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Abstract
Drought is one of the major barriers to the socio-economic development of a region. To manage and reduce the impact of

drought, drought vulnerability modelling is important. The use of an ensemble machine learning technique i.e. M5P, M5P -

Dagging, M5P-Random SubSpace (RSS) and M5P-rotation forest (RTF) to assess the drought vulnerability maps (DVMs)

for the state of Odisha in India was proposed for the first time. A total of 248 drought-prone villages (samples) and 53

drought vulnerability indicators (DVIs) under exposure (28), sensitivity (15) and adaptive capacity (10) were used to

produce the DVMs. Out of the total samples, 70% were used for training the models and 30% were used for validating the

models. Finally, the DVMs were authenticated by the area under curve (AUC) of receiver operating characteristics,

precision, mean-absolute-error, root-mean-square-error, K-index and Friedman and Wilcoxon rank test. Nearly 37.9% of

the research region exhibited a very high to high vulnerability to drought. All the models had the capability to model the

drought vulnerability. As per the Friedman and Wilcoxon rank test, significant differences occurred among the output of

the ensemble models. The accuracy of the M5P base classifier improved after ensemble with RSS and RTF meta classifiers

but reduced with Dagging. According to the validation statistics, M5P-RFT model achieved the highest accuracy in

modelling the drought vulnerability with an AUC of 0.901. The prepared model would help planners and decision-makers

to formulate strategies for reducing the damage of drought.

Keywords Drought vulnerability � Ensemble machine learning model � Exposure index � Sensitivity index �
Adaptive capacity index � GIS

1 Introduction

Drought vulnerability assessment is becoming an important

topic of research due to the increased interest in developing

evaluation approaches and adaptation strategies that are

associated with climate change. Frequent droughts and

tremendous heat events, according to the Intergovern-

mental Panel on Climate Change (IPCC, 2001), might

increase drought vulnerability and effects on socio-eco-

nomic condition of the region. Drought, an inherent feature

of the earth’s climate, frequently emerges without notice

and with no discernible borders, resulting in yearly agri-

culture damage that costs billions of dollars (Ortiz-Bobea

2021). Drought impacts nearly all climatic zones (Ajayi &

Ilori 2020) and over half of the world every year (Feng

et al. 2019a, b). According to Rosselló et al. (2020),

drought ranks first among natural catastrophes in terms of

the number of people directly impacted across the world.

Drought happens in high- and low-rainfall locations and in

all climatic zones; its repercussions are crucial and costly,

impacting more people globally than other natural catas-

trophes (Mishra et al. 2021). Drought has varying conse-

quences based on the degree of progress and coping skills

of regions and nations; it affects the economy and liveli-

hood, as well as the trade of public and private companies

in developing nations.

Other significant catastrophes, such as cyclones, floods

and droughts, affect the economy of India. Drought occurs

on a regular basis in various parts of the country. Drought

is a geographically widespread hazard globally. As per the

recent study by the National Centre for Atmospheric

Research (NCAR), the percentage of severe droughtExtended author information available on the last page of the article

123

Stochastic Environmental Research and Risk Assessment (2023) 37:2513–2540
https://doi.org/10.1007/s00477-023-02403-6(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00477-023-02403-6&amp;domain=pdf
https://doi.org/10.1007/s00477-023-02403-6


affected area has increased four times in the Earth since

1970 to the 2000. According to Baarsch et al. (2020), the

percentage of worldwide land experiencing very dry cir-

cumstances increased from 10 to 15% in 1970s to over

30% in 2002. Drought vulnerability is receiving more

attention because of its significant economic consequences

and social risk concerns (Karimi et al. 2018; Haile et al.

2020). Drought vulnerability depends on the water

resources system’s dependability and capacity to adapt

efficiently, and it may increase with population growth,

with different water requirements, and with the intensifi-

cation of the conflicting demands for water resources

(Thomas et al. 2016; Hoque et al. 2021). In disaster man-

agement, drought vulnerability assessment is the lat-

est paradigm that helps decision makers plan for drought,

assign resources and mitigate damage. The degree of

drought exposure and the area’s damage coping capabili-

ties determine a region’s vulnerability to drought, and

underdeveloped places with weaker coping capacities and

greater exposure are at the greatest danger. Vulnerability of

any area is determined by exposure, sensitivity and adap-

tive capacity (Intergovernmental Panel on Climate Change

[IPCC] 2001). While sensitivity refers to how much a

system is affected by a disaster, adaptive capacity refers to

how well a system can withstand and absorb a disaster, and

exposure refers to how much and how long a population is

exposed to a disaster (Ebi et al. 2006).

Vulnerability includes both temporal and spatial aspects,

because it evolves in response to technological changes,

human behaviour, activities and legislation (Bevacqua

et al. 2018; Turner 2021). The vulnerability manifests itself

in certain places at various times, indicating that it is

context-, place- and time-specific, as well as particular to

the viewpoint of the individual judging it (Germain and

Knight 2021). In the fields of geography, agricultural sci-

ence, water resources, climate science and social science,

numerous studies on assessment of vulnerability have been

conducted (Mukherjee et al. 2019). Some scholars have

established quantitative methods of drought vulnerability

(Han and Zhang 2018; Hurlbert and Gupta 2019; Sharafi

et al. 2020), whereas others have tried to conceptualise the

character of vulnerability from different theoretical per-

spectives (Kaufman et al. 2020).

Creating techniques for measuring vulnerability is

challenging because of the difficulty of the systems under

investigation and the premise that susceptibility is not an

immediately detectable phenomenon (Alodah 2019; Datta

2019). A rigorous assessment of vulnerability is critical,

because it may help build focused drought prevention and

response plans. Murthy (2020) devised a statistical

weighting methodology to measure the potential of agri-

cultural drought and found that non-irrigated farmland and

ranging land on sandy soils seem to be the places most

sensitive to agricultural drought. The security graph idea

was utilised by West et al. (2019) to measure the suscep-

tibility to dryness of India under extreme climatic stress;

environmental pressure was obtained from indications of

water stress created by the model of Water Gap. The World

Meteorological Organization (WMO) suggested the use of

the standardised precipitation index (SPI) (Kobrossi et al.

2021) as the worldwide index to assess drought. Nyairo

et al. (2020) used dynamic system analytic methods to

explore the vulnerability of the food system to climate

change and the degradation of land in the pastoral area of

Kalahari of Botswana with emphasis on drought suscepti-

bility. Huynh and Stringer (2018) offered an outline of the

susceptibility to climatic change of the connected sys-

tems of social ecology. Guo et al. (2021) evaluated the

drought vulnerability across three intensities of drought,

namely, very-high, extremely-high and critical regions, for

the farmers who produce wheat in the western part of Iran.

They concluded that drought vulnerability influences the

socio-cultural and economic conditions. Banihashemi et al.

(2021) established and assessed drought susceptibility

parameters among the farmers who produce wheat in

Mashhad County, Iran, including social, economic and

technical variables. Paul et al. (2020) used multi-attribute

strategic planning techniques depending on a set of criteria,

performance and various indicators to build a novel

extremely effective technique for geographical evaluation

of drought susceptibility in Iran for the river basin of

Zayandeh-Rood. Thomas et al. (2016) created a drought

vulnerability indicator (DVI) that depicts multiple dimen-

sions of drought susceptibility assessed at the Pan African

level depending on economic capability, renewable natural

capital, societal and human resources, technology and

infrastructure.

The present research was conducted in the state of

Odisha, India, where drought is a serious concern (Senapati

2019; Saha et al 2021). A large part of Odisha is frequently

affected by drought (Sahu and Nandi 2016). Farmers in the

state are frequently affected by drought, which leads to

many agricultural losses. Numerous works have been done

to predict or forecast drought conditions throughout the

world in consideration of different machine learning tech-

niques. Methods such as artificial neural network (Nabi-

pour et al. 2020), random forest (Dikshit et al. 2020) and

support vector machine (Zahraie and Nasseri 2011) for

hydrological and meteorological drought forecasting pro-

vided good results. When Dikshit et al. (2021a; 2021b)

employed a variety of deep learning algorithms to antici-

pate drought, the results were superior to those pro-

duced using conventional statistical methods.

Utilizing conventional statistical techniques, some

research have been done on assessing drought vulnerabil-

ity. Recently, Hoque et al. (2020; 2021) and Saha et al
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(2021) used analytical hierarchical process (AHP) and

Fuzzy-AHP methods to analyse drought vulnerability. Saha

et al. (2021a) used ANN and Bagging method for assessing

the drought vulnerability situation of Karnataka state. In

order to model the susceptibility of various hazards, a

variety of ensemble machine learning algorithms (MLAs)

were utilised, including landslide (Antronico et al. 2020),

gully erosion (Roy et al. 2021), land subsidence (Tien Bui

et al. 2018), deforestation (Saha et al. 2021b) and flood

(Nhu et al. 2020a, b, c), rather than drought. Better accu-

racy was obtained compared with when conventional sta-

tistical and semi-quantitative methods were used (Dikshit

et al. 2020). Combining various models is advised in order

to decrease model mistakes and improve forecast accuracy.

Although each combination demonstrated greater mod-

elling prediction performance with high dependability, new

ensemble-based techniques still need to be investigated and

used. In various geo-hazards, ensemble models including

bagging, boosting, and stacking have frequently been used.

By building a number of prediction functions and then

combining them in a certain way to create a predictive

function, bagging helps to enhance unstable estimating or

classification schemes and may be used to increase the

accuracy of learning algorithms. Boosting has the ability to

correct the poor classifier mistakes made by unreliable

learners. Its core concept is to train several weak classifiers

on the same training set, then combine these weak classi-

fiers to create a stronger final classifier (Freund and

Schapire 1997). A learning algorithm is taught to aggregate

the predictions of multiple different learning models in a

technique called stacking, which is an ensemble learning

approach that often produces greater performance than any

trained model alone (Wolpert 1992). It is important to keep

in mind that models with theoretically ideal performance

may not always produce superior outcomes in practical

situations. Furthermore, it is uncertain if different ML

techniques may be applied or generalized in varied geo-

graphic situations.Most of the MLAs were used for fore-

casting the drought conditions rather than drought

vulnerability. Dagging, Random Subspace (RSS), and

Rotation Forest (RTF) were applied in landslide, flood and

deforestation susceptibility modelling (Pham et al. 2017;

Wang et al. 2020; Saha et al 2021b) except drought vul-

nerability modelling and provided good results. The main

research questions are as follows: (1) can ensemble MLAs

provide better results than the conventional statistical and

semi-quantitative methods in drought vulnerability assess-

ment? (2) can meta classifiers increase the level of accu-

racy of base classifier (M5P) in drought vulnerability

modelling? Therefore, the main novelty of our work is the

assessment of the drought vulnerability of Odisha using

ensemble models, such as M5P, M5P-Dagging, M5P-RSS

and M5P-RTF. To conduct this research, a wide variety of

exposure, sensitivity and adaptive capacity (total 53 fac-

tors) were used to account for all possible drought sce-

narios. The criteria were chosen according to past research,

and the evaluation was conducted using well-known

MLAs. In each case, the capacity for forecasting of the

output of the model was enormously appreciable. As a

result, using MLAs is nothing new. The use of these

ensemble machine learning models to evaluate drought

vulnerability by taking into account as many as 53

parameters, however, is special. The primary goal of the

current study is to develop a relative drought vulnerability

map for Odisha using a variety of meteorological, hydro-

logical and socioeconomic factors.

2 Materials and methods

2.1 Study area

Odisha is situated on India’s eastern coast, which spans

from 17.31�N to 22.31�N latitudes and 81.31� E to 87.29�
E longitudes geographical coordinates (Fig. 1). The

region’s coastline stretches for 485 km all along the Bay of

Bengal. High temperatures, heavy humidity, medium to

high rainfall and brief and mild winters define Odisha’s

climate. A tropical climate defines the state (Santos et al.

2021). The state’s average rainfall is 1451.2 mm, most of

which falls between June and September. Drought, floods

and cyclones occur every year, with various degrees of

intensity (Pidathala et al. 2018). The central plateau-

s, Utkal plains, central mountains, western hills, high-

lands and floodplains and western hills and floodplains are

the five primary physiographic zones of Odisha. Brahmani,

Mahanadi and Baitarani are the state’s main rivers, all of

which flow into the Bay of Bengal. Odisha has a population

of 42 million, according to the 2011 Indian Census (3.47%

of the total population of India). Drought is not unknown to

the people of Odisha, as it happens every year in several

parts of the state, with variable degrees of intensity and

scale. The first severe drought in the state occurred in 1866

(Saha et al 2021a). Since then, the state has experienced

several moderate-to-severe drought events. This indicated

that droughts of moderate-to-high intensity occur every

8 years or so in Odisha. Droughts of exceptional intensity

occurred in Odisha in 1866, 1919, 1965, 2000–2001, 2015

(www.business-standard.com/article/current-affairs) and

2019 (Swain et al. 2021a, b). The 2000–2001 drought was
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the most devastating. Droughts hit nine districts throughout

Odisha in 2018, the most of which were in western Odisha,

where farmers faced crop losses of 33% and higher owing

to moisture stress. Drought hit at least 25 of the 30 districts

in 2015, owing to an irregular southwest monsoon. Drought

has long been a problem in the state’s western and south-

central regions. In terms of strategic management and

planning, a drought risk analysis of this state is critical.

2.2 Methodology

The drought vulnerability maps were produced using four

well-known MLAs in the following four phases (Fig. 2).

Step-1: selection of vulnerability parameters: The

selection of the drought vulnerability factors (DVFs) was

based on a review of the literatures and the state of the

environment. The variables were then separated into

three sub-categories, namely exposure, sensitivity, and

adaptive capability.

Fig. 1 Location of the study

area: a India, and b. Odisha

showing the locations of

weather stations
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Step-2: Development of the thematic data layers: To

forecast spatial drought vulnerability, data on drought-

impacted villages and DVFs were gathered.

Step-3: DV maps preparation: With the aid of training

datasets, ensemble machine learning models (M5P,

M5P-Dagging, M5P-RTF and M5P-RSS) were used to

create drought vulnerability maps. Specific indices, such

as exposure, sensitivity and adaptive capability, were

assessed using a set of chosen parameters and to generate

the final vulnerability map. Finally, three indices were

used to create the vulnerability map of drought.

Step-4: validation and comparison of the models: To

verify the used models, the AUC-ROC, precision, K-in-

dex, root mean square error (RMSE) and mean absolute

error (MAE) were used. Friedman and Wilcoxon rank

tests methods were also used to examine the dissimilar-

ities in the models’ prediction performance.

2.3 Constructing spatial data layers

Identification of current drought-impacted regions is criti-

cal for drought vulnerability mapping. A total of 248

drought affected areas (points) were collected from the

Odisha state record and were divided into 70:30 ratio

among testing and training points (Fig. 2). Similarly, same

number of non-drought affected locations were selected

randomly for training and testing the applied models. Both

drought and non-drought locations were identified after

consulting the data from the Disaster Management

Department of Odisha and local dwellers. Various factor

layers have been created in the ArcGIS environment based

on the available data (Table 1). Various socioeconomic and

meteorological characteristics (a total of 53 parameters)

were chosen based on prior literature and geo-environ-

mental condition of the study area (Table 2). These

parameters were then divided into three categories, namely,

adaptive ability, sensitivity and exposure. After taking into

account all of the layers, data incorporation and analysis

were completed. For producing the final drought vulnera-

bility maps resolution of DEM (30 m*30 m) was consid-

ered as base resolution and the other factors having the

resolution more or less than the DEM were resampled.

Afterwards, the M5P model was utilised as a basis classi-

fier, and three more models were used to create the novel

ensemble models. M5P-Dagging, M5P-RSS and M5P-RTF

were the ensemble models.

2.3.1 Exposure indicators

These variables indicated the degree to which a region or

its people are subjected to drought (Table 3). Severe

drought frequency (%) of 3, 6, 12 and 24 months,

Fig. 2 Methodological flow chart
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frequency of extreme drought (%) of 3, 6, 12 and

24 months, magnitude of drought of 3, 6, 12 and

24 months, mean intensity of drought of 3, 6, 12 and

24 months, return period of extreme drought of 3, 6, 12 and

24 months, return period of severe drought of 3, 6, 12 and

24 months, critical rainfall, yearly average rainfall, rainfall

trend and vegetation condition index (VCI) are some of the

indicators used to measure exposure (Fig. 3). The Standard

Precipitation Index was used to calculate severity

and frequency of extreme drought, magnitude of drought,

mean intensity of drought and extreme and severe drought

return periods. Where the rainfall was high, the drought

effect was low. When the requirement for rainfall was

higher, the chances of drought were high in that particular

area. By the frequency, magnitude, intensity and return

period of severe and extreme drought, the occurrence of a

drought scenario in a specific area can be determined.

2.3.1.1 Standard Precipitation Index (SPI) To gauge the

severity of the drought, the SPI value was calculated

(McKee et al. 1993). The WMO authorised this index.

Only the rainfall is required to calculate SPI. This rainfall

data were used to calculate the drought for a variety of time

periods, including 48, 24, 12, 6, 3 and SPI-1 months (Mehr

and Vaheddoost 2020). Specific SPIs were estimated by

using the precipitation data and the equation given by

McKee et al. (1993) in the environment of R.

Only the classifications of severe and extreme drought

were utilised to determine the severity of drought incidence

in Odisha (Table 3). The droughts have been categorized

Table 1 Source of considered parameters

Data Sources Time/

period

Rainfall Indian Meteorological Department (IMD) 1960–2019

Landsat 8 Earthexplore.usgs.gov 2021

Cropping intensity District irrigation plan, Odisha 2016

Irrigation intensity A study on Irrigation and Agricultural productivity in Odisha 2018

Net sown area District irrigation plan, Odisha 2016

Population density District irrigation plan, Odisha 2016

Small and marginal

farmer

Odisha, Agriculture Statistics 2013–2014

Total water demand Ground water booklet, Odisha 2016

Total water use Ground water booklet, Odisha 2016

Temperature Indian Meteorological Department (IMD) 1960-

2019

Evaporation Indian Meteorological Department (IMD) 1960-

2019

Aridity index https://cgiarcsi.community/2019/01/24/global-aridity-index-and-potential-evapotranspiration-climate-

database-v2/

1970–2019

Soil texture https://www.slideshare.net/csisaproject/10-july-2012-directorate-of-agriculture-odisha –

DEM Earthexplore.usgs.gov 2014

Annual wet day

frequency

IMD 1960-

2019

Dam location Water resource information system, India 2019

River network Open street map (OSM) from Survey of Inda (https://www.surveyofindia.gov.in/) 2020

Wetland location Open street map (OSM) from Survey of Inda (https://www.surveyofindia.gov.in/) 2020

Education index Odisha economic journal (http://www.orissaeconomicjournal.in/) 2019

Health index

Income index

Net irrigated area Ground water booklet, Odisha 2016

Net water availability Ground water booklet, Odisha 2017
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Table 2 Factors selected for drought vulnerability modelling with causes and references

Vulnerability

indicators

Factors Reason for selection References

Exposure Extreme drought frequency of

3, 6, 12 & 24 months

The increases of drought frequency reduce the crop productivity

and impact on socio-economic status

Lin et al (2020); Zhang

et al (2013)

Severe drought frequency of

3, 6, 12 & 24 months

The increases of drought frequency reduce the crop productivity

and impact on socio-economic status

Cao et al (2021); Mirgol

et al (2021)

Drought Magnitude of 3, 6, 12

& 24 months

High magnitude of drought largely influences the crop

productivity as well as economic status of the farmers

Sharma & Panu, (2021);

Abbas and Kousar

(2021)

Mean drought intensity of 3,

6, 12 & 24 months

High intensity of drought largely influences the crop productivity

as well as economic status of the farmers

Jiang et al (2021); Masanta

& Srinivas (2022)

Return period of extreme

drought of 3, 6, 12 &

24 months

The level of vulnerability to drought will be less if the return

period is longer

da Rocha Júnior et al

(2020); Nabaei et al

(2019)

Return period of severe

drought of 3, 6, 12 &

24 months

The level of vulnerability to drought will be less if the return

period is longer

Amrit et al (2018)

Average rainfall Less amount of rainfall increase the proneness of drought

vulnerability

Ogunrinde et al (2019);

Rahman & Dawood

(2018)

Critical rainfall More the rainfall required will increase drought chances Payab & Türker (2018)

Rainfall trend Negative trend indicates the dry condition intensification Ouatiki et al (2019); Swain

et al (2021a, b)

VCI Values of VCI indicate the dryness of an area Sun et al. (2019); Feng

et al (2019a, b)

Sensitivity Evaporation Regions having high evaporation rate are more prone to drought

hazard

Dai et al (2018)

Aridity index Areas having higher intensity of aridity are more susceptible to

drought

Tsiros et al (2020)

Altitude Higher altitude region are more susceptible for drought because

of high surface runoff, higher slope induced soil erosion

Mbiriri et al (2018)

Annual wet day frequency More the frequency causes more risk of drought occurrences Zhang et al (2021)

Soil texture Coarse soil texture region are more prone to drought because of

high infiltration rate and low water retention capacity

Patel et al (2021)

Slope Sloppy areas are more prone to agricultural drought due to high

surface runoff and high soil erosion

Zhang et al (2022)

Bare soil index More bareness means more prone to drought condition Fadhil (2011)

Trend of temperature Positive trend is related with dry weather which intensifies the

drought condition

Liang et al (2014)

Total water use More total water use, more vulnerability Ullah et al (2019)

Total water demand More the water demand more the vulnerable to drought Zhang et al (2019)

Small and marginal farmers More Small and marginal farmers are more vulnerable to drought Brahmachari et al (2019)

Population density More population density, more vulnerability ot drought Nasrollahi et al (2018)

Net sown area More the net sown area more the vulnerability to drought Balaganesh et al (2020)

Irrigation intensity Lower irrigation intensity increases drought probability Yu et al (2018)

Cropping intensity High cropping intensity area require huge amount of water for

irrigation

Dar et al (2020)

Adaptive

capacity

Distance from river Nearer to the river drought vulnerability is less because of having

good water accessibility

Swain et al (2022)

Distance from dam Nearby areas of the dam has less drought vulnerability because of

more accessibility to water

Chai et al (2019)

Distance from wetland Neighbouring areas of the wetlands decreases can use the water

from the wetlands and reduce the vulnerability to drought

Stirling et al (2020)
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based on drought classification values of SPI given by

McKee et al. (1993). The periods of the SPI utilised in the

study were 3, 6, 12 and 24 months since it effectively

depicts long-term rainfall conditions and may be used to

calculate reservoir levels, stream flows and levels of

groundwater. The frequency of intense and severe droughts

is computed as a percentage using the formula:

DFi;100 ¼
Ni

i:n
� 100 ð1Þ

where DFi,100 represents the drought frequency number for

time scale I (3, 6, 12 and 24 month) in 100 years; Ni

denotes the figure of drought months for a i time scale

within the of n year set; i = time scale (i.e., 6, 12 and

24 months). Cumulative water stress was represented by

drought magnitude throughout the period of drought, and

the average of this cumulative scarcity of water throughout

the period of drought was denoted by mean drought

intensity (MID) (Dayal et al. 2018). Thus, MD and MID

can be computed using Eqs. 2and3, as follows:

MD ¼
Xx

j¼1

SPIij ð2Þ

MID ¼ MD

m
ð3Þ

SPIij denotes the SPI values for a specific time scale j (3,

6, 12 and 24 month) and m denotes the month number. The

California approach was applied using the Eq. 4 (Wable

et al. 2019) to calculate the recurrence interval (RI) of

severe and extreme drought. All values of SPI were sorted

in rising order, and a rank was assigned to all SPI values.

RI ¼ n

p
ð4Þ

where n is the number of occurrences, and p is the event’s

rank.

Linear regression was used to assess the rainfall trend

(Panda and Sahu 2019). Critical or threshold of rainfall is

defined as the total amount of rain below which the drought

will occur (Ghosh, 2019). The Eq. 5 was used to compute

critical rainfall or threshold rainfall, as follows:

CR ¼ rSPI þ X ð5Þ

where, r indicates the Standard Deviation of rainfall. The

value of SPI is equivalent to -1.5. Average value of rainfall

is indicated by the X. The SPI value ‘‘-1.5’’ is considered

as the threshold rainfall value.

Equation 6 has been utilised for calculating the vege-

tation condition index (VCI). The state of vegetation is

generally expressed as a percentage. VCI levels around 0

(zero) percent indicate severe dryness, and VCI values

from 50 to 100% represent typical vegetative conditions.

Drought circumstances were indicated by a VCI of less -

than 50%, whereas severe drought situations were indi-

cated by a VCI of 0% to 35%.

VCI ¼ NDVIi � NDVImin
NDVImax � NDVImin

� 100 ð6Þ

where, NDVIi represents the value of NDVI for a single

pixel in the i month. NDVImax and NDVImin are the

Table 2 (continued)

Vulnerability

indicators

Factors Reason for selection References

Educational index More education index, less vulnerability Nübler et al (2021

Health index High health index value indicates the good availability of medical

facilities. Higher health facility will reduce drought impact

Machado-Silva et al

(2020); Mehdipour et al

(2022)

Income index Lower income grouped people are more affected by the drought Belesova et al (2019)

Net irrigated area More irrigated area, less vulnerability Meza et al (2020)

Net water availability Stored water can be used for irrigation to reduce the effect of

drought

Zhang et al (2018)

NDWI Higher wetness area are less susceptible for drought Shashikant et al 2021);

Marusig et al 2020)

NDVI More vegetation cover reduces drought vulnerability Nanzad et al (2019); Liu

et al (2018)

Table 3 Drought classification using SPI values

Values Drought classes

More than 0 Non-Drought

0 to - 1.0 Mild Drought

- 1.0 to - 1.5 Moderate Drought

- 1.5 to - 2.0 Severe Drought

Less than -2 Extreme Drought
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maximum and minimum NDVI values for the same pixel,

respectively. The VCI has been used to analyse the geo-

graphical features of drought, but prior research has seldom

assessed its efficacy in detecting and distinguishing water-

stressed farmland from other plants. (Table 3)

2.3.2 Sensitivity indicators

Cropping intensity, irrigation intensity, net sown area, pop-

ulation density, small and marginal farmers, total water

demand, total water use, temperature trend, bare soil index

(BSI), slope, evaporation, aridity index, soil texture, altitude

and annual wet day frequency were the sensitivity factors

(Fig. 4). These factors affected how exposure would mani-

fest; for example, when a region’s population grew, more

individuals would be exposed to drought, increasing the

region’s vulnerability (Naumann et al. 2019). Evaporation

and temperature are two of the most important meteorolog-

ical variables that influence land cover, ecological sustain-

ability and water balance (Ekwueme and Agunwamba

2020). Both biophysical and economic variables are inclu-

ded in this class of sensitivity. Temperature is a key deter-

minant of drought sensitivity (Mega et al. 2019). As the

temperature rises, drought becomes more prevalent (Shi

et al. 2021). In this study, the temperature trend was calcu-

lated using linear regression. Total water usage was linked to

drought vulnerability, since water demands in areas with

high water use are likely to be greater during dry years.

Therefore, regions with considerably higher water usage

would experience more dry seasons than regions with lower

water use. Cropping intensity is defined as the ratio of net

cropped area to gross cropped area. According to Potopová

et al. (2021), crop intensity and drought intensity increase

together. In areas where there is a lack of water, a drought

might be disastrous (Bakht et al. 2020). Domestic water use,

agricultural water use, animal water use, and industrial water

requirements are all added together to get the overall water

demand. Drought will affect marginal and small farmers

more severely if their numbers are high (Venancio et al.

2020). Small farmers will be more affected by drought

conditions than large farmers since most of them utilise low-

tech production techniques and have limited agricultural

area. The net planted area can also be used to estimate

drought vulnerability. Drought will have a greater impact on

agriculture with the growth of the net sown area and vice

versa. As the aridity index value increases, the dryness will

increase, but dryness will decrease as the aridity index value

decreases (Wu et al. 2021).

AridityindexðAIÞ ¼ PET � AET

PET
� 100 ð7Þ

where, the PET stands for the potential evapotranspiration

and AET stand for actual evapo-transpiration. Thus, the

drought effect is higher in areas with high aridity (Yves

et al. 2020). On one hand, when the soil is open or bare, the

area will be highly affected by drought; on the other hand,

the area covered by vegetation will be relatively protected

from the effect of drought (Sankaran 2019). The bareness

of the soil is calculated by using the BSI. It is a numerical

indicator that normalises the blue, red, near-infrared, and

short-wave-infrared spectral bands of a multispectral pic-

ture. The spatial picture of soil bareness is obtained by

combining those bands in a defined fashion (Eq. 8), and it

is utilised as the sensitivity data layer (Fig. 2g) for this

investigation, as follows:

BaresoilindexðBSIÞ ¼ ðbSWIR þ bRÞ � ðbNIR þ bBÞ
ðbSWIR þ bRÞ þ ðbNIR þ bBÞ

ð8Þ

where, bSWIR stands for short-wave infrared band bright-

ness, bR for red band brightness, bNIR for near-infrared

band brightness and bB for blue band brightness. A coarser

soil texture cannot hold the moisture in the top layer.

Consequently rain water will penetrate deep into the soil.

The top layer of the soil will remain dry. So, this area will

be more affected by drought events. On the contrary, if the

soil texture is fine, then the soil will hold the water in the

top layer, and the top layer will remain wet. So, this area

will be less affected by the drought event. Annual wet day

frequency is the most significant indicator of drought. The

likelihood of a drought decreasing as the number of wet

days in a year increases and vice-versa.

2.3.3 Adaptive capacity

The inadequacy of a population group to react adequately

to a certain widespread stressor is how vulnerability is

typically defined (Cianconi et al. 2020). As a result, social

vulnerability refers to a population group’s vulnerability as

a result of the deficit of resources with which to react to a

hazard (Antronico et al. 2020). Consequently, environ-

mental indicators of adaptation capability, such as distance

from river, distance from wetland, net water availability,

NDWI and NDVI, and socio-economic factors, such as

distance from dam, net irrigated area, income index, health

index and education index, were included in this study.

These factors demonstrate the population’s capacity to

bFig. 3 Factors of exposure: Drought magnitude- A 3 month,

B 6 month, C 12 month, D 24 month, Mean drought intensity-

E 3 month, F 6 month, G 12 month, H 24 month, Return period of

extreme drought- I 3 month, J 6 month, K 12 month, L 24 month,

Return period of severe drought- M 3 month, N 6 month,

O 12 month, P 24 month, Extreme drought frequency -Q 3 month,

R. 6 month, S. 12 month, T 24 month, Severe drought frequency -

U 3 month, V 6 month, W 12 month, X 24 month, Y Vegetation

condition index (VCI), Z Rainfall trend, A1. Average annual rainfall

and A2. Critical rainfall
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respond to a drought situation (Fig. 5). Higher availability

of irrigation facility reduces drought vulnerability, because

it fulfils the water demand during dry season. Drought

cannot readily affect regions when vast volumes of water

are available at all times of the year (Mafi-Gholami et al.

2020). If there is insufficient rain in a particular location

with high water availability, then the region may make up

the shortfall by using available water sources. Such areas

will experience drought if there are no other water supplies

available than rainfall. The health, wealth, and level of

education of the local people strongly influence drought

susceptibility. If a region’s health, education, and economic

possibilities improve, drought vulnerability will diminish

(Phelps and Kelly 2019). The more away from dams, riv-

ers, and wetlands a place is, the more susceptible it is to

drought conditions; this is because the supply of water

declines with increasing distance from the dam, the river

and the wetlands (Moser et al. 2019). The area is protected

from dryness by a dense plant cover (Helcoski et al. 2020).

Bare terrain is more susceptible to drought. If the NDVI

value is closer to 1, then a significant quantity of plant

cover is available. If the value is closer to -1, then a very

small amount of vegetation cover is available. The NDVI is

calculated (Eq. 9) using Landsat 8 Operational Land Ima-

ger (OLI) imagery, as follows:

NDVI ¼ NIR� R

NIRþ R
ð9Þ

NDWI is an important parameter for identifying drought

situations, because the moisture or water condition can be

represented by this index (Marusig et al. 2020). Mcfeeters

in 1996 developed the NDWI approach to represent water

bodies based on the fact that water has the highest

absorption, and vegetation has the highest reflectance in

near infrared (Ety et al. 2021).

NDWI ¼ Green� NIR

Greenþ NIR
ð10Þ

2.4 Machine learning models for drought
vulnerability mapping

2.4.1 M5P

Quinlan in 1992 proposed M5P, a regression technique that

is tree-based. It provides values for future

prediction according to trees’ leaves (Ünlü 2020). This

technique generates trees that use multivariate linear

algorithms. This method can solve problems with a

large dimensionality of 100 characters. By constructing

smaller trees, it is more effective and produces results with

more accuracy. Rather than discrete variables, this

approach uses continuous variables (Talukdar et al. 2020).

A detailed analysis of this method can be found in Talukdar

et al. (2020).

2.4.2 Dagging

Another ensemble machine learning (EML) approach used

to generate meta-learners is the dagging algorithm, and it is

often called disjoint aggregating (Zounemat-Kermani et al.

2021). Dagging is comparable to bagging, but the sampling

technique is different. Rather than using bootstrap sam-

pling, this technique uses the disjoint sampling approach to

obtain randomised training sections from the actual dataset

without replacing them (Barzegar et al. 2021). Finally, the

different output models derived from disjunct samples are

combined using the methodology of the majority vote.

2.4.3 Random Subspace (RSS)

RSS was introduced in 1988 to enhance the reliability of

weaker classifications and the performance of individual

classifications. RSS is a common approach for random

selection, in which the main character varies at random

(Costello and Lee 2020). RSS has been utilised in a variety

of disciplines, including economics and medical, but very

seldom in potential groundwater determination.

2.4.4 Rotation Forest (RTF)

An EML classifier, RTF is a generating approach that aims

to provide a wide range of precise classifiers within the

ensemble (Subasi et al. 2019). This process utilises the

bootstrapping sampling method and trains the decision

trees; it is separately dependent on constructing a classifier

ensemble to use a future extracting approach, such as the

principal component analysis (PCA), which is comparable

with the ideas of bagging approaches. In Rotation Forest,

retrieving features were utilised for every one of the basic

classifiers to sustain variety (Geran Malek et al. 2021).

Each one of the base classifiers is trained on the whole

dataset in the rotated feature space to optimise individual

efficiency. The model parameters are randomly divided

into subgroups, and every subset is subjected to feature

excavation (Table 4). The ultimate result is obtained by

merging most of the trees’ mean outputs.

bFig. 4 Factors of sensitivity maps: A Evaporation, B Annual wet day

frequency, C Aridity index, D Altitude, E BSI, F Slope, G Soil

texture, H. Trend of temperature, I Cropping intensity, J Net sown

area, K Irrigation intensity, L Total water use, M Population density,

N Total water use, O Small and marginal farmer
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Fig. 5 Factors of adaptive

capability maps: A Net irrigated

area, B Net water availability,

C Education index, D Income

index, E Health index,

F Distance from wet land,

G Distance from dam,

H Distance from river I NDVI,
J NDWI
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2.4.5 Ensemble of models

Nguyen et al. (2020) defined ensemble modelling as a

strategy for combining the impacts of many models into a

single embedded model to improve prediction capacity.

This technique has attracted the attention of academics

working on specific machine learning and data mining

models. Seni and Elder (2010) described the creation of

ensemble models by using the weighted integration of a

single model. However, the method used for calculating

these weights is complicated. In this study, for ensembling

the models, M5P was used as base classifier, and RTF, RSS

and Dagging were used as meta classifiers. Ensemble meta

classifiers have been used to optimise the input data using

training dataset before creating drought vulnerability

models. The basis classifier of M5P has then been applied

to identify classes for drought vulnerability spatial pre-

diction using optimized input data. Finally, models for

drought vulnerability have been developed using machine

learning ensemble frameworks. Maps of drought vulnera-

bility have been created using the results of training

drought models.

2.5 Validation of drought vulnerability models

2.5.1 Receiver operating characteristics (ROC)

Validation is a crucial step in determining the scientific

relevance of a completed study (Hribar et al. 2018; Hong

et al. 2018). The area under curve (AUC)-ROC was used

by experts to examine the predictive ability of the models.

Graphical representation of a model achievement as indi-

cated by a diagnostic assessment is displayed by the ROC

(Heldt et al. 2021). The correct (drought-impacted zone)

and the erroneous (non-drought-impacted zone) predictions

are represented on the Y and X axes, respectively. The

AUC was used to assess the models’ predictions. The AUC

ranges from 0 to 1 with a value nearer to 1, thereby indi-

cating a model’s ability to predict effectively (McCune,

et al. 2020).

2.5.2 Precision

When similar data are assessed frequently, the extents of

the estimated values are similar to one another. Precision

represents the degree of random deviations in the estima-

tion process (Reynolds et al. 2021).

Pr ecision ¼ TP

FPþ TP
ð11Þ

where, TP = True positive value, FP = False positive

value.

2.5.3 Root mean square error

The employed models’ predictive power was assessed

using the ROC and precision, while the predictive model

error was assessed using the RMSE and MAE (Salih et al.

2020).The RMSE was determined by comparing observed

data in the field with projected values provided by the

model (Willmott et al., 2005). The following formula was

used to determine the RMSE value:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðOi � SiÞ2

n

s

ð12Þ

Oi and Si are the values of anticipated and observed,

respectively. The entire amount of data points is denoted

by n.

2.5.4 MAEI

MAE is similar to RMSE in that it is calculated as the sum

of differences between model-predicted values and field

observed values, but it does not consider the direction of

the differences (Willmott et al., 2005) (Eq. 13), as follows:

MAE ¼

Pn

i¼1

jSi � Oij

n
ð13Þ

Oi and Si are the values of anticipated and observed,

respectively. The entire amount of data points is denoted

by the letter n.

Table 4 Description of models’ parameters

Model Parameters’ description

Dagging Base classifer-M5P, max depth- -1, minimum number-2, minimum proportion of variance-0.001, seed-3, number of fold-10

and Number of iterations, 16

Random

Subspace

Base classifer-M5P, max depth- -1, minimum number-2, minimum proportion of variance-0.001, seed-, number of execution

slots-1 and Number of iterations-20, size of subspace-0.5

RTF Number of iterations, 4; seed, 2; minimum size of group, 3; maximum size of group, 3; minimum proportion of variance-

0.001, projection filter, a principal components analysis; use a base classifier-M5P
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2.5.5 K-index

This coefficient is being used to determine how accurate a

categorisation is. Kappa is a measure of how well a cate-

gorisation performs compared with randomly assigning

values (Silva and Eugenio Naranjo 2020). The kappa

coefficient might be anything between- 1 and 1. A value

of 0 indicates that the categorisation is not superior to the

arbitrary (Ghada et al. 2019). A negative number indicates

that the categorisation is less accurate. A positive value

means that the classification is superior to random

classification.

2.5.6 Friedman and Wilcoxon rank test

In 1937, Friedman created a non-parametric test to identify

substantial differences between two applied models (Mir-

aki et al. 2019). If the P-values are\ 0.05, then the

alternative hypothesis is accepted, thereby implying that a

substantial difference exists among the predictions of

models (Chung et al. 2019). Researchers employed the

Wilcoxon rank test, which enables them to evaluate the

methodical degree of significant variations inside the RDV

models (Tien Bui et al. 2016). The models were easily

distinguished since the alternative hypothesis was not ruled

out if the z-value was greater than ? 1.96 or - 1.96 with a

p value of 0.05. (Tien Bui et al. 2018).

3 Result

3.1 Exposure mapping using ensemble models

The four MLAs were used to create the exposure maps

(Fig. 6). By using the natural-break method, each model’s

anticipated drought exposure was divided into five expo-

sure classes (Hoque et al. 2021). The north western and

western parts of the research region were highly exposed to

drought. The high and very-high exposure zones for the

M5P model encompassed 10.80% and 24.71% of the state.

Except for the north-western and western parts of the state,

very-low, low and moderate exposure zones accounted for

19.52%, 34.15% and 10.80% of the total area, respectively

(Table 5). For the model of M5P-Dagging, very-low and

low exposure areas captured 47.79% of the total area in the

eastern to southern part. The high and very-high exposure

zones comprised 33.09% of the total land on the western

and north western sides. The north eastern and central parts

Fig. 6 Exposure index maps

produced by: A M5P, B M5P-

Dagging, C M5P-RSS, and

D M5P-RTF
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were occupied by a moderate exposure zone (20.26%)

(Table 5). In the north western and western parts of the

study region, the high and very-high exposure zones for the

M5P-RSS model comprised 12.05% and 22.04% of the

study area, respectively. Very-low, low and moderate

exposure zones accounted for 22.72%, 26.26% and 16.91%

of the total area, respectively. For the model of M5P-RTF,

very-low and low exposure areas captured 73,985.35 sq.

km of the total area. The high and very-high exposure zone

comprised 58,969.51 sq. km. of the total land. An isolated

pocket in the north eastern part and the total central part

was occupied by a moderate exposure zone (22,752.15 sq.

km.). All the models showed high areal coverage of very-

high and high exposure zones in the north-wester and

western parts of the state due to the frequent occurrence of

meteorological and agricultural drought.

3.2 Sensitivity mapping using ensemble models

The same four MLAs were used to create the sensitivity

maps (Fig. 7). With the aid of natural-break method, each

model’s anticipated drought sensitivity was divided into

five sensitivity classes, the same as exposure. In the north-

western and western parts of the study area, the high and

very-high sensitivity zones for the M5P model

encompassed 17.16% and 21.10% of the state, respectively.

Very-low, low and moderate sensitivity zones are

accounted for 23.20%, 23.85% and 14.67% of the total

area, respectively (Table 6). For the model of M5P-Dag-

ging, very-low and low sensitivity areas captured 52.49%

of the total area in the eastern to southern part. The high

and very-high sensitivity zones comprised 32.40% of the

total land on the western and north-western sides. The

north-eastern and central parts were occupied by a mod-

erate sensitivity zone (15.08%) (Table 6). In the north-

western and western parts of the study region, the high and

very-high sensitivity zones for the M5P-RSS model com-

prised 15.57% and 23.42% of the study area, respectively.

Very-low, low and moderate sensitivity zones are

accounted for 23.38%, 18.04% and 19.56% of the total

area, respectively (Table 6). For the model of M5P-RTF,

very-low and low sensitivity areas captured 76,422.36 sq.

km of the total area in the eastern to southern part. The high

and very-high sensitivity zones comprised 54,697.55 sq.

km. of the total land on the western and north-western

sides. The total central part was occupied by a moderate

sensitivity zone (24,587.08 sq. km.) (Fig. 4). Owing to the

high evaporation rate, increasing trend of temperature and

high aridity, the sensitivity to drought was very high in the

western part of the state, as shown by the all models.

3.3 Adaptive capability mapping by using
ensemble models

To produce the adaptive capability maps, M5P, M5P-

Dagging, M5P-RSS, and M5P-RTF ensemble models were

also employed (Fig. 8). By using the natural-break method,

each model’s anticipated drought adaptive capability was

divided into five adaptive capability classes, such as in

exposure and sensitivity maps. In the north-western and

western parts of the region, the high and very-high adaptive

capability classes for the M5P model covered 12.03% and

3.73% of the study area, respectively. Except in the north-

western and western parts of the research territory, very-

low, low and moderate adaptive capability zones captured

10.94%, 36.85% and 36.42% of the total area, respectively

(Table 7). For the model of M5P-Dagging, very-low and

low adaptive capability areas captured 58.77% of the total

area from the eastern to southern part. The high and very-

high adaptive capability zone comprised 23.6% of the total

land. The north-eastern and central parts were occupied by

a moderate adaptive capability zone (17.60%). For the

M5P-RSS model, the high and very-high adaptation

capacity zones made up 25.37% and 7.62% of the research

area, respectively. Zones with very low, low, and moderate

adaptation capabilities make up, respectively, 11.79%,

38.83%, and 16.37% of the total area (Table 7). For the

model of M5P-RTF, very-low and low adaptive capability

Table 5 Area under different exposure classes for every considered

model

Models Exposure class Area (%) Area in (sq. km)

M5P Very low 19.52 30,408.84

Low 34.15 53,181.94

Moderate 10.80 16,817.90

High 10.80 16,822.09

Very high 24.71 38,476.23

M5P—Dagging Very low 19.52 30,408.84

Low 27.10 42,206.09

Moderate 20.26 31,557.13

High 11.64 18,133.83

Very high 21.45 33,401.11

M5P- RSS Very low 22.72 35,379.19

Low 26.26 40,898.55

Moderate 16.91 26,339.52

High 12.05 18,770.84

Very high 22.04 34,318.91

M5P-RTF Very low 12.58 19,600.63

Low 34.92 54,384.72

Moderate 14.61 22,752.15

High 14.43 22,475.55

Very high 23.43 36,493.96

2528 Stochastic Environmental Research and Risk Assessment (2023) 37:2513–2540

123



areas captured 94,176.88 sq. km of the total area in the

eastern to southern part. The high and very-high adaptive

capability zones comprised 39,121.62 sq. km. of the total

land on the western and north western sides. The entire

central part was occupied by a moderate adaptive capa-

bility zone (22,408.50 sq. km.).

3.4 Vulnerability mapping by using ensemble
models

The four ensemble models generated three indices, namely

exposure, sensitivity, and adaptive capacity, which were

then utilised to create maps of drought vulnerability

(Fig. 9).The predicted drought vulnerability was cate-

gorised into five classes, namely, very-high, high, moder-

ate, low and very-low by the natural break method. For the

model of M5P, very-high to high vulnerability zones were

found in the western and north western parts of the study

region. These two zones occupied 35.6% of the study area.

Very-low to low vulnerable areas were found along the

north eastern to southern part of the map. These two zones

occupied 51.96% of the area. A moderate vulnerable zone

was found in the central part (12.41%) in between the very-

high to high and very low to low vulnerable zones

(Table 8). For the model of M5P-Dagging, very-low and

low vulnerable areas captured 71,879.59 sq. km of the total

area in the eastern to southern part. The high and very-high

vulnerable zones comprised 62,400.14 sq. km. of the total

land in the western and north-western part. The entire

central part was occupied by a moderate vulnerability zone

(21,427.26 sq. km.) (Table 8). In the north-western and

western parts of the study region, the high and very-high

vulnerable zones for the M5P-RSS model comprised

14.22%and 23.68% of the study area, respectively. Except

in the north-western and western parts of the research

region, very-low, low and moderate vulnerability zones

accounted for 25.53%, 25.81% and 10.74% of the total

area, respectively (Table 8). In the case of the model of

M5P-RTF, very-low and low vulnerable areas covered

75,345.34 s q. km of the total area from the eastern to

southern part. The high and very-high vulnerability zones

occupied 59,030.78 sq. km. of the total land on the western

and north western sides. The middle part of the map was

under the zone of moderate vulnerability. (21,330.87 sq.

km).

Fig. 7 Sensitivity index maps

produced by: A M5P, B M5P-

Dagging, C M5P-RSS, and

D M5P-RTF
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3.5 Correlation between drought vulnerability
and exposure, sensitivity and adaptive
capacity indices

The vulnerability of an area is significantly associated with

the exposure, sensitivity and adaptive capability of that

area (Singha et al. 2020). To assess the relationship

between drought vulnerability and the three indices of

exposure, sensitivity and adaptive capability, the Pearson

correlation method was used. Exposure and sensitivity

indices were very strongly related with the overall drought

vulnerability. The exposure index correlation values

(r) ranged from 0.545 to 0.990. Sensitivity index r values

ranged from 0.556 to 0.984 (Table 9). Adaptive capability

index’s association with overall drought vulnerability was

not as high as those of exposure or sensitivity indices.

Table 9 shows that the r values for all pairs were lower in

the case of M5P-Dagging than in other applied models.

3.6 Comparison and validation
between different models of drought
vulnerability

Rationality evaluation is a crucial step in reaching a con-

clusion on the predictive ability of deployed models

(Karstoft et al. 2021). The ROC, RMSE, MAE, precision,

K-index, Friedman test and Wilcoxon test were used to

compare and validate the models. The ROC curve results

showed that in the case of training data, the AUCs for the

RTF-M5P, RSS-M5P, M5P and DAG-M5P models were

0.873, 0.855, 0.842 and 0.805, respectively (Table 10). The

result of the ROC curve showed that in the case of testing

data set, the AUCs for the RTF-M5P, RSS-M5P, M5P and

DAG-M5P models were 0.901, 0.874, 0.859 and 0.852,

respectively (Fig. 10). As the ROC values ranged from

0.805 to 0.901, the four ensemble models had good pre-

diction capabilities for generating the drought vulnerability

map. However, the RTF-M5P model was the best fit for

producing a map of drought vulnerability, because it had

the highest AUC value in both training and testing

(Table 10). RTF-M5P model had the lowest MAE (Train-

ing-0.269 and Testing-0.206) and RMSE (Training-0.146

and Testing-0.102) values. Moreover, the K-index value

was found to be the highest (Training-0.879 and Testing-

0.886) for the RTF-M5P. This model had a high precision

rate (Training-0.873 and Testing- 0.889) (Table 11). All of

the models had approximately comparable RMSE, MAE,

precision and K-index values. Thus, all the models had

almost identical drought vulnerability prediction capabili-

ties, but the RTF-M5P model was the most suitable.

According to the Friedman test (Table 12) the estimated

Chi-square value was 11.936, and the p-value was 0.007,

indicating the significant differentiation among the models.

Similarly, Wilcoxon test shows the significant difference

among the drought vulnerability indexed (Table 13).

4 Discussion

Drought is one of the most disastrous climatic hazards. It

has a bad influence on the livelihood conditions in areas

where most of the people are depended on agricultural

activities. Many parts of India are frequently affected by

drought almost every year. Odisha is one of the states

frequently affected by this climatic hazard. Numerous

scientists have conducted drought prevention and policy

development research for India (Javadinejad et al. 2020;

Sam et al. 2020). Studies were conducted in Odisha to

identify the areas prone to drought; results indicated that

drought is a serious concern (Senapati 2019; Saha et al

2021a). In most of the previous studies, researchers focused

more on drought forecasting rather than drought vulnera-

bility. However, for formulating the scientific strategies to

reduce the effect of drought, an assessment of drought

vulnerability that considers the various indicators of

exposure, sensitivity and adaptive capacity is essential.

In this present study, drought vulnerability was evalu-

ated using three different groups of parameters, namely,

Table 6 Area under different sensitivity classes for every considered

model

Models Sensitivity class Area (%) Area in (sq. km)

M5P Very low 23.20 36,125.16

Low 23.85 37,139.35

Moderate 14.67 22,844.35

High 17.16 26,733.46

Very high 21.10 32,864.68

M5P-Dagging Very low 21.00 32,709.62

Low 31.49 49,045.57

Moderate 15.08 23,481.36

High 10.74 16,734.08

Very high 21.66 33,736.38

M5P- RSS Very low 23.38 36,418.52

Low 18.04 28,099.68

Moderate 19.56 30,471.70

High 15.57 24,244.09

Very high 23.42 36,473.00

M5P-RTF Very low 13.57 21,133.91

Low 35.50 55,288.45

Moderate 15.79 24,587.08

High 14.09 21,946.91

Very high 21.03 32,750.64
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Fig. 8 Adaptive capability

index maps produced by:

A M5P, B M5P-Dagging,

C M5P-RSS, and D M5P-RTF

Table 7 Area under different

adaptive capability classes for

every considered model

Models Adaptive capability class Area (%) Area in (sq. km)

M5P Very low 10.94 17,035.82

Low 36.85 57,385.37

Moderate 36.42 56,719.02

High 12.03 18,745.69

Very high 3.73 5821.10

M5P—Dagging Very low 28.60 44,543.39

Low 30.17 46,990.78

Moderate 17.60 27,411.64

High 14.10 21,967.87

Very high 9.50 14,793.32

M5P- RSS Very low 11.79 18,364.32

Low 38.83 60,461.45

Moderate 16.37 25,492.97

High 25.37 39,515.57

Very high 7.62 11,872.69

M5P-RTF Very low 34.09 53,085.55

Low 26.39 41,091.33

Moderate 14.39 22,408.50

High 16.39 25,526.49

Very high 8.73 13,595.13
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exposure, sensitivity and adaptive ability. To conduct this

research, a wide variety of exposure, sensitivity and

adaptive capacity factors were used to account for all

possible drought scenarios. SPI-based drought estimation is

well-established and has been utilised for the assessment of

drought (Malik et al. 2020; Mehr et al. 2020). The criteria

were chosen by depending on past studies and the geo-

environmental conditions of the study area. The evaluation

was conducted using well-known MLAs. Three ensemble

models, namely, M5P-Dagging, M5P-RSS and M5P-RTF,

were used for assessing drought vulnerability. Exposure,

sensitivity and adaptive capacity maps were prepared by

applying each of these ensemble models (M5P, M5P-

Dagging, M5P-RSS and M5P-RTF) and by considering the

indicators of exposure, sensitivity and adaptive capacity. A

number of researchers used M5P, Dagging, RTF and RSS

MLAs in numerous disciplines, such as predicting stream

flow, (Onyari & Ilunga 2013), flood hazard (Nhu et al.

2020b), landslide (Antronico et al. 2020), assessment of

deforestation susceptibility (Saha et al 2021b), gully ero-

sion (Nhu et al. 2020a; Roy et al. 2021) and drought hazard

(Buthelezi 2020). In each case, the capacity for forecasting

of the output of the model was enormously appreciable. So,

the use of the techniques of machine learning has become

very frequent. However, these ensemble machine learning

models have been used for assessing drought vulnerability.

In other applications, such as landslides, floods, water level

prediction and evaluation of the potential of spring, the

M5P model has provided good output (Nhu et al.

2020a, b, c).

In the present research, all the applied models provided

excellent results, as in the aforementioned fields. As

compare to the conventional semi-quantitative method like

AHP (Hoque et al. 2020; 2021) and Fuzzy-AHP (Saha et al

2021) the applied ensemble models provided better result

in the present study. Among the applied models, M5P-RTF

achieved the highest accuracy (90.10%). Among ensemble

models, M5P was used as base classifier, and RSS, Dag-

ging and RTF were used as meta classifiers. RSS and RTF

increased the accuracy of the M5P base classifier. In the

case of M5P-RTF ensemble model, the accuracy of the

M5P base classifier was increased by nearly 5%, as the

rotation forest is a tree-based ensemble that transforms the

subsets of attributes before building each tree. When all of

the attributes are real-valued, rotation forest outperformed

the most frequent alternatives. In the present study better

Fig. 9 Drought vulnerability

maps produced by: A M5P,

B M5P-Dagging, C M5P-RSS,

and D M5P-RTF
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result of ensemble models has been found in case of M5P-

RTF than other ensemble models applied in different fields

like AdaBoost, Bagging, Dagging, MultiBoost, RTF, and

RSS where ANN is base classifier in landslide modelling

(Pham et al. 2017; Wang et al. 2020), staking and blending

where KNN, RF and SVM were used as base classifiers in

flood susceptibility modelling (Yao et al. 2022). This

work’s findings will undoubtedly aid in the formulation of

drought relief measures in Odisha and will serve as a ref-

erence for future drought research, particularly in terms of

strategy creation. Four maps – exposure, sensitivity,

adaptive capability and drought vulnerability maps – were

created, each of which was categorised into five groups

using the natural break technique (Hoque et al. 2020;

2021). As per the categorisation, the state’s north-western

regions are extremely vulnerable to drought, owing to

rising temperatures, declining rainfall, a high frequency of

extreme drought, limited water supply, high evaporation

and high water demand. The eastern half of the state is

rather drought-resistant due to its location along the Bay of

Bengal’s coastal strip. It is important to raise awareness on

the threat of drought in this region to protect the people

who are dependent on agricultural activity. There is good

scope for further elaboration of this work in future. New

factors and indices can be added in the future to allow for a

more exact depiction of drought vulnerability. Present day

deep learning method have been used in different fields. In

future deep learning method could be used for preparing

the drought vulnerability maps. Drought-prediction tech-

niques are improving over the time, and academics can

keep up with them and improve them with their own

contributions (Madrigal et al. 2018). With more ground

level data, the models’ accuracy can be improved even

further. Such studies will help agricultural designers

develop appropriate solutions in drought-prone areas.

4.1 Advantages of present work

Nevertheless, a full assessment of drought in the region

requires the characterisation of drought, which permits

activities such as early drought alarm and drought risk

mitigation; this assessment would improve the preparation

and catastrophe planning (Tsesmelis et al. 2019; Garca

Table 8 Area under different drought vulnerability classes for every

considered model

Models Vulnerability class Area (%) Area in (sq. km)

M5P Very low 32.25 50,227.39

Low 19.71 30,702.20

Moderate 12.41 19,324.03

High 9.86 15,363.67

Very high 25.74 40,089.71

M5P—Dagging Very low 22.70 35,348.90

Low 23.46 36,530.69

Moderate 13.76 21,427.26

High 14.94 23,271.19

Very high 25.12 39,128.95

M5P- RSS Very low 25.53 39,753.37

Low 25.81 40,189.21

Moderate 10.74 16,733.63

High 14.22 22,156.45

Very high 23.68 36,874.33

M5P-RTF Very low 31.48 49,027.48

Low 16.90 26,317.86

Moderate 13.69 21,330.87

High 12.34 19,227.12

Very high 25.56 39,803.66

Table 9 Correlation between

drought vulnerability and

Exposure, Sensitivity and

Adaptive capacity indices

Indices Drought vulnerability index

M5P -Dagging M5P-RTF M5P-RSS M5P

Exposure M5P-Dagging .555 .944 .956 .942

M5P-RTF .561 .995 .991 .982

M5P-RSS .560 .992 .996 .987

M5P .545 .990 .993 .990

Sensitivity M5P -Dagging .556 .971 .963 .956

M5P-RTF .985 .984 .980 .972

M5P-RSS .661 .983 .981 .973

M5P .559 .979 .974 .969

Adaptive capacity M5P -Dagging .350 .352 .360 .350

M5P-RTF .448 .562 .463 .457

M5P-RSS .441 .571 .563 .556

M5P .426 .528 .427 .494

Stochastic Environmental Research and Risk Assessment (2023) 37:2513–2540 2533

123



et al. 2020). Our study provides a thorough analysis of the

state’s vulnerability to drought caused by a variety of

factors. The first step in visualizing severely drought-

stressed places is to use cartographic products like maps of

drought susceptibility. Agricultural security has been

identified as one of the most essential tools that farmers can

use to protect themselves in the event of yield loss and to

increase their adaptive ability (Akrofi-Atitianti et al. 2018).

The farmers, irrigators, and block-level officials can use

these maps to identify the region-specific causes of extreme

drought vulnerability. Through capacity building, such

information may aid in the effective planning of

Table 10 Values of ROC and

AUC
Models Area Std. Error Asymptotic Sig Asymptotic 95% Confidence Interval

Lower Bound Upper Bound

Training datasets

M5P -RTF .873 .063 .000 .750 .995

M5P -RSS .855 .059 .000 .739 .971

M5P .842 .060 .000 .724 .960

M5P -Dagging .805 .080 .000 .648 .963

Testing datasets

M5P -RTF .901 .028 .000 .856 .966

M5P -RSS .874 .040 .000 .796 .953

M5P .859 .039 .000 .782 .936

M5P -Dagging .852 .039 .000 .775 .929

Fig.10 ROC curves prepared for validating the applied using A training, and B testing datasets

Table 11 Values of Precision, K- index, MAE and RMSE methods

Model Datasets Precision K- index MAE RMSE

M5P -RTF Training 0.873 0.879 0.269 0.146

Testing 0.889 0.886 0.206 0.102

M5P Training 0.813 0.801 0.382 0.228

Testing 0.828 0.827 0.249 0.207

M5P -RSS Training 0.836 0.814 0.241 0.174

Testing 0.851 0.853 0.239 0.153

M5P -Dagging Training 0.854 0.813 0.275 0.147

Testing 0.868 0.856 0.253 0.139

Table 12 : Friedman rank test result of drought vulnerability index

Models Mean Rank Chi-Square P-value Significance

M5P 2.47 11.936 0.007 Yes

M5P-RSS 2.56

M5P -RTF 2.45

M5P -Dagging 2.56
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agricultural operations and crop management strategies

using the resources at hand. The created maps of drought

vulnerability can help crop insurers to target regions that

are vulnerable to drought and promote farmer involvement

in crop insurance. Before moving further with the drought

mitigation measures, the results of our study can also be

complemented by the IMD’s drought forecast maps.

Additionally, the hydro-climate features, socioeconomic

situation, or both in any location are realised from the

bivariate choropleth maps as the dominating component

driving the overall drought vulnerability. As a result, those

involved in creating drought mitigation plans may want to

think about strengthening drought-prone areas by improv-

ing their socioeconomic status and hydro-climatic adap-

tion. It is possible to improve the socio-economic situation

through improving irrigation capacity, better groundwater

conservation, and other measures. Contrarily, placing a

focus on crop selection and appropriate agricultural man-

agement techniques with hydro-climatic condition can aid.

In principle, the paradigm for assessing vulnerability to

disasters described in this study may be employed to

update drought vulnerability information with real-time

data for adjustments to drought mitigation techniques.

5 Conclusion

In this research, for drought vulnerability evaluation,

ensemble techniques have been adopted and implemented

in Odisha, which has never been done before in drought

vulnerability assessments. Considering that the nature of

drought changes, the approaches for measuring drought

susceptibility across place and time need to change as well.

Fifty-three drought determining variables were layered on

a GIS environment to create drought vulnerability maps

based on prior studies. The M5P, M5P-Dagging, M5P-RSS

and M5P-RTF ensemble models were combined with these

factor layers. The M5P, M5P-Dagging, M5P-RSS and

M5P-RTF ensemble models showed very-high drought

vulnerability rates of 25.74%, 25.12%, 23.68% and 25.56%

in the region, respectively. If effective drought manage-

ment strategies are not adopted, then this area would

undoubtedly be susceptible in the near future. We could not

conduct field observations and document the perception of

local people due to fund and time deficits. However, such a

flaw has no bearing on the used models’ correctness. The

state’s northern areas are particularly vulnerable to drought

due to increasing temperatures, diminishing rainfall, a high

frequency of extreme drought, restricted water supply, high

evaporation and high water demand. The eastern half of the

state is drought-resistant due to its location along the Bay

of Bengal’s coastal strip. The main limitations of the study

include lack of crop type data pr agricultural practices in

the drought vulnerable region. Future research may focus

on the impact of drought vulnerability on agriculture and

socio-economic conditions as well as how drought vul-

nerability evolves under the changing climate and socio-

economic conditions. However, the government should

implement a variety of programmes and increase pub-

lic awareness. Odisha could construct various machinery

and irrigational infrastructures to aid in water conservation.

The findings of this study can be utilised through local

government and private organisations in the Indian state of

Odisha for the management of water resource, preservation

of environment and land use planning.
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