
ORIGINAL PAPER

An automatic quality evaluation procedure for third-party daily rainfall
observations and its application over Australia

Ming Li1 • Quanxi Shao1 • Joel Janek Dabrowski2 • Ashfaqur Rahman3 • Andrea Powell1 •

Brent Henderson4 • Zachary Hussain5 • Peter Steinle5

Accepted: 7 February 2023 / Published online: 24 February 2023
� Crown 2023

Abstract
Third-party rainfall observations could provide an improvement of the current official observation network for rainfall

monitoring. Although third-party weather stations can provide large quantities of near-real-time rainfall observations at fine

temporal and spatial resolutions, the quality of these data is susceptible due to variations in quality control applied and

there is a need to provide greater confidence in them. In this study, we develop an automatic quality evaluation procedure

for daily rainfall observations collected from third-party stations in near real time. Australian Gridded Climate Data

(AGCD) and radar Rainfields data have been identified as two reliable data sources that can be used for assessing third-

party observations in Australia. To achieve better model interpretability and scalability, these reference data sources are

used to provide separate tests rather than a complex single test on a third-party data point. Based on the assumption that the

error of a data source follows a Gaussian distribution after a log-sinh transformation, each test issues a p-value-based

confidence score as a measure of quality and the confidence of the third-party data observation. The maximum of

confidence scores from individual tests is used to merge these tests into a single result which provides overall assessment.

We validate our method with synthetic datasets based on high-quality rainfall observations from 100 Bureau of Meteo-

rology (BoM) of Australia stations across Australia and apply it to evaluate real third-party rainfall observations owned by

the Department of Primary Industries and regional development (DPIRD) of Western Australia. Our method works well

with the synthetic datasets and can detect 76.7% erroneous data while keeping the false alarm rate as low as 1.7%. We also

discuss the possibility of using other reference datasets, such as numerical weather prediction data and satellite rainfall

data.
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1 Introduction

Rainfall is a primary component in the water cycle and it is

arguably the most important climate variable that directly

affects human society. Accurate and reliable rainfall

observations are vital in many applications, such as water

resources planning and management (Herman et al. 2020;

Neupane and Guo 2019), hydrological forecasting (Li et al.

2013, 2016) and the study of climate trends and variability

(Marengo et al. 2018; Neupane and Guo 2019). Further-

more, many weather-sensitive industries (such as mining,

energy and agriculture) rely on accurate rainfall data for

effective operation. For example, high-quality rainfall

observations are required for index-based or parametric

insurance policies in developing economies to reduce

& Ming Li

Ming.Li@data61.csiro.au

1 CSIRO Data61, PO Box 1130, Bentley, WA 6102, Australia

2 CSIRO Data61, GPO Box 2583, Brisbane, QLD 4001,

Australia

3 CSIRO Data61, Private Bag 12, Hobart, TAS 7001, Australia

4 CSIRO Data61, GPO Box 1700, Canberra, ACT 2601,

Australia

5 Bureau of Meteorology, GPO Box 1289, Melbourne,

VIC 3001, Australia

123

Stochastic Environmental Research and Risk Assessment (2023) 37:2473–2493
https://doi.org/10.1007/s00477-023-02401-8(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00477-023-02401-8&amp;domain=pdf
https://doi.org/10.1007/s00477-023-02401-8


farmers’ risk and increase average incomes (Clement et al.

2018; Greatrex et al. 2015).

The most accurate rainfall observations are obtained

from official automatic weather stations (AWS) managed

by government agencies. The installation and maintenance

of these official AWS have followed the international

standard set by, for example, the World Meteorological

Organization (World Meteorological Organization, 2018).

A quality control procedure is regularly applied to official

AWS to identify and correct suspect rainfall data from

human errors or equipment faults. However, official AWS

are typically restricted to limited spatial coverage because

the station locations are chosen based on a range of

requirements and constraints. In Australia, the Bureau of

Meteorology (BoM) managed * 730 official AWS

equipped with Tipping Bucket Rain Gauges (TBRG),

though the number of official AWS differs from year to

year and it can be a different number of observations

available within a different year. Rain in Australia is well

known to be highly variable (Murphy and Timbal 2008),

and the current coverage of official AWS is inadequate to

represent large natural rainfall variability in space.

Third-party rainfall stations could provide a potential

solution to improve the current observation network for

rainfall monitoring (Assumpcao et al. 2018; Buytaert et al.

2014; Muller et al. 2015; Zheng et al. 2018). The devel-

opment of inexpensive sensors and communication tech-

nology has made AWS more affordable for the public and

enabled connections with sensors in remote locations.

Therefore, many third parties have installed their own

weather stations with off-the-shelf equipment and obtained

local observations with the advent of wireless technologies.

The existing official rainfall observation network (which

are usually limited in coverage) has been rapidly supple-

mented with third-party rainfall stations as well as remote

sensing rainfall estimates from satellite and radar (which

require validation from ground observations) (Bardossy

et al. 2021). To the best of our knowledge, * 8000 third-

party AWS collect real-time rainfall observations in Aus-

tralia. Some third-party AWS are owned by the general

public in local communities and shared by online services

such as Netatmo and Weather Underground, which enable

near-real-time collection, integration and visualization of

rainfall data. These third-party AWS are also known as

private weather stations (Chen et al. 2021a, b) or citizen

weather stations (Napoly et al. 2018) in the literature. Other

third-party AWS are installed and serviced by local gov-

ernment agencies or organisations, which are referred to as

non-private third-party weather stations. For example, the

Department of Primary Industries and regional develop-

ment (DPIRD) of Western Australia (WA) owns a network

of * 200 non-private third-party AWS mainly located in

southwest WA to offer real-time local weather data for

regional communities.

Although third-party AWS can provide enormous

quantities of near-real-time data at specific locations, the

quality of these data are more susceptible than official

weather data because of (a) incorrect installations, (b) sen-

sor failure or malfunctions, and (c) inadequate servicing

leading to poor-quality data (Bell et al. 2015; Campbell

et al. 2013; Chen et al. 2018). For example, ‘‘backyard’’

weather stations are often found to be installed too close to

building walls or trees that can partially intercept rainfall

and cause lower readings, and electronic sensors of AWS

may malfunction or fail completely both by environmental

phenomena (such as flooding, fire, lightning strikes and

animal activity) and by malicious human activity (such as

theft, vandalism and tampering). It is often not known if

routine services and scheduled maintenance are performed

to minimise external influences (such as a rain gauge being

blocked by debris) on reading accuracy. Streaming weather

data are often posted online with limited or no quality

control and delivered in a raw form without any checks or

evaluations. Therefore, end users have limited confidence

to incorporate raw third-party rainfall observations in their

decision-making.

To make the best use of the growing volume of third-

party rainfall observations, there is an increasing need for

automated and algorithm-based quality control (QC)

methods to evaluate the data quality (Campbell et al. 2013;

Muller et al. 2015; Zheng et al. 2018). Automated QC

methods can improve the confidence of end users and

enable prompt decision-making. Unlike quality assurance

(QA), which is a proactive process to collect metadata and

perform data maintenance, QC aims to improve the quality

of data and provide confidence in the data. Traditionally,

manual or semi-automated QC methods have been devel-

oped by meteorologists to detect errors in the observations

for official weather stations. Traditional QC methods can

be labour intensive, such as manually checking consistency

with nearby sites, which may be challenging for a large

volume of data in near real-time. If traditional QC methods

are semi-automated, resource constraints limit the ability to

apply them to third-party stations. For example, performing

an intercomparison of redundant measurements taken at the

same site is a common practice for some key official sta-

tions to maintain data quality but is not applicable for most

third-party stations.

More recently, several research studies have developed

automated QC methods applicable for rainfall observations

collected from third-party AWS. de Vos et al. (2019)

proposed a real-time applicable QC method for third-party

rainfall measurements. Their method required no auxiliary

data and consisted of four modules that identify and filter

typical errors by checking spatial consistency. Chen et al.
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(2021a, b) adopted the use of reputation systems to assign

trust scores to crowdsourced third-party stations. Bardossy

et al. (2021) proposed a two-fold approach to filter out

suspicious rainfall measurements from third-party stations

by checking whether they appear consistent with the spatial

pattern of official weather stations. Several automated QC

methods have been developed for third-party observations

of other climate variables, such as air temperature (Beele

et al. 2022; Chakraborty et al. 2020; Fenner et al. 2021;

Meier et al. 2017; Napoly et al. 2018) and wind (Chen et al.

2021a, b; Droste et al. 2020) Almost all existing methods in

the literature only considered the spatial consistency

between third-party stations and primary gauges ( e.g. de

Vos et al. (2019) and Chen et al. (2021a, b)) or within

third-party stations in a dense network (e.g. Bardossy et al.

(2021). This limitation restricts the use of such methods in

urban areas rather than regional areas.

Data quality is not an absolute concept and different

applications may have different requirements for data

quality. We cannot assume that observations, good enough

for one application, are good in general. Given that the

underlying true value is never known, any quality control

can suffer from false positive error (i.e., good observations

labelled as bad) and/or false negative error (i.e., bad

observations labelled as good). End users may be willing to

tolerate more on one type of error than the other. For

example, this research is primarily motivated by facilitat-

ing parameter insurance with assessing third-party weather

observations collected by farmers. In this application,

parametric insurance companies typically consider mini-

mal false positives as their first priority to avoid unneces-

sary lawsuits against them from farmers. As another

example, climate scientists would prefer to include the

most accurate observations in their research by controlling

false negatives at first. Traditional quality control proce-

dures often label each test observation with a fixed quality

flag (e.g., wrong, ok or suspect) and consequently lead to

fixed false positive and false negative rates, regardless of

applications and user requirements. To overcome the lim-

itation of traditional quality control, we report data quality

by a continuous confidence score instead of a quality flag

and allow users to decide whether to exclude or include in

their specific application based on their risk preference. As

this research is primarily motivated by facilitating param-

eter insurance with assessing third-party weather observa-

tions collected by farmers, our case studies will be

evaluated in the context of this application. To satisfy the

need for evaluating rainfall observations from all third-

party stations on a large country scale with a mixture of

urban and regional areas (such as Australia), we propose an

automated data-driven quality evaluation procedure that

can be implemented in an operational environment. The

proposed procedure aims to (a) make the use of the best

possible reference data, (b) assign a continuous confidence

score to each test observation instead of a categorical

quality flag, and (c) provide a parsimonious and inter-

pretable model structure that can be easily extended with

new data sources. We assume that the majority of third-

party rainfall observations are of good quality and erro-

neous observations are only present in the form of outliers.

Each type of reference data forms a prediction of daily

rainfall at a specific location and is compared with the

third-party observation at this location. The associated

prediction uncertainty is estimated statistically based on

distributional assumptions. If the difference between a

third-party observation and the corresponding prediction

from reference data is greater than the estimated prediction

uncertainty, this third-party observation is likely to be

wrong. To further confirm the quality of this third-party

observation, we would like to compare it against additional

sources of reference datasets, which are supposed to be

mutually independent with the first reference data. If the

differences between the observation and additional refer-

ence datasets are also sufficiently large, we have more

confidence that the observation is of poor quality. Specif-

ically, our method has two stages: (1) separate statistical

tests to quantify the agreement between test observations

and each type of reference data, including gridded rainfall

analysis data and radar rainfall data (if available), and (2)

an overall assessment by combining the results from indi-

vidual tests and assigning a confidence score in a proba-

bilistic framework.

We organize this manuscript as follows. Section 2

introduces the reference data used in the test methods.

Section 3 provides the details of our test method. Section 4

validates the test method based on a synthetic data example

and Sect. 5 provides a case study based on real third-party

rainfall observations from the DPIRD network. We discuss

other possible reference data in Sect. 6. Conclusions and

discussion are made in Sect. 7.

2 Data

We have used the following two reference data sources to

evaluate the data quality of daily rainfall observations

collected from third-party weather stations in Australia.

2.1 AGCD

Australian Gridded Climate Data (AGCD) is the BoM’s

official dataset for Australian gridded rainfall analysis at

daily and monthly time scales (Jones et al. 2009). AGCD

applies state-of-the-art statistical modelling to combine

available rainfall data and provides an accurate estimate of

rainfall conditions in wider areas than rain gauges that
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provide rainfall point measurements. AGCD has incorpo-

rated the BoM’s latest quality control and quality assurance

to ensure that quality flagged and subsequently removed

data do not affect the resulting analysis. AGCD of daily

rainfall at 5 9 5 km resolution is available for the period

since 1900 and can be requested directly from the BoM or

NCI (NCI 2022). The BoM also provides a ten-fold cross-

validated analysis to determine the accuracy of AGCD

daily rainfall (Evans et al. 2020). The cross-validated

analysis errors, measured by root-mean-squared error

(RMSE), are available from a BoM OPeNDAP server

(Bureau of Meteorology 2022b).

2.2 Radar rainfields data

Rainfields is the BoM current system for quantitative radar

rainfall estimation, which performs several basic quality

control checks on radar data, converts radar reflectivity to

rainfall depths, and produces real-time, spatially and tem-

porally continuous rainfall data (Seed et al. 2007). Rain-

fields data have been increasingly used for

hydrometeorological applications such as flooding fore-

casting (May et al. 2013). There are a total of 63 rain radars

available as of 2022 in Australia (Bureau of Meteorology

2022c). Rainfields data are available within a radius up to

256 km from a radar and at 1 km resolution with 5-min

updates. Rainfields data can be requested directly from the

BoM Climate Data Online (Bureau of Meteorology 2022a).

3 Methods

Three tests are performed to check the quality of daily

rainfall observations from third-party weather stations and

to the results from each individual test is combined to

provide an overall assessment. In this section, we provide

the detail of each individual test and the method to com-

bine them.

3.1 Domain test

A domain test is designed to filter out obviously erroneous

observations by checking whether observations are within

physical limits. The physical lower limit for rainfall is zero,

and an upper limit of 2000 mm per day is set for this study

based on historical records. Any rainfall reading out of the

physical limits is immediately identified as erroneous and

is assigned a confidence level of zero.

3.2 AGCD test

AGCD test checks the agreement between daily rainfall

observations from a third-party station and the corresponding

AGCD rainfall estimates at the nearest gridded point to the

target station. Because themagnitude of the different between

station observations and gridded data is typically greater for

high rainfall than low rainfall, we apply a data transformation

and consider the difference in the transformed space. For a

given third-party station, we denote the true underlying

rainfall, the rainfall observation from this station and the

correspondingAGCD rainfall estimate at time t byR tð Þ;Ro tð Þ
and Rs tð Þ, respectively. AGCD test essentially drives the

predictive distribution of R tð Þ conditional on Rs tð Þ and cal-

culates the degree of confidence of Ro tð Þ based on this dis-

tribution. The presence of zero rainfall makes the distribution

of R tð Þ a mixture of continuous and discrete distributions. To

conveniently dealwith zero rainfall, we establish two separate

models to derive the predictive distribution, one for Rs tð Þ� ts

and the other for Rs tð Þ[ ts, where ts is a threshold for zero to

small rainfall. In this study, we choose ts ¼ 2 mm.

For the sake of simplicity, we denote the probability of

true rainfall at time t less than or equal to x (which is the

element of the conditional predictive distribution of R tð Þ)
conditional on the AGCD rainfall estimate being Rs tð Þ by
P R tð Þ� xjRs tð Þf g. When Rs tð Þ� ts, the predictive distri-

bution of R tð Þ conditional on Rs tð Þ is estimated directly

from the empirical distribution of R kð Þ conditional on Rs kð Þ
in a training period k ¼ 1; . . .; n:

P R tð Þ� xjRs tð Þf g ¼
Pn

k¼1 I Ro kð Þ� x and Rs kð Þ� tsð Þ
Pn

k¼1 I Rs kð Þ� tsð Þ
ð1Þ

where I :ð Þ is the indicator function, which is equal to 1 if

the condition is met or to 0 otherwise. In fact, the right-

hand side of Eq. (1) estimates the distribution of Ro tð Þ
conditional on Rs tð Þ. Because R tð Þ is not observable and

third-party observations are assumed to be mostly accurate,

we approximate the true rainfall R tð Þ by the corresponding

third-party observation Ro tð Þ and therefore P R tð Þ�f
xjRs tð Þg by P Ro tð Þ� xjRs tð Þf g.

When Rs tð Þ[ ts, the predictive distribution of R tð Þ
conditional on Rs tð Þ is derived from an error model which

represents the statistical relationship between Ro and Rs. As

the uncertainty of AGCD rainfall estimates often increases

with higher rainfall, we apply the log-sinh transformation

(Wang et al. 2012) to normalise the data, stabilise the

variance and establish an error model on the transformed

space that is Gaussian. Firstly, we define the following

notations at time t:

f Rð Þ¼b�1log sinh aþ bRð Þf g: the log-sinh transformation,

Z tð Þ ¼ f R tð Þf g: the transformed true rainfall,

Zo tð Þ ¼ f Ro tð Þf g: the transformed third-party rainfall

observation,

Zs tð Þ ¼ f Rs tð Þf g: the transformed AGCD rainfall

estimate,
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f�1 zð Þ ¼ b�1 asinh ebz
� �

� a
� �

: the inverse log-sinh

transformation,

where a and b are two log-sinh transformation parameters.

We apply the error model proposed by Li et al. (2016)

and assume that the difference between Z tð Þ and Zs tð Þ (i.e.,
the error of AGCD rainfall estimates in the transformed

space) follows a Gaussian distribution:

Z tð Þ ¼ lþ Zs tð Þþ 2 tð Þ ð2Þ

where 2 tð Þ�N 0; r2ð Þ and l and r are the error model

parameters. We treat 2 tð Þ as a surrogate of all sources of

error in gridded reference data. One typical source of error

is representativeness error (Janjic et al. 2018), which is the

mismatch between the spatial scales represented by the

reference field (e.g., AGCD or the radar Rainfields) and

point observations. Because gridded reference data are

available on a given grid, they are in general smoother than

the true field and principally do not provide information on

the scale smaller than the grid point distance. Other sources

of error include interpolation error for AGCD and the

approximation error of the reflectivity-rainfall relationship

for the radar Rainfields. We do not impose any assumption

on the spatial pattern of e(t) in this study because we only

perform the proposed quality control procedure for each

individual station without using information at other loca-

tions. In this case, model parameters are station dependent,

and no parameter estimates are shared across different

stations. More discussion on the assumption of the spatial

pattern of e(t) will be made on Sect. 7.

Four parameters a; b; l and r are assumed to be station

dependent and must be estimated prior to using this error

model to perform the AGCD test assessment. Because of

the presence of zero value, R and Ro follow a mixture of

continuous and discrete probability distributions. To deal

with the zero-inflated problem (Li et al. 2016) conve-

niently, we treat R and Ro as left-censored at ts. Based on

these assumptions, the maximum likelihood estimation is

used to jointly estimate four model parameters by min-

imising the following objective function calculated in a

training period k ¼ 1; . . .; n:

L a; b; l; rð Þ ¼ �
Xn

k¼1

log U
Z0� l� Zs kð Þ

r

� �� 	

I Ro kð Þ ¼ 0; Rs kð Þ[ tsf g �
Xn

k¼1

log U
Zo kð Þ � l� Zs kð Þ

r

� �� 	

I Ro kð Þ[ 0; Rs kð Þ[ tsf g þ
Xn

k¼1

log tanh aþ bRo kð Þf g½ �

I Ro kð Þ[ 0; Rs kð Þ [ tsf g
ð3Þ

where Z0 ¼ f 0ð Þ; U and / are the cumulative distribution

function and the density function of a standard normal

distribution. Because the true rainfall is unknown and we

assume that the third-party rainfall observations are mostly

accurate, we use Zo (or Ro) in place of Z (or R) in the

estimation. To simplify notations, we use the same nota-

tions for the parameters and their corresponding estimates.

In presence of low-quality Ro and/or Rs (i.e., erroneous

third-party observations and/or inaccurate AGCD rainfall

estimates), we exclude problematic data from the maxi-

mum likelihood estimation to improve the robustness of the

estimation. In practice, the observations satisfying any

condition below are excluded from the parameter

estimation:

• jRo tð Þ � Rs tð Þj[ 5 mm, when Rs tð Þ\ 10 mm;

• jRo tð Þ � Rs tð Þj[ 50%max Rs tð Þ;Ro tð Þf g, when Rs �
10 mm.

The predictive distribution of R tð Þ conditional on Rs tð Þ
for Rs tð Þ[ ts is given by

P R tð Þ� xjRs tð Þf g ¼ U
f xð Þ � l� f Rs tð Þf g

r

� 	

: ð4Þ

To evaluate the degree of confidence of third-party

observations, we propose a confidence score based on the

two-sided p-value from a statistical hypothesis test.

Specifically, the following statistical hypothesis test is

proposed to decide whether sufficient evidence supports

that a third-party observation Ro tð Þ is of good quality:

H0 : E R tð ÞjRs tð Þf g ¼ Ro tð Þ,
H1 : E R tð ÞjRs tð Þf g 6¼ Ro tð Þ

The two-sided p-value p2 can be expressed as a function

of Ro tð Þ:
p2 ¼ 2min P R tð Þ�Ro tð ÞjRs tð Þf g;P R tð Þ[Ro tð ÞjRs tð Þf g½ �

¼ 1� 2 p1 � 0:5j j
ð5Þ

where p1 ¼ P R tð Þ�Ro tð ÞjRs tð Þf g is the one-sided (left) p-

value. The confidence score (CS) of AGCD test based on

the two-sided p-value is defined as:

CSAGCD ¼ 1� 2 P R tð Þ�Ro tð ÞjRs tð Þf g � 0:5j j ð6Þ

where P R tð Þ�Ro tð ÞjRs tð Þf g can be calculated by

Eq. (1) or (4) based on Rs tð Þ� ts or Rs tð Þ[ ts. To reduce

false alarm rates, we do not attempt to detect any erroneous

data with less than 2mm errors and conveniently force

CSAGCD ¼ 100% if Ro tð Þ � Rs tð Þj j � 2 mm. This practical

consideration can satisfy most end-user needs.

The following assumptions and minimum requirements

are made to ensure that the AGCD test is optimal:

Stochastic Environmental Research and Risk Assessment (2023) 37:2473–2493 2477

123



• The training period should have at least two years

(preferably four years) of historical observations to

estimate the test model parameters.

• The correlation between historical observations and

AGCD rainfall estimates in the training period

should be at least 60%.

• The corresponding cross-validated AGCD rainfall

RMSE should be less than 50%Rs for Rs [ 10 mm.

This assumption implies that the AGCD test is not

applicable if AGCD estimates for medium and high

rainfall are associated with large uncertainty.

In this study, we perform independent quality check at

different stations and that is why we only check the

agreement between the historical time series from a test

station and reference data at the corresponding location (as

described the second minimum requirements above)

instead of the agreement between the observational field

from third-party stations and the estimation field from

reference data. In the future research, it would be great to

evaluate the quality of multiple stations jointly and a sanity

check is required to ensure the consistency of the spatial

correlation from different data.

3.3 Rainfields test

The Rainfields test is designed to compare third-party

rainfall observations with radar Rainfields estimates of

daily rainfall accumulation. The algorithm of the Rainfields

test is the same as that of the AGCD test except for

replacing AGCD rainfall estimates with radar Rainfields

estimates. The confidence score of the Rainfields test,

denoted by CSRainfields, can be similarly derived from

Eq. (6). The assumptions and minimum requirements of

the Rainfields test include.

• The training period should have at least two years

(preferably four years) of historical observations to

estimate the test model parameters.

• The correlation between historical observations and

Rainfields rainfall estimates in the training period

should be at least 60%.

• The target third-party station should be within

128 km of a rainfall radar.

3.4 Merged test

Both AGCD and radar Rainfields rainfall estimates are

inevitably subject to uncertainty, particularly for medium

and high rainfall. Combining the results from the AGCD

test and Rainfields test minimises possible false alarms

from each individual test. We combine the AGCD test and

the Rainfields test by using the maximum confidence

scores from the AGCD test and the Rainfields test as a

combined confidence score. Specifically, the confidence

score of the merged test, denoted by CSmerged, can be cal-

culated by

CSmerged ¼ max CSAGCD;CSRainfields
� �

:

The overall confidence score from the merged test is

greater than or equal to the confidence score from any

individual test. Figure 1 illustrates how to merge the

AGCD and Rainfields test by a flow chart. As a result, the

false alarm rate from the merged test is expected to be

smaller than or equal to any individual test. This is the

main reason that we define the overall confidence score by

taking the maximization rather than average. An adverse

effect of this merged test is that the hit rate, indicating the

ability to detect genuine erroneous data, is also lower than

any separate test.

4 Model validation with synthetic data

We validate the test method described in Sect. 3 on a

synthetically generated dataset. This dataset is generated

by inserting random errors into rainfall observations for the

period between 2016 and 2019 from 100 high-quality BoM

stations in Australia (see Appendix A). We thus demon-

strate our test performance with synthetic data, where the

‘‘true’’ rainfall value is assumed to be known. The synthetic

data represents artificial third-party observations, under the

assumption that observations from a third-party station will

be resemble those from a BoM station with added random

error.

Two synthetic datasets are considered in this study, a

zero-rainfall synthetic dataset with random perturbation

only at zero rainfall observations and a non-zero-rainfall

synthetic dataset with random perturbation only at non-

zero rainfall observations. Each synthetic dataset contains

about 1% ‘‘erroneous’’ observations, which are raw rainfall

observations with inserted random errors. The structure of

random perturbation in these two synthetic datasets is

given as follows:

• Zero-rainfall synthetic dataset: inserting random

errors of 3–5 mm (positive only) at zero rainfall

• Non-zero-rainfall synthetic data:

• B 10 mm: inserting random errors of

3–5 mm (positive or negative)

• [ 10 mm: inserting random errors of

30–50% of raw observations (positive or

negative)

A high performing test method should be able to

effectively detect these ‘‘erroneous observations’’ in the
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synthetic data. Two evaluation metrics for binary classifi-

cation, hit rates and false alarm rates, are used as summary

statistics to evaluate test performance. In the context of this

study, a hit rate (also known true positive rate) is defined

by the number of erroneous observations with a confidence

score less than a pre-defined threshold divided by the total

number of erroneous observations in a synthetic dataset

conditioning on a test is applicable. For a test satisfying all

the minimum requirements, a false alarm rate (also known

as false positive rate) is defined by the number of

unmodified raw observations with confidence score less

than a pre-defined threshold divided by the total number of

unmodified raw observations. A good test method is indi-

cated by a high hit rate but a low false alarm rate. There is

usually a trade-off between a hit rate and a false alarm rate,

such that a higher hit rate will mean a higher false alarm

rate and vice versa. Both overall (i.e., pooling from all

dates and stations) and station-wise (i.e., pooling from all

dates for a particular station) hit rates and false alarm rates

are considered in this study to demonstrate the overall

performance and performance at each station. We further

consider the percentage of stations with a hit rate of at least

80% and a false alarm rate of at most 10% as an indicator

of the percentage of stations where a test method works

well for the purpose of parametric insurance applications.

Table 1 provides the performance of the AGCD,

Rainfields and merged tests for the zero-rainfall synthetic

dataset. The hit rates from the AGCD and Rainfields tests

are the same, but the false alarm rate from the Rainfields

test is almost two times greater than that from the AGCD

test. The merged test leads to a substantially lower hit rate

than any of the AGCD and Rainfields tests but at the same

time a slightly lower false alarm rate. Due to the minimum

requirements for each test, the AGCD and Rainfields tests

cannot be applied to all test observations. For example, the

Rainfields test is only applicable for about one-third of

observations. One of the advantages of the merged test is

that it can be used in more situations than any individual

test. With a confidence score threshold of 10%, the final

assessment based on the merged test can detect nearly all

erroneous observations (with about 99% hit rates) while

keeping false alarm rates very low (at about 1%) in the

Fig. 1 A flow chart to show how to combine the AGCD and Rainfields tests
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zero-rainfall synthetic dataset. This suggests that our

method is fully capable of identifying erroneous data (with

at least 3 mm errors) when no rainfall actually occurs. Such

good performance to detect rainfall occurrence applies to

every station considered in the dataset.

Table 2 summarises the performance of the AGCD,

Rainfields and merged tests for the non-zero-rainfall syn-

thetic dataset. The overall hit rates for the non-zero-rainfall

synthetic dataset are significantly lower than those for the

zero-rainfall dataset. It is consistent with our intuition that

predicting rainfall amount is much more difficult than

predicting rainfall occurrence. The Rainfields test achieves

the highest hit rate, followed by the AGCD and merged

tests. To understand test performance in more detail, we

further consider five categories based on the true rainfall

amount and calculate evaluation metrics for each category.

We found that our test method works best for low rainfall

(i.e., B 10 mm), followed by high rainfall (i.e.,[ 30 mm),

but relatively poorly for medium rainfall (i.e., 10–30 mm).

The hit rate and false alarm rate of the merged test are

satisfactory in the category of low rainfall. As the true

rainfall amount increases, hit rates decrease and/or false

alarm rates increase. Nevertheless, only less than 1% of

true observations have more than 30 mm rainfall but more

than 18% of erroneous data are associated with more than

30 mm rainfall. The synthetic data is designed to be

challenging enough to understand the boundary of our test

performance. Though it is rare to observe[ 30 mm rain-

fall in Australia, a lack of skill for[ 30 mm rainfall may

be a major hurdle for the proposed method to real appli-

cations with interests on extreme rainfall. Apart from

including more reliable reference data, the improvement of

model performance at high rainfall could be obtained by

checking the quality of sub-daily data in the future

research. The overall false alarm rates for the non-zero-

rainfall dataset are similar to those for the zero-rainfall

dataset, because the two datasets are generated based on

the same original dataset and are only different with only a

small portion of modified data. The false alarm rates

for[ 10 mm rainfall are relatively high, suggesting the

predictions from AGCD and Rainfields are subject to larger

uncertainty.

We investigate the influence of the size of an inserted

error on the overall hit rate based on the non-zero rainfall

synthetic data. Because the error structure for true rainfall

less than 10 mm different to the structure of rainfall greater

Table 1 Summary statistics for

the test performance of the

AGCD, Rainfields and merged

tests applied to the zero-rainfall

synthetic dataset when the

confidence score threshold is

chosen to be 10%

AGCD Rainfields Merged

Hit rate (%) 99.2 99.2 98.9

False alarm rate (%) 2.4 4.7 1.8

The percentage of observations that a test can be applied to 98.6 34.9 99.1

The percentage of stations with[ 80% hit rates and\ 10% false alarm

rates (%)

100 94.2 100

Table 2 Summary statistics for

the test performance of the

AGCD, Rainfields and merged

tests applied to the non-zero-

rainfall synthetic dataset when

the confidence score threshold is

chosen to be 10%

AGCD Rainfields Merged

Hit rate (%) All 79.6 87.6 76.7

Non-zero

rainfall

79.6 87.6 76.7

zero rainfall NA NA NA

B 10 mm 87.8 91.2 85.1

10–30 mm 67.3 83.2 64.7

[ 30 mm 80.7 87.6 78.1

False alarm rate (%) All 2.2 4.5 1.7

Non-zero

rainfall

7.8 14.4 6.0

zero rainfall 0.4 0.4 0.3

B 10 mm 5.3 11.4 3.8

10–30 mm 24.5 30.7 19.2

[ 30 mm 28.8 31.2 23.5

The percentage of observations that a test can be applied to 98.8 34.9 99.2

The percentage of stations with[ 80% hit rates and\ 10%

false alarm rates (%)

56 71 49
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than 10 mm, we show the relationship between hit rates

and the size of an inserted error separately for two different

rainfall ranges in Fig. 2 and 3. Given that the sign of

inserted error is fixed as positive or negative, hit rates

increase as the magnitude of an inserted error increases.

The only exception is that the hit rate of the Rainfields test

in Fig. 2 reaches the highest (i.e., 100%) with

[- 4.5 mm, - 4 mm] inserted error. This is caused by the

uncertainty from a small sample as the Rainfields test only

is applicable for very few test observations. With the same

magnitude of inserted errors, positive errors appear to more

easily be detected than negative ones. The results of the

synthetic error assessment are very susceptible to the

magnitude of the inserted errors. The use of synthetic

generators (Diez-Sierra et al. 2022) can help in this point in

future works.

Fig. 4 shows how overall hit rates and false alarm rates

relate to the confidence score threshold based on the non-

zero rainfall synthetic data. Both hit rates and false alarm

rates are increasing functions of the threshold. A method

associated with a high hit rate also leads to a high false

alarm rate. In this study, we choose the confidence score

threshold to be 10% to keep a balance between false alarm

rates and hit rates. To achieve a higher hit rate, the

confidence score threshold may be set higher, such as 20%.

This will result in a higher false alarm rate, especially in

the range of high rainfall, and more effort is required to

identify false alarms in further investigation.

Fig. 5 and Fig. 6 show the spatial distribution of sta-

tion-wise hit rates and false alarm rates from the non-zero-

rainfall dataset. The AGCD test can be applied to all test

stations in the dataset and yields high hit rates and low false

alarm rates on the western coast and central Australia. The

Rainfields test only can be applied to a small portion of test

stations, mainly on the coastal lines, and seems to work

better than the AGCD test on the eastern coast. The merged

test shares a similar spatial pattern of hit rates with the

AGCD test, but improves the false alarm rates slightly, for

example on the eastern coast. Darwin airport (station

number: 14015) is one of the most challenging stations in

the non-zero synthetic data with a hit rate of 44% and a

false alarm rate of 5.8%. Fig. 7 shows the relationship

between rainfall observations and the corresponding rain-

fall estimates from AGCD and Rainfields at the Darwin

airport station. It is obvious that the distribution of rainfall

observations at this station is extremely long tailed and

both AGCD and Rainfields provide reasonably accurate

rainfall estimates, even for an extreme rainfall event with

Fig. 2 Hit rate as a function of

the inserted error for true

rainfall less than 10 mm based

on the non-zero rainfall

synthetic data
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around 200 mm/day in the study period. The Darwin air-

port station and its surrounding stations are located in the

tropical region and have highly variable seasonal and

annual rainfall. In some cases, the inserted errors exceed

the range of estimate errors, creating unrealistic synthetic

data for at this station and in turn causing a low hit rate.

The low hit rate is also caused by some modified obser-

vations (such as a modified observation of * 150 mm)

that are very close to rainfall estimates from AGCD and/or

Rainfields. In these situations, positive (or negative)

inserted errors are applied when rainfall estimates are in

fact over-estimated (or under-estimated) true rainfall.

We presume that some of these 100 stations are used in

AGCD and in theory the synthetic data are not 100%

independent from AGCD. Note that the list of the weather

stations used for AGCD is not available for the general

public and may vary from different days for many opera-

tional reasons. Nevertheless, the validation with synthetic

data is, to our best knowledge, one of the most effective

tools to understand the performance of the proposed pro-

cedure for three reasons: (1) we can assume that the true

value and the data quality of each test observation are

known and calculate performance indicators (such as hit

rates and false alarm rates) conveniently; (2) AGCD does

not honour the observations that are used for AGCD and

the difference between AGCD and observations as a result

of observation representativeness error and algorithm error

is in general not zero; (3) the merged test is considered for

a final assessment and AGCD test does not always domi-

nate the merge test.

5 An application to real third-party rainfall
data

We carry out a case study to evaluate the data quality of

daily rainfall observations collected from third-party

DPIRD weather stations. All DPIRD weather stations are

located in WA and most of them are distributed in the

Wheatbelt region and Southwest region. Because the

DPIRD stations are operated or cooperated by a state

agency, we believe that most the weather observations

from DPIRD stations are of good quality and only a small

portion of data is problematic. We evaluate one year of

daily observations from 01/Jan/2019 to 31/Dec/2019 and

estimate model parameters from three years of data in a

separate period between 01/Jan/2016 and 31/Dec/2018.

Based on data availability in evaluation and estimation

Fig. 3 Hit rate as a function of

the inserted error (as a

percentage of the true rainfall

value) for true rainfall greater

than 10 mm based on the non-

zero rainfall synthetic data
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periods, we select and evaluate a total of 186 DPIRD sta-

tions with 68,777 daily rainfall observations (excluding

208 missing observations). DPIRD weather data are pub-

licly available and can be accessed via an Application

Programming Interface (API) from DPIRD (2022).

All of the DPIRD observations pass the domain test and

we only perform AGCD and Rainfields tests if applicable.

Table 3 presents the percentage of erroneous data flagged

by two individual tests and the merged test. Due to the

restriction of model assumptions and requirements, the

Fig. 4 The overall hit rate and

false alarm rate as a function of

the threshold of confidence

score (CS threshold) based on

the non-zero rainfall synthetic

data

Fig. 5 Station-wise hit rates for different test methods
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AGCD, Rainfields and the merged tests can be applied to

149, 34 and 149 (out of 186) DPIRD stations respectively.

The merged test flags 1054 DPIRD rainfall observations as

suspect, which represents 2% of test data that can be

evaluated. The rainfall observations with greater value tend

to be more likely to be flagged. Because we have found that

more false alarms occur with high rainfall from the

experiment based on synthetic data, further investigation

including a manual check is recommended to confirm

whether those flagged high rainfall observations are indeed

false alarms.

Fig. 8 shows the spatial distribution of the percentage

of possible erroneous data at each individual DPIRD sta-

tion. In general, more possible erroneous data are flagged at

coastal stations than inland stations. None of our proposed

tests can be applied to two clusters of stations, which are

not covered by any rain radar and cannot be predicted well

by AGCD rainfall estimates. Brunswick Junction (BJ)

station is the DPIRD station with the highest percentage of

flagged data (7.1%) in this study. This station departs from

the nearest rain radar (Serpentine) by 88 km and there are

three nearby primary rainfall stations operated by the BoM

Fig. 6 Station-wise false alarm rates for different test methods

Fig. 7 A comparison of rainfall

observations and estimates from

AGCD and Rainfields. Modified

(or unmodified) observations

represent those observations

with (or without) inserting

random errors in the synthetic

dataset. An observation

associated with a confidence

score (CL) less than (or not less

than) 10% is labelled in red (or

green)
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(including station 9982, station 9965 and station 109,507)

within 20 km ( Fig. 9). .

Table 4 provides detailed information on the flagged

observations at the BJ station together with rainfall

observations from the three closest primary stations. The

Rainfields test is not applicable for this station because the

correlation between radar Rainfields estimates and rainfall

observations at the BJ station is just 20.6% In contrast,

AGCD provides good rainfall estimates with a correlation

of 94% and as a result the AGCD test is the only test that

can be used for this station. Though true rainfall at this

station is unknown, we attempt to further investigate the

data quality from the supplementary information provided

by nearby primary stations. We found that 13 observations

are flagged from a 21-day period between 14/08/2019 to

03/09/2019 and most of them are significantly different

from AGCD estimates and the nearby primary station

observations. During this period, the BJ station reports non-

zero rainfall on six days but AGCD and the nearby stations

report zero (or nearly zero) rainfall. As the method is more

capable of detecting rainfall occurrence than rainfall

amount, these six non-zero rainfall observations are highly

likely to be wrong. We also suspect that equipment failure

may have happened during this period at the BJ station.

6 Other possible reference data

In this study, we only use two reference data (i.e., AGCD

and Rainfields data) to test against third-party rainfall

observations. In fact, three additional candidate reference

data, including primary station observations, numerical

weather prediction data and satellite rainfall estimates,

have been considered in the method development. We

decide to exclude these three possible reference data after

initial investigation and exploratory analysis.

Primary station observations can provide the highest

quality of rain estimates at point locations and have been

used to form a spatial test in some operational QC appli-

cations. As we aim to design a fully automated quality

control system to evaluate the data quality in near real time,

only automatic weather stations (AWS) can be considered.

However, we found that BoM operates a small number of

AWS that can deliver accurate and near-real-time rainfall

observations in Australia. For example, there are * 730

tipping bucket rain gauge (TBRG) stations (170 of them

also have a manual gauge which supersedes the TBRG as

the primary record for the database) in Australia as of

2019. In addition to a lack of AWS, the quality of rainfall

observations from AWS in Australia may have issues

because BoM completes the full quality control for these

observations some weeks after the end of the most recent

month. The AGCD dataset is a better alternative for the

purpose of this study. AGCD combines available rainfall

station observations collected through electronic commu-

nication channels from all possible BoM stations (includ-

ing TBRG stations, manual stations, hydrologic reference

stations and those stations that are not publicly available)

and performs initial quality control to screen for errors.

Nevertheless, primary station observations can be applied

to other regions or in the future when more AWS with

prompt quality control become available.

Numerical weather prediction data and satellite rainfall

estimates are other two interesting gridded datasets that

may be served as possible reference data for rainfall.

Numerical weather prediction provides weather forecasts

on current weather conditions and satellite rainfall esti-

mates measure precipitation from space from a constella-

tion of research and operational satellites. Both datasets

provide good spatial and temporal coverage, but their

accuracy may be an issue. We have tested the accuracy of

two candidate reference data in comparison with AGCD

and Rainfields data based on the high-quality rainfall data

used to generate the synthetic datasets in Sect. 4. The first

one is the Australian Community Climate and Earth-Sys-

tem Simulator (ACCESS) NWP forecasts (Puri et al. 2013).

The ACCESS NWP systems are based on the Unified

Model/Variational Assimilation (UM/VAR) system devel-

oped by the United Kingdom Met Office (UKMO). This

study uses the ACCESS system APS2 (Australian Parallel

Suite version 2; see Bureau of Meteorology (2017) for

reference) because APS2 data are available from 07/06/

2016 to 25/09/2020 and cover the study period in the

synthetic data example and the case study based on the

DPIRD network. Though the latest version of ACCESS

NWP (i.e., APS3) assimilates more observational inputs

and has a higher resolution, we do not consider this dataset

(only available from 23/07/2020 onwards) as it is

unavailable for our study period. The second one is Global

Table 3 The percentages of suspect observations for AGCD, Rain-

fields and merged tests in different categories

AGCD Rainfields Merged

All 2.0% (53,778) 8.8% (10,900) 1.9% (53,809)

Non-zero rainfall 7.9% (12,504) 35.9% (2217) 7.7% (12,535)

zero rainfall 0.26% (41,274) 1.8% (8683) 0.2% (41,274)

B 10 mm 5.1% (11,067) 29.6% (1989) 4.8% (11,072)

10–30 mm 28.5% (1283) 90.2% (216) 29.2% (1307)

[ 30 mm 35.7% (154) 100% (12) 36.5% (156)

A suspect observation is flagged by a confidence score being less than

10%. A number in parentheses denotes the total number of observa-

tions that can be assessed by a test
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Precipitation Measurement Mission (GPM) (Hou et al.

2014) satellite rainfall estimates. In succeeding the Tropi-

cal Rainfall Measuring Mission (TRMM), GPM provides a

new generation of precipitation measurements from space

with an improved accuracy and higher space–time resolu-

tions. The following four evaluation metrics are used to

indicate the accuracy of rainfall estimates:

• Incorrect rainfall occurrence ¼ n�1
Pn

i¼1

I Oi [ ts;ðf

Ei [ tsÞOR Oi � ts;Ei � tsð Þg � 100%,

• Relative bias ¼
Pn

i¼1
Ei�Oið ÞPn

i¼1
Oi

� 100%,

• Relative RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1

Pn

i¼1
Ei�Oið Þ2

p

n�1
Pn

i¼1
Oi

� 100% ¼

n
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
Ei�Oið Þ2

p

Pn

i¼1
Oi

� 100%,

• Correlation ¼
Pn

i¼1
Ei�Eð Þ Oi�Oð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
Ei�Eð Þ2

Pn

i¼1
Oi�Oð Þ2

q �100%,

whereOi andEi denote the observed and estimated rainfall,

O and E denote the average of all observed and estimated

rainfall, n is the sample size, I is the indicator function and ts is

the threshold for rainfall occurrence. We set ts ¼ 2mm, which

is consistent with our choice in Sect. 3. Fig. 10 presents a

comparison of four datasets (i.e., AGCD,Rainfields,ACCESS

and GPM) against four evaluation metrics. It is evident that

ACCESS andGPM are not as accurate as AGCDorRainfields

from all four metrics. Using ACCESS and GPM leads to an

8% incorrect rainfall occurrence and substantially large esti-

mate errors suggested by large (negative) relative bias, large

relative RMSE and low correlation. Because the relative

RMSE of ACCESS and GPM are on average close to 100%,

we doubt that these two datasets can be used to detect 30–50%

inserted error in the synthetic dataset. Numerical weather

prediction and satellite rainfall estimates may be valuable to

evaluate third-party rainfall observation collected from other

regions where gridded rainfall analysis data or rain radar data

are not readily available.

Fig. 8 The proportion of

possible erroneous data at each

DPIRD station. Gray dots

denote the stations that the test

method cannot be applied to
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7 Conclusion and outlook

Third-party rainfall observations provide an improvement

of the current observation network for rainfall monitoring

in terms of spatio-temporal coverage. Although third-party

weather stations can provide enormous quantities of near-

real-time rainfall observations at specific locations, the

quality of these data is susceptible due to a reduced focus

on quality control. In this study, we develop a statistical

method for an automated quality control system to evaluate

daily rainfall observations collected from third-party sta-

tions in near real time. Two reliable reference datasets,

including a rainfall analysis dataset (AGCD) and a radar

rainfall dataset (Rainfields), have been identified to check

against third-party observations in Australia. We treat

rainfall observations as censored data to conveniently deal

with a mixture of discrete and continuous distributions (as

a result of many zero-rainfall readings) and apply a data

transformation to model heterogeneous predictive errors

from reference. We make the following conclusions based

on these case studies:

(1) The merged test is extremely effective in detecting

erroneous data with an incorrect rainfall occurrence.

(2) The merged test is less sensitive to evaluate the

actual rainfall amount on a rainy day and can detect

76.7% of erroneous data with incorrect rainfall

amount in the synthetic dataset.

(3) The merged test leads to a noticeably better (smaller)

false alarm rate while the hit rate relative to the best

individual test is only slight reduced.

(4) The performance of our proposed test can vary

significantly across different stations.

Fig. 9 The location of an

example DPIRD station (BJ)

(labelled with square) and the

nearby primary rainfall stations

operated by the BoM within

50 km. The closest three

primary stations are labelled

with triangles and the rest ones

are labelled with circles
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(5) The p-value based confidence score is a good

measure of the quality of rainfall observations.

(6) The proposed test method is generic and can easily

incorporate additional data sources (such as numer-

ical weather prediction data and satellite rainfall

estimates).

Quality evaluation and quality control are two related

but different concepts. Quality control involves testing

weather observations and determining if they are within the

specifications for a given application. Quality evaluation

also includes testing components but does not involve any

decision-making procedure. In general, the outputs from

quality evaluation can be served for the purpose of quality

control together with benchmarks for data quality. Our

proposed procedure is evaluated for the application to

parametric insurance. In this context, the benchmarks for

hit rates and false alarm rates are set as 80% and 10%

respectively based on the application requirements from

insurance companies. We would like to emphasise again

that data quality that is good enough for one application

may not in general good enough for other applications. End

users are required to test our proposed procedure to

understand model performance for their specific

applications.

The error of reference datasets (e.g., AGCD rainfall

estimates) can be correlated in space. For example, due to

the presence of representativeness error, multiple third-

Table 4 The detailed information on the flagged observations at the BJ station together with station observations from the three closest primary

stations

Date observation estimate CSMerged AGCD radar CSAGCD CSRainfields Stn9982 Stn9965 Stn109507

19/04/2019 11.2 15.4 8.2E-02 15.8 0 8.2E-02 NA 22 10.8 16

6/05/2019 5.8 10.3 2.8E-02 10.6 0 2.8E-02 NA 10.4 9.8 14.4

12/06/2019 5.2 2.3 9.0E-02 2.5 NA 9.0E-02 NA 1.2 0.6 0.6

22/06/2019 13.4 8.9 4.9E-02 9.3 NA 4.9E-02 NA 9.4 15.8 9

23/06/2019 52.4 35.0 1.5E-04 35.6 NA 1.5E-04 NA 36.2 44.8 43.6

27/06/2019 4.2 8.1 4.1E-02 8.4 NA 4.1E-02 NA 9.4 6 6

28/06/2019 13.6 6.6 1.4E-03 6.9 NA 1.4E-03 NA 5 5.8 8

29/06/2019 0.2 3.6 3.6E-02 3.8 NA 3.6E-02 NA 0 0 0

1/07/2019 0.8 3.5 9.8E-02 3.8 NA 9.8E-02 NA 9.2 1.2 4.4

4/07/2019 0 4.5 5.3E-03 4.8 NA 5.3E-03 NA 0 6 0.2

21/07/2019 9.4 4.0 5.5E-03 4.3 NA 5.5E-03 NA 5 4.2 1.6

14/08/2019 0.8 4.3 3.6E-02 4.5 NA 3.6E-02 NA 10 12.6 0.8

16/08/2019 3.4 0.0 1.8E-03 0.5 NA 1.8E-03 NA 0 0 0

17/08/2019 2.8 23.7 0.0E ? 00 24.2 NA 0.0E ? 00 NA 20.6 18.8 18.4

18/08/2019 2.8 0.0 1.1E-02 0.1 NA 1.1E-02 NA 0.2 0 0.4

19/08/2019 4.4 0.0 0.0E ? 00 0.0 NA 0.0E ? 00 NA 0 0 0

20/08/2019 7 0.0 0.0E ? 00 0.0 NA 0.0E ? 00 NA 0 0 0

23/08/2019 2.4 12.2 6.6E-07 12.6 NA 6.6E-07 NA 14.2 8.6 6.4

24/08/2019 3.8 0.0 1.8E-03 0.0 NA 1.8E-03 NA 0 0.2 0.2

25/08/2019 3.4 0.0 1.8E-03 0.0 NA 1.8E-03 NA 0.2 0 0

30/08/2019 3.8 34.7 0.0E ? 00 35.3 NA 0.0E ? 00 NA 34 17.4 27

31/08/2019 4.2 15.6 1.2E-07 16.0 NA 1.2E-07 NA 18.4 13 21.4

2/09/2019 2.8 12.5 1.2E-06 12.9 NA 1.2E-06 NA 14.2 18.6 18.4

3/09/2019 2.4 6.5 2.0E-02 6.8 NA 2.0E-02 NA 8.6 3.8 3.4

19/09/2019 0.4 6.3 5.4E-04 6.6 NA 5.4E-04 NA 9.2 5.2 6.2

1/11/2019 17 9.7 2.6E-03 10.0 NA 2.6E-03 NA 12.2 8.2 9.6
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party stations in a very small region (such as the same city

neighbourhood) correspond to the same AGCD grid point

and always have the same AGCD rainfall estimate. As a

result, the error term 2 tð Þ in Eq. (2) can be correlated

across different stations. Because the proposed quality

evaluation procedure is carried out at each station, the

assumption on error dependence structure is not necessary.

Though the presence of spatial pattern in 2 tð Þ does not

reduce the effectiveness of the proposed method at each

station, it may cause a spatial pattern in the model per-

formance at different stations (e.g., some spatial pattern

observed at the station-wise hit rates and false alarm rates

in Figs. 5 and 6). In the early development, we assumed

spatially correlated errors and trialled a spatial–temporal

test (Shao et al. 2022). Because the spatial–temporal test is

not easy for operational implementation, we decide to

leave it for the future development.

We are working on extending the proposed QC proce-

dure with the inclusion of third-party rainfall observations

as reference data, which are particularly valuable for the

locations where primary observations (used for AGCD)

and radar information are insufficient. It still remains a

challenging task because third-party observations are not

100% trusted and the observational errors in reference data

have to be addressed carefully. Apart from this, further

research work could consider (a) testing more complex

algorithms to merge the assessment results from individual

test, (b) selecting appropriate reference data, such as

WFDE5 (Cucchi et al. 2020) and ERA5-Land (Hersbach

et al. 2020), and extending the application of the proposed

method to other countries in the world, (c) investigating the

factors that may contribute to poor test performance, and

(d) improving gridded rainfall estimates with the inclusion

of quality-controlled third-party rainfall observations.

Fig. 10 A comparison of four

datasets as rainfall estimates,

including AGCD, Rainfields,

ACCESS-R and GPM, based on

four evaluation metrics
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Appendix A: A full list of the weather stations used in the synthetic data examples

Number Name State Latitude Longitude Height

1019 KALUMBURU WA - 14.296 126.645 23

2079 HALLS CREEK AIRPORT WA - 18.234 127.667 409.4

3003 BROOME AIRPORT WA - 17.948 122.235 7.42

4032 PORT HEDLAND AIRPORT WA - 20.373 118.632 6.4

4106 MARBLE BAR WA - 21.176 119.75 182.3

5007 LEARMONTH AIRPORT WA - 22.241 114.097 5

6011 CARNARVON AIRPORT WA - 24.888 113.67 4

7045 MEEKATHARRA AIRPORT WA - 26.614 118.537 517

8296 MORAWA AIRPORT WA - 29.204 116.025 271.4

8297 DALWALLINU WA - 30.276 116.671 324.5

8315 GERALDTON AIRPORT WA - 28.805 114.699 29.7

9021 PERTH AIRPORT WA - 31.928 115.976 15.4

9518 CAPE LEEUWIN WA - 34.373 115.136 13

9617 BRIDGETOWN WA - 33.949 116.131 178.66

9789 ESPERANCE WA - 33.83 121.893 25

9999 ALBANY AIRPORT WA - 34.941 117.816 68.4

10286 CUNDERDIN AIRFIELD WA - 31.622 117.222 216.7

10916 KATANNING WA - 33.686 117.606 320

10917 WANDERING WA - 32.672 116.671 275

11003 EUCLA WA - 31.68 128.896 93.1

11052 FORREST WA - 30.845 128.109 159

12038 KALGOORLIE-BOULDER AIRPORT WA - 30.785 121.453 365.3

13017 GILES METEOROLOGICAL OFFICE SA - 25.034 128.301 598

14015 DARWIN AIRPORT NT - 12.424 130.893 30.4

14627 BULMAN NT - 13.672 134.342 103.4

14825 VICTORIA RIVER DOWNS NT - 16.403 131.015 88.5

15135 TENNANT CREEK AIRPORT NT - 19.642 134.183 375.7

15590 ALICE SPRINGS AIRPORT NT - 23.795 133.889 546

15666 RABBIT FLAT NT - 20.182 130.015 340

16001 WOOMERA AERODROME SA - 31.156 136.805 166.6

16098 TARCOOLA AERO SA - 30.705 134.579 123

17043 OODNADATTA AIRPORT SA - 27.555 135.446 116.5

17126 MARREE AERO SA - 29.659 138.068 50

18012 CEDUNA AMO SA - 32.13 133.698 15.3

18192 PORT LINCOLN AWS SA - 34.599 135.878 8.5

21133 RAYVILLE PARK SA - 33.768 138.218 109.1

22031 MINLATON AERO SA - 34.748 137.528 32

22823 CAPE BORDA SA - 35.755 136.596 158

23373 NURIOOTPA PIRSA SA - 34.476 139.006 275

26021 MOUNT GAMBIER AERO SA - 37.747 140.774 63

27045 WEIPA AERO QLD - 12.678 141.921 17.96

28004 PALMERVILLE QLD - 16 144.075 203.8

29063 NORMANTON AIRPORT QLD - 17.687 141.073 18.418

29077 BURKETOWN AIRPORT QLD - 17.748 139.536 5.699

30124 GEORGETOWN AIRPORT QLD - 18.304 143.531 301.77

30161 RICHMOND AIRPORT QLD - 20.7 143.114 206.3

31011 CAIRNS AERO QLD - 16.874 145.746 2.22
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Number Name State Latitude Longitude Height

32040 TOWNSVILLE AERO QLD - 19.248 146.766 4.34

33119 MACKAY M.O QLD - 21.117 149.217 30.264

37010 CAMOOWEAL TOWNSHIP QLD - 19.923 138.121 231.2

38026 BIRDSVILLE AIRPORT QLD - 25.898 139.347 46.6

39066 GAYNDAH AIRPORT QLD - 25.617 151.616 110.9

39083 ROCKHAMPTON AERO QLD - 23.375 150.478 10.4

39128 BUNDABERG AERO QLD - 24.907 152.323 30.82

40004 AMBERLEY AMO QLD - 27.63 152.711 24.2

40842 BRISBANE AERO QLD - 27.392 153.129 4.51

42112 MILES CONSTANCE STREET QLD - 26.657 150.182 304.8

43109 ST GEORGE AIRPORT QLD - 28.048 148.596 198.5

44021 CHARLEVILLE AERO QLD - 26.414 146.256 301.6

45025 THARGOMINDAH AIRPORT QLD - 27.987 143.815 130.886

46012 WILCANNIA AERODROME AWS NSW - 31.519 143.385 94.3

46126 TIBOOBURRA AIRPORT NSW - 29.445 142.057 176.4

47048 BROKEN HILL AIRPORT AWS NSW - 32.001 141.469 281.3

48027 COBAR MO NSW - 31.484 145.829 260

48245 BOURKE AIRPORT AWS NSW - 30.036 145.952 107.3

50017 WEST WYALONG AIRPORT AWS NSW - 33.938 147.196 257

52088 WALGETT AIRPORT AWS NSW - 30.037 148.122 133

53115 MOREE AERO NSW - 29.49 149.847 213

58012 YAMBA PILOT STATION NSW - 29.433 153.363 27.4

59151 COFFS HARBOUR AIRPORT NSW - 30.319 153.116 3.5

60139 PORT MACQUARIE AIRPORT AWS (COMPARISON) NSW - 31.434 152.866 4.2

61078 WILLIAMTOWN RAAF NSW - 32.794 151.836 7.5

61363 SCONE AIRPORT AWS NSW - 32.034 150.826 221.4

63303 ORANGE AIRPORT AWS NSW - 33.377 149.126 944.65

65070 DUBBO AIRPORT AWS NSW - 32.221 148.575 284

65103 FORBES AIRPORT AWS NSW - 33.363 147.921 230.4

66214 SYDNEY (OBSERVATORY HILL) NSW - 33.859 151.205 43.37

67105 RICHMOND RAAF NSW - 33.6 150.776 19

68072 NOWRA RAN AIR STATION AWS NSW - 34.947 150.535 109

70351 CANBERRA AIRPORT NSW - 35.309 149.2 577.05

72150 WAGGA WAGGA AMO NSW - 35.158 147.458 212

72161 CABRAMURRA SMHEA AWS NSW - 35.937 148.378 1482.4

74258 DENILIQUIN AIRPORT AWS NSW - 35.558 144.946 94

76031 MILDURA AIRPORT VIC - 34.236 142.087 50

78015 NHILL AERODROME VIC - 36.309 141.649 138.9

79105 STAWELL AERODROME VIC - 37.072 142.74 235.364

81125 SHEPPARTON AIRPORT VIC - 36.429 145.395 113.9

82039 RUTHERGLEN RESEARCH VIC - 36.105 146.509 175

85072 EAST SALE VIC - 38.116 147.132 4.6

86338 MELBOURNE (OLYMPIC PARK) VIC - 37.826 144.982 7.53

87031 LAVERTON RAAF VIC - 37.857 144.757 20.1

90015 CAPE OTWAY LIGHTHOUSE VIC - 38.856 143.513 82

91293 LOW HEAD TAS - 41.055 146.787 3

91311 LAUNCESTON AIRPORT TAS - 41.548 147.216 166.9

92045 LARAPUNA (EDDYSTONE POINT) TAS - 40.993 148.347 19.7

94029 HOBART (ELLERSLIE ROAD) TAS - 42.89 147.328 50.5

Stochastic Environmental Research and Risk Assessment (2023) 37:2473–2493 2491

123



Acknowledgements We acknowledges the consistent support from

the Australian Bureau of Meteorology. We thank Doerte Jakob and

Liam Carroll from the BoM for the technical discussions and insight.

We also thank Alister Hawksford, Boris Alvarenga, Paul Martin and

Sunil Kokare from the BoM for managing this project and ensuring

that we received necessary information on techniques, data, and client

requirements. We also are grateful to two reviewers and the editor

Salvatore Grimaldi for providing constructive comments and

suggestions.

Author contributions ML Conceptualization, Methodology, Soft-

ware, Validation, Formal analysis, Writing—Original Draft, Writ-

ing—Review & Editing, Visualization; QS Project administration,

Investigation, Supervision, Funding acquisition, Contribution of

knowledge, Writing—Review & Editing; JJD Investigation, Contri-

bution of knowledge, Writing—Review & Editing; AR Investigation,

Contribution of knowledge, Writing—Review & Editing; AP Inves-

tigation, Contribution of knowledge, Writing—Review & Editing;

BH Project administration, Investigation, Writing—Review & Edit-

ing; ZH Resources, Data Curation, Investigation, Contribution of

knowledge, Writing—Review & Editing; PS Resources, Data Cura-

tion, Investigation, Contribution of knowledge, Writing—Review &

Editing.

Funding Open access funding provided by CSIRO Library Services.

Code and data availability It would be great to share all data and code

with the public following the FAIR principles (Iturbide et al. 2022).

However, due to commercial intellectual property protection, we are

not able to release all code and data to the public yet. Please contact

the authors for more detail.

Declarations

Conflict of interest The authors have not disclosed any competing

interests.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

Assumpcao TH, Popescu I, Jonoski A, Solomatine DP (2018) Citizen

observations contributing to flood modelling: opportunities and

challenges. Hydrol Earth Syst Sci 22(2):1473–1489. https://doi.

org/10.5194/hess-22-1473-2018

Bardossy A, Seidel J, El Hachem A (2021) The use of personal

weather station observations to improve precipitation estimation

and interpolation. Hydrol Earth Syst Sci 25(2):583–601. https://

doi.org/10.5194/hess-25-583-2021

Beele E, Reyniers M, Aerts R, Somers B (2022) Quality control and

correction method for air temperature data from a citizen science

weather station network in Leuven. Belgium Earth Syst Sci Data

Discuss 2022:1–43. https://doi.org/10.5194/essd-2022-113

Bell S, Cornford D, Bastin L (2015) How good are citizen weather

stations? Addressing Biased Opin Weather 70(3):75–84. https://

doi.org/10.1002/wea.2316

Bureau of meteorology (2017) APS2 upgrade to the ACCESS-TC

numerical weather prediction system. BNOC operational bulletin

no 105. Retrieved from http://www.bom.gov.au/australia/charts/

bulletins/APOB105.pdf. Acceesed: 10 May 2022

Bureau of meteorology (2022a) Climate data online. retrieved from

http://www.bom.gov.au/climate/data/. Acceesed: 10 May 2022a

Bureau of meteorology (2022b) The cross validated error grids of

AGCD rainfall. Retrieved from http://opendap.bom.gov.au:

8080/thredds/catalog/agcd/precip/rmse/r005/01day/catalog.html.

Acceesed: 10 May 2022b

Bureau of meteorology (2022c) Radar images. Retrieved from http://

www.bom.gov.au/australia/radar/. Acceesed: 10 May 2022c

Buytaert W, Zulkafli Z, Grainger S, Acosta L, Alemie TC,

Bastiaensen J et al (2014) Citizen science in hydrology and

water resources: opportunities for knowledge generation, ecosys-

tem service management, and sustainable development. Front

Earth Sci 2:1–21. https://doi.org/10.3389/feart.2014.00026

Campbell JL, Rustad LE, Porter JH, Taylor JR, Dereszynski EW,

Shanley JB et al (2013) Quantity is nothing without quality:

automated QA/QC for streaming environmental sensor data.

Bioscience 63(7):574–585. https://doi.org/10.1525/bio.2013.63.

7.10

Chakraborty A, Lahiri SN, Wilson A (2020) A statistical analysis of

noisy crowdsourced weather data. Ann Appl Stat 14(1):116–142.

https://doi.org/10.1214/19-AOAS1290

Chen JY, Saunders K, Whan K (2021b) Quality control and bias

adjustment of crowdsourced wind speed observations. Q J R

Meteorol Soc 147(740):3647–3664. https://doi.org/10.1002/qj.

4146

Chen AB, Behl M, Goodall JL (2018) Trust me, my neighbors say it’s

raining outside: ensuring data trustworthiness for crowdsourced

weather stations. Paper Presented at the Proceedings of the 5th

Conference on Systems for Built Environments https://doi.org/

10.1145/3276774.3276792

Chen AB, Behl M, Goodall JL (2021a) Assessing the trustworthiness

of crowdsourced rainfall networks: a reputation system

Number Name State Latitude Longitude Height

94198 CAPE BRUNY (CAPE BRUNY) TAS - 43.489 147.144 59.7

94220 GROVE (RESEARCH STATION) TAS - 42.984 147.076 65

95048 OUSE FIRE STATION TAS - 42.484 146.711 90

96003 BUTLERS GORGE TAS - 42.275 146.276 667

2492 Stochastic Environmental Research and Risk Assessment (2023) 37:2473–2493

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5194/hess-22-1473-2018
https://doi.org/10.5194/hess-22-1473-2018
https://doi.org/10.5194/hess-25-583-2021
https://doi.org/10.5194/hess-25-583-2021
https://doi.org/10.5194/essd-2022-113
https://doi.org/10.1002/wea.2316
https://doi.org/10.1002/wea.2316
http://www.bom.gov.au/australia/charts/bulletins/APOB105.pdf
http://www.bom.gov.au/australia/charts/bulletins/APOB105.pdf
http://www.bom.gov.au/climate/data/
http://opendap.bom.gov.au:8080/thredds/catalog/agcd/precip/rmse/r005/01day/catalog.html
http://opendap.bom.gov.au:8080/thredds/catalog/agcd/precip/rmse/r005/01day/catalog.html
http://www.bom.gov.au/australia/radar/
http://www.bom.gov.au/australia/radar/
https://doi.org/10.3389/feart.2014.00026
https://doi.org/10.1525/bio.2013.63.7.10
https://doi.org/10.1525/bio.2013.63.7.10
https://doi.org/10.1214/19-AOAS1290
https://doi.org/10.1002/qj.4146
https://doi.org/10.1002/qj.4146
https://doi.org/10.1145/3276774.3276792
https://doi.org/10.1145/3276774.3276792


approach. Water Resour Res. https://doi.org/10.1029/

2021WR029721

Clement KY, Botzen WJW, Brouwer R, Aerts JCJH (2018) A global

review of the impact of basis risk on the functioning of and

demand for index insurance. Int J Disaster Risk Reduct

28:845–853. https://doi.org/10.1016/j.ijdrr.2018.01.001

Cucchi M, Weedon GP, Amici A, Bellouin N, Lange S, Schmied HM

et al (2020) WFDE5: bias-adjusted ERA5 reanalysis data for

impact studies. Earth Syst Sci Data 12(3):2097–2120. https://doi.

org/10.5194/essd-12-2097-2020

de Vos L, Leijnse H, Overeem A, Uijlenhoet R (2019) Quality control

for crowdsourced personal weather stations to enable operational

rainfall monitoring. Geophys Res Lett 46(15):8820–8829.

https://doi.org/10.1029/2019GL083731

Diez-Sierra J, Navas S, Jesus MD (2022) Neoprene: an open-source

python library for spatial rainfall generation based on the

neyman-scott process. SSRN

DPIRD (2022) The DPIRD weather v2 API. Retrieved from https://

weather.agric.wa.gov.au/developer-api. Acceesed 10 May 2022

Droste AM, Heusinkveld BG, Fenner D, Steeneveld GJ (2020)

Assessing the potential and application of crowdsourced urban

wind data. Q J R Meteorol Soc 146(731):2671–2688

Evans A, Jones D, Smalley R, Lellyett S (2020) An enhanced gridded

rainfall analysis scheme for Australia (1925738124). Retrieved

from http://www.bom.gov.au/research/publications/researchre

ports/BRR-041.pdf

Fenner D, Bechtel B, Demuzere M, Kittner J, Meier F (2021)

CrowdQC?-A Quality-control for crowdsourced air-temperature

observations enabling world-wide urban climate applications.

Front Environ Sci. https://doi.org/10.3389/fenvs.2021.720747

Greatrex H, Hansen J, Garvin S, Diro R, Blakeley S, Le Guen M, et al

(2015) Scaling up index insurance for smallholder farmers:

Recent evidence and insights. (CCAFS report no. 14). Retrieved

from www.ccafs.cgiar.org

Herman JD, Quinn JD, Steinschneider S, Giuliani M, Fletcher S

(2020) Climate adaptation as a control problem: review and

perspectives on dynamic water resources planning under uncer-

tainty. Water Resour Res. https://doi.org/10.1029/

2019WR025502

Hersbach H, Bell B, Berrisford P, Hirahara S, Horanyi A, Munoz-

Sabater J et al (2020) The ERA5 global reanalysis. Q J R

Meteorol Soc 146(730):1999–2049. https://doi.org/10.1002/qj.

3803

Hou AY, Kakar RK, Neeck S, Azarbarzin AA, Kummerow CD,

Kojima M et al (2014) The global precipitation measurement

mission. Bull Am Meteor Soc 95(5):701–722. https://doi.org/10.

1175/BAMS-D-13-00164.1

Iturbide M, Fernandez J, Gutierrez JM, Pirani A, Huard D, Al

Khourdajie A et al (2022) Implementation of FAIR principles in

the IPCC: the WGI AR6 Atlas repository. Sci Data. https://doi.

org/10.1038/s41597-022-01739-y

Janjic T, Bormann N, Bocquet M, Carton JA, Cohn SE, Dance SL

et al (2018) On the representation error in data assimilation. Q J

R Meteorol Soc 144(713):1257–1278. https://doi.org/10.1002/qj.

3130

Jones DA, Wang W, Fawcett R (2009) High-quality spatial climate

data-sets for Australia. Aust Meteorol Oceanogr J 58:233–248.

https://doi.org/10.22499/2.5804.003

Li M, Wang QJ, Bennett JC (2013) Accounting for seasonal

dependence in hydrological model errors and prediction

uncertainty. Water Resour Res 49(9):5913–5929. https://doi.

org/10.1002/wrcr.20445

Li M, Wang QJ, Bennett JC, Robertson DE (2016) Error reduction

and representation in stages (ERRIS) in hydrological modelling

for ensemble streamflow forecasting. Hydrol Earth Syst Sci

20(9):3561–3579. https://doi.org/10.5194/hess-20-3561-2016

Marengo JA, Souza CA, Thonicke K, Burton C, Halladay K, Betts

RA et al (2018) Changes in climate and land use over the

amazon region: current and future variability and trends. Front

Earth Sci. https://doi.org/10.3389/feart.2018.00228

May P, Protat A, Seed A, Rennie S, Wang X, Cass C, Murphy A

(2013) The use of advanced radar in the Bureau of meteorology.

Paper Presented at the 2013 International Conference on Radar

https://doi.org/10.1109/RADAR.2013.6651952

Meier F, Fenner D, Grassmann T, Otto M, Scherer D (2017)

Crowdsourcing air temperature from citizen weather stations for

urban climate research. Urban Clim 19:170–191. https://doi.org/

10.1016/j.uclim.2017.01.006

Muller CL, Chapman L, Johnston S, Kidd C, Illingworth S, Foody G

et al (2015) Crowdsourcing for climate and atmospheric

sciences: current status and future potential. Int J Climatol

35(11):3185–3203. https://doi.org/10.1002/joc.4210

Murphy BF, Timbal B (2008) A review of recent climate variability

and climate change in southeastern Australia. Int J Climatol

28(7):859–879. https://doi.org/10.1002/joc.1627

Napoly A, Grassmann T, Meier F, Fenner D (2018) Development and

application of a statistically-based quality control for crowd-

sourced air temperature data. Front Earth Sci. https://doi.org/10.

3389/feart.2018.00118

NCI (2022) Australian Gridded Climate Data (AGCD). Retrieved

from https://doi.org/10.25914/6009600304b02. Acceesed: 10

May 2022

Neupane J, Guo WX (2019) Agronomic basis and strategies for

precision water management: a review. Agron-Basel. https://doi.

org/10.3390/agronomy9020087

Puri K, Dietachmayer G, Steinle P, Dix M, Rikus L, Logan L et al

(2013) Implementation of the initial ACCESS numerical weather

prediction system. Aust Meteorol Oceanogr J 63:265–284.

https://doi.org/10.22499/2.6302.001

Seed A, Duthie E, Chumchean S (2007) Rainfields: the Australian

Bureau of meteorology system for quantitative precipitation

estimation. Paper presented at the Proc of the 33rd Conf on

Radar Meteorology, Cairns, Australia

Shao Q, Li M, Dabrowski J, Bakar S, Rahman A, Powell A,

Henderson B (2022) An operational framework to automatically

evaluate the quality of weather observations from third-party

stations. Paper presented at the AI4Environment: First Aus-

tralasian Symposium on Artificial Intelligence for the Environ-

ment, Perth, Australia, December 5–9 https://doi.org/10.48550/

arXiv.2212.01998. https://arxiv.org/abs/2212.01998.

Wang QJ, Shrestha DL, Robertson DE, Pokhrel P (2012) A log-sinh

transformation for data normalization and variance stabilization.

Water Resour Res 48(5)

Zheng FF, Tao RL, Maier HR, See L, Savic D, Zhang TQ et al (2018)

Crowdsourcing methods for data collection in geophysics: state

of the art, issues, and future directions. Rev Geophys

56(4):698–740. https://doi.org/10.1029/2018RG000616

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Stochastic Environmental Research and Risk Assessment (2023) 37:2473–2493 2493

123

https://doi.org/10.1029/2021WR029721
https://doi.org/10.1029/2021WR029721
https://doi.org/10.1016/j.ijdrr.2018.01.001
https://doi.org/10.5194/essd-12-2097-2020
https://doi.org/10.5194/essd-12-2097-2020
https://doi.org/10.1029/2019GL083731
https://weather.agric.wa.gov.au/developer-api
https://weather.agric.wa.gov.au/developer-api
http://www.bom.gov.au/research/publications/researchreports/BRR-041.pdf
http://www.bom.gov.au/research/publications/researchreports/BRR-041.pdf
https://doi.org/10.3389/fenvs.2021.720747
http://www.ccafs.cgiar.org
https://doi.org/10.1029/2019WR025502
https://doi.org/10.1029/2019WR025502
https://doi.org/10.1002/qj.3803
https://doi.org/10.1002/qj.3803
https://doi.org/10.1175/BAMS-D-13-00164.1
https://doi.org/10.1175/BAMS-D-13-00164.1
https://doi.org/10.1038/s41597-022-01739-y
https://doi.org/10.1038/s41597-022-01739-y
https://doi.org/10.1002/qj.3130
https://doi.org/10.1002/qj.3130
https://doi.org/10.22499/2.5804.003
https://doi.org/10.1002/wrcr.20445
https://doi.org/10.1002/wrcr.20445
https://doi.org/10.5194/hess-20-3561-2016
https://doi.org/10.3389/feart.2018.00228
https://doi.org/10.1109/RADAR.2013.6651952
https://doi.org/10.1016/j.uclim.2017.01.006
https://doi.org/10.1016/j.uclim.2017.01.006
https://doi.org/10.1002/joc.4210
https://doi.org/10.1002/joc.1627
https://doi.org/10.3389/feart.2018.00118
https://doi.org/10.3389/feart.2018.00118
https://doi.org/10.25914/6009600304b02
https://doi.org/10.3390/agronomy9020087
https://doi.org/10.3390/agronomy9020087
https://doi.org/10.22499/2.6302.001
https://doi.org/10.48550/arXiv.2212.01998
https://doi.org/10.48550/arXiv.2212.01998
https://arxiv.org/abs/2212.01998
https://doi.org/10.1029/2018RG000616

	An automatic quality evaluation procedure for third-party daily rainfall observations and its application over Australia
	Abstract
	Introduction
	Data
	AGCD
	Radar rainfields data

	Methods
	Domain test
	AGCD test
	Rainfields test
	Merged test

	Model validation with synthetic data
	An application to real third-party rainfall data
	Other possible reference data
	Conclusion and outlook
	Appendix A: A full list of the weather stations used in the synthetic data examples
	Author contributions
	Code and data availability
	References




