. Non-symmetrical dependence can be

achieved by using the same idea with other multivariate

distributions, such as the skew-normal distribution. In this

case both the parameters of the correlation matrix as the k
parameter defining the skewness can be varied in the same

way as done in equation (5).

The use of these copulas as an alternative for multi-

variate linear regression is also possible, but goes beyond

the scope of this contribution.

The methodology can be extended to time series and

spatial random fields.

Appendix

Proposition For any 0� a� 1 there is a bi-variate construction such

that the upper tail dependence is exactly a

Proof Let U2ðz1; z2; qÞ be the bi-variate normal distribution function

with standard normal marginals and q correlation. For any 0� a\1

and s there is a correlation q� such that the exceedence probability

1� 2sþ U2ðU�1ðsÞ;U�1ðsÞ; q�Þ
1� s

¼ a

As for q ! 1[ a the left hand side converges to 1 and for

q ¼ 0 the left hand side is 0 by the continuity there must be

a q� which fulfills the equation. Defining qðsÞ ¼ q� leads to the
construction. For a ¼ 1 a function converging to 1 has to be selected

at the right hand side. The above construction can also be used to

obtain variables with a lower tail dependence a. This way a random

variable with a lower tail dependence a and an upper tail dependence

b 6¼ a can be constructed.
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Table 6 Changing correlations

of the normal score transformed

air quality data with the two-

correlations model

(qijð0Þ ! qijð1Þ)

NOx SO2 NO2 PM10

NOx 1.00 0.76 ! 0.63 0.99 ! 0.86 0.95 ! 0.77

SO2 0.76 ! 0.63 1.00 0.69 ! 0.63 0.54 ! 0.65

NO2 0.99 ! 0.86 0.69 ! 0.63 1.00 0.99 ! 0.98

PM10 0.95 ! 0.77 0.54 ! 0.65 0.99 ! 0.98 1.00

Pairs with non-normal dependence at 95 % significancance level are in boldface
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source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.
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