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Abstract
We propose a methodology for the quantitative fitting and forecasting of real spatio-temporal crime data, based on

stochastic differential equations. The analysis is focused on the city of Valencia, Spain, for which 90247 robberies and

thefts with their latitude-longitude positions are available for a span of eleven years (2010–2020) from records of the

112-emergency phone. The incidents are placed in the 26 zip codes of the city (46001–46026), and monthly time series of

crime are built for each of the zip codes. Their annual-trend components are modeled by Itô diffusion, with jointly

correlated noises to account for district-level relations. In practice, this study may help simulate spatio-temporal situations

and identify risky areas and periods from present and past data.

Keywords Space-time crime data � Differential equations � Trend time series � Geometric Brownian motion stochastic

process � District-level correlations

AMS Classification 2010 60H10 � 62M10 � 62M30 � 62P25

1 Introduction

Mathematical criminology is a current field of research

which uses mathematical methods for understanding and

predicting the incidence of crime. A proper mathematical

analysis may help make the best use of the existing, limited

public resources.

This paper is placed in the context of differential

equation models for crime evolution. Differential equations

relate characteristics and their rates of change at different

space and/or time positions, which is particularly useful for

describing growth or decreases of incidences, fluxes

between segments, diffusion, etc. Two types of differential

equations have been applied in mathematical criminology:

partial differential equations and ordinary differential

equations.

Partial differential equations often aim at identifying

space-time clusters of crime, referred to as hotspots (Ber-

estycki et al. 2013; Gu et al. 2017; Kolokolnikov et al.

2014; Manásevich et al. 2013; Rodriguez and Bertozzi

2010; Short et al. 2010a, b; Tse and Ward 2015).

Dynamical systems theory helps understand the changes in

these hotspots, for example under police intervention. On

the other hand, ordinary differential equations study fluxes

of people between compartments by social interaction (for

instance, pressure or persuasion to become an offender)

(Abbas et al. 2017; González-Parra et al. 2018; McMillon

et al. 2014; Misra 2014; Srivastav et al. 2019, 2020). The

problem with these types of models is that they are not

usually amenable to fitting real crime data, due to the

complexities involved in the formulations and the lack of

records.

In the literature, we found only four differential equa-

tion-based contributions that fit actual crime time-series

data. In what follows, we comment their methodology and

limitations, to better motivate our investigation.
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In paper (Lacey and Tsardakas 2016), the authors

studied serious (such as burglaries or violent crime) and

minor (e.g. shoplifting) incidents in Manchester. Based on

ideas from diffusion partial differential equations, they

proposed a three-dimensional system of ordinary differ-

ential equations, taking into account attractiveness (indi-

cator of how likely it is for a criminal to act at a specific

time). Monthly data, with no spatial segmentation, were

fitted by least-squares optimization, but a big challenge was

the fact that the parameters were not identifiable and the

inverse problem did not show uniqueness. The paper also

suggested the incorporation of Brownian-type stochastic

components to capture fluctuations, but the stochastic

model was not calibrated. All these issues were discussed

in their article.

In paper (Jane White et al. 2021), the authors proposed a

two-dimensional system of ordinary differential equations

to study crime evolution, based on people fluxes (self-ini-

tiation to crime, peer pressure, ceased criminality). The

model was applied to yearly data from South-Africa, in the

period 2005–2016. The region was halved into high- and

low-conflicting areas, according to the threshold of 1

murder for every 1000 inhabitants in 2016. The parameters

were estimated by Bayesian inference, albeit the results

reported were deterministic. The training period corre-

sponded to the years 2005–2009. Increasing crime patterns

were observed. Since data were aggregated on an annual

basis, noisy patterns did not arise and stochastic equations

were not employed.

In the UCLA report (Cao et al. 2013), the authors con-

sidered daily burglary data from Los Angeles (California)

and Houston (Texas) for the periods 2005–2013 and

2009–2013, respectively. Due to the noisy features of the

two time series, the authors extracted the trend component

of the series. Each trend time series was modeled by a two-

dimensional Lotka-Volterra stochastic differential equa-

tion, with independent Wiener processes. Historical data

were fitted and a past missed period (near the end of 2007

and the beginning of 2008) was reproduced. It is remarked

that Los Angeles and Houston were not modeled together

seeking possible interactions. Rather, the parameters cor-

responding to each city were estimated independently. A

least-squares fitting procedure was employed to calibrate

the parameters of the deterministic part of the Lotka-Vol-

terra model, by matching the predator function with the

trend crime data of the city. The noises’ intensities were

then fixed by likelihood maximization. For numerical

computations, a nonstandard Euler-Maruyama scheme was

used.

The fourth contribution, article (Calatayud et al. 2023a),

was recently published by the authors of the present paper.

We considered crime data in the city of Valencia, Spain,

notified to the 112-emergency phone for the years

2010–2020. The dataset distinguished between aggression

(a theft after hitting a person), stealing (a smooth theft with

no force used), woman alarm (a theft to a woman with

violence), and others (thefts or robberies that cannot be

considered within the previous three groups). The interest

relied on the modeling of the three monthly time series

corresponding to the events of aggression, stealing and

woman alarm. Each time series was decomposed into trend

and seasonality. The former was modeled by geometric

Brownian motion and the latter was fitted by randomly

perturbed sine-cosine waves. Also, the interaction between

two crime events, such as aggression and stealing, was

analyzed by correlating two Brownian motions. The

numerical results showed that the models, albeit simple,

matched the data well. Multidimensional correlations,

beyond two Brownian motions, or spatial effects were not

studied. A comparison with mechanistic models was made

and research lines were proposed.

Motivated by the analysis from Calatayud et al. (2023a)

and the fifth research line suggested in its discussion sec-

tion, in the present paper we investigate the use of

stochastic differential equations for the spatio-temporal

modeling of real crime data series. Again, the study is

centered on the records for the city of Valencia, Spain,

along the years 2010–2020. We pick ideas from the

interesting report (Cao et al. 2013) and our recent contri-

bution (Calatayud et al. 2023a). Likewise, we use trend

components to apply Itô diffusion. However, we are

interested in the existing spatial correlations of crime in

Valencia. We work with latitude-longitude positions and

zip codes, and correlate all noises to incorporate spatial

effects. Spatial interactions were not analyzed in Cao et al.

(2013), Calatayud et al. (2023a). Based upon (Calatayud

et al. 2023a), we conduct the investigation with the geo-

metric Brownian motion stochastic process, which is a

stochastic differential equation used in quantitative finance

(Lamberton and Lapeyre 2011). The adopted approach is

simple and does not pose difficulties for parameter cali-

brations or computations.

It is a good point to introduce, interpret and motivate the

key concept of correlation for stochastic processes. Given

two stochastic processes ut and vt, their correlation is

corr½ut; vt� ¼
E½ðut � E½ut�Þðvt � E½vt�Þ�

ffiffiffiffiffiffiffiffiffiffiffi

V½ut�
p ffiffiffiffiffiffiffiffiffiffi

V½vt�
p 2 ½�1; 1�;

where E and V denote the expectation and the variance

operators, respectively (Casella and Berger 2002, Sec-

tion 4.5). Correlation measures how similar the behaviors

of the two processes around their mean values are, on a

linear basis. Essentially, it is useful for identifying common

patterns in unexpected changes of processes. In practice, if

a certain process starts deviating from its expected path
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strongly, then practitioners should put their attention on the

correlated processes and reallocate resources. In this arti-

cle, our processes are related to trends of crime time series

in different spatial districts and involve spatial reallocation

of police over time.

The structure of the paper is as follows. In Sect. 2, we

present our case study and we describe the methods to

process the available data and to model the time series of

crime. In Sect. 3, the results obtained are explained and

accompanied with plots and tables: spatial partition of the

data, correlations between patches, calibrations of model

parameters, fit of past data and forecasts. Finally, Sect. 4 is

devoted to the discussion of the main aspects of the paper,

a comparison with the literature, and limitations and pos-

sible extensions.

2 Methods

In this section, we detail the treatment of the crime data and

the spatio-temporal modeling of the time series with

stochastic differential equations.

2.1 Data processing

This study is focused on the city of Valencia, Spain.

Located in the Mediterranean coast, it is the capital of the

Valencian region and has a population of around 800000

inhabitants (ranked third in Spain). Figure 1 displays the

locations of the Valencian region within Spain (first panel)

and of the city of Valencia (second panel).

Our dataset contains daily information about criminal

events in Valencia, from January 2010 to December 2020.

There are 90247 incidents communicated to the 112-

emergency phone and consequently verified, which corre-

spond to violent or smooth robberies or thefts in the streets.

(We note that the types of crime will not be distinguished

here.) Each incident is located in the city by its latitude and

longitude position. For modeling purposes, we treat the

data as follows: we use absolute counts by aggregating on a

monthly basis, and we assign a zip code (a patch) to each

latitude-longitude location (among the 26 codes existing in

Valencia, from 46001 until 46026). This procedure gives

26 time series with 12 months� 11 years ¼ 132 counts

each, reflecting monthly criminal events at each zip code

for eleven years. As differential equations constitute our

main tool for spatial modeling, the built time series need to

have sufficient records; this is the reason of working with

months and zip codes instead of days, streets or spatial

points.

The assignment of zip codes to each xy-position is

performed as follows. The official web page at Las

Provincias (https://www.lasprovincias.es/valencia-ciudad/

listado-codigos-postales-valencia-calles-20210205144912-

nt.html) provides streets of Valencia (nearly 4000) with

their zip codes. We select around 20 streets for each code

and look up their coordinates at Google Maps (Google

2022). We then have representatives of latitude-longitude

locations at each zip code. For the 90247 crime events and

their latitude and longitude, we compute the Euclidean

distances with respect to the representatives and select the

zip code with minimum distance. In this manner, we have a

Fig. 1 Location of the Valencian region among the autonomous

communities of Spain (first map), and the three provinces of the

Valencian region with the city of Valencia in the middle (second

map). The borders of the autonomous communities and the three

provinces are marked in red. Source: Mathematica� (Wolfram

Research 2020), built-in function GeoGraphics
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partition of the 90247 events into 26 patches. For model-

ing, we focus on the 26 time series that these data generate.

2.2 Time-series modeling

The 26 time series are highly noisy, due to the abrupt

monthly variability of the number of crime incidents. As

suggested in the UCLA report (Cao et al. 2013), the

extraction of a trend component permits smoothing out the

original time series and modeling the resulting part with Itô

diffusion. The trend is computed by a moving average on

an annual basis (the average per 12 months, due to

observed seasonality), which gives rise to a total length of

121. With stochastic differential equations of Itô type

(Allen 2007; Evans 2012; Mao 2007), which can be

thought of as a type of differential equation with random-

ness built in, we will try to capture the yearly average

incidence of crime in Valencia. Here, by ‘‘capturing’’ we

mean constructing expected values and probabilistic

regions, as well as generating realizations that mimic the

fluctuating patterns of the trends. For past history, an

optimal path may be generated for fitting the trends

quantitatively. For forecasting, however, pointwise quan-

titative predictions cannot be expected with randomly

fluctuating dynamics, and mean values and credible regions

are used after a training period.

The stochastic differential equation that will be

employed here is a simple one, based on the financial lit-

erature (Lamberton and Lapeyre 2011): the geometric

Brownian motion, which leads to the Black-Scholes partial

differential equation for options pricing. Our trend time

series do not have any financial interpretation, but their

fluctuations and dynamics are visually similar to those of

stock prices. Further, as will be seen, the geometric

Brownian motion is suited to incorporate spatial depen-

dencies easily, in contrast to more complex mathematical

models based on fluxes between patches (which suffer from

the curse of dimensionality or the absence of parameter

identifiability) or partial differential equations (which are

difficult to calibrate from data) (van den Driessche 2008;

Wu 2008). In terms of time-series modeling, spatial

dependencies between patches in the same jurisdiction are

somewhat similar to assets’ dependencies between com-

panies in the same financial market.

Let us revisit the construction of the geometric Brow-

nian motion, with strong emphasis on our context of crime

modeling.

First, it is necessary to begin with the deterministic

model. Given one of the 26 zip codes, we start with the

absolute number of criminals that commit robberies or

thefts there, modeled by a function of time fctgt� 0. The

simplest ordinary differential equation is given by the

exponential model,

c0t ¼ lct; ð2:1Þ

where the prime denotes the derivative with respect to

time, d=dt, and l 2 R. This parameter l controls the inflow

rate from susceptibility to criminality by social pressure,

imitation or persuasion (Burgess and Akers 1966; Esiri

2016; Harkins et al. 2017), lin [ 0, and the outflow rate

from criminality to susceptibility by cessation, lout [ 0, so

that l ¼ lin � lout:

ctþdt ¼ ct þ ðlin � dtÞ � ct
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

inflow

�ðlout � dtÞ � ct
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

outflow

:

It is similar to a birth-death environment, largely studied in

population ecology (Turchin 2001). Another interpretation

for the criminological exponential model is the following.

Let

T 1 ¼ time a criminal needs to convince or stimulate

some susceptible

person, since the beginning or again after a

previous persuasion

�ExpðlinÞ;
T 2 ¼ time of criminality stay until reintegration in society

�ExpðloutÞ;

ctj1;s ¼ number of criminals at t whose last influence

to a susceptible was

made at instant s; s� t;

ctj2;s ¼ number of criminals at t whose last incorporation

into criminality

occurred at instant s; s� t:

The set fs : s� t; ctji;s 6¼ 0g is finite, i 2 f1; 2g, because
there is a finite discrete number of offenders. Criminality

evolves as

ctþdt ¼ ct þ
X

s� t

Pr½T 1� t � sþ dtjT 1 [ t � s�ctj1;s

�
X

s� t

Pr½T 2� t � sþ dtjT 2 [ t � s�ctj2;s;

where dt[ 0 and Pr½HjH� is the conditional probability,

here acting as a proportion. Taking into account the hazard

function (the instantaneous-relative-risk function) of the

exponential distribution (Evans et al. 2000, page 13),

Pr½T 1� t � sþ dtjT 1 [ t � s�
dt

�!dt!0
lin;

Pr½T 2� t � sþ dtjT 2 [ t � s�
dt

�!dt!0
lout;
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the exponential model (2.1) is obtained. In conclusion, the

coefficient l is a balance between the relative risks of

criminal influence and reintegration.

Now, it does not matter whether we work with number

of criminal acts or with number of criminal persons, as

ones assumes a proportional relationship in terms of

average number of crimes committed per criminal:

incidents ¼ a� criminals, a[ 0 (Jane White et al. 2021).

With mathematical functions, let fytgt� 0 be the modeled

number of robberies and thefts at the zip code. Then yt ¼
act is the mentioned proportional relationship between

incidents and criminals, and

y0t ¼ ac0t ¼ alct ¼ lyt; ð2:2Þ

by (2.1). The trend of the time series is modeled by a

function of time fxtgt� 0, defined as the annual moving

average

xt ¼
yt þ ytþ1 þ . . .þ ytþ11

12
:

Then, by linearity, we derive the same ordinary differential

equation as in (2.1) and (2.2),

x0t ¼ lxt: ð2:3Þ

This is the deterministic mathematical model for the trend

evolution. Although simple, it has required an in-depth

analysis.

As there are random factors that may affect the risk of

criminality along time, the parameter l in (2.3) is per-

turbed by a Gaussian white noise process with intensity

(magnitude) r[ 0:

l lþ rB0t:

The Gaussian noise B0t is idealized (a Schwartz distribution

or generalized process), uncorrelated with infinite variance

and zero mean, and it is viewed as the formal derivative of

a standard Brownian motion, or Wiener process, Bt.

Brownian motion is a Gaussian process with the properties

of zero mean, covariance given by the minimum of the two

time instants, and independent increments; its trajectories

are continuous but nowhere differentiable or monotone.

Then, model (2.3) for the trend becomes stochastic:

x0t ¼ lxt þ rxtB
0
t:

The noise is proportional to the incidence of crime; then

higher variability occurs when crime presents higher rates.

In differential notation, the model takes the form of an Itô

equation:

dxt ¼ lxt dt þ rxt dBt: ð2:4Þ

It indicates that the infinitesimal growth rate,

ðxtþdt � xtÞ=xt, has a normal distribution (i.e. the

maximum-entropy distribution (Dorini and Sampaio 2012))

with mean value l dt and variance r2 dt, given dt[ 0; and

besides, the infinitesimal growth rates are independent1.

Rigorously, the differential model is interpreted in integral

form under the theory of Itô calculus. Now the solution is a

stochastic process xt, called geometric Brownian motion.

By Itô lemma2, which extends the standard chain rule

theorem for non-differentiable processes, the solution

to (2.4) is given by

xt ¼ x0e
ðl�1

2
r2ÞtþrBt ; ð2:5Þ

where x0 [ 0 is the initial, deterministic state. The

expected value of xt coincides with the solution to the

deterministic model (2.3), x0e
lt. The stochastic solu-

tion (2.5) entails random variability and is qualitatively

closer to data. Its trajectories are positive and continuous

but nowhere differentiable or monotone. A probabilistic

interval for xt at level 1� a is given by

x0e
ðl�1

2
r2Þt�r�

ffiffi

t
p
�za=2 ; x0e

ðl�1
2
r2Þtþr�

ffiffi

t
p
�z1�a=2

h i

;

where z stands for the quantile function of a standard

normal distribution.

This stochastic model (2.4) fits a single trend time ser-

ies. But it would be advisable to incorporate certain spatial

structure, because crime incidence might present correla-

tions for different zip codes. The idea is that, although each

zip code has its own geometric Brownian motion for its

trend time series, the Brownian motions are correlated.

Indeed, the random factors that may affect the risk of

criminality are not entirely independent among patches.

Mathematically, given n trend time series (in our case,

n ¼ 26) modeled as

1 This intuitive interpretation for the infinitesimal growth rate is only

possible under the Itô definition of the stochastic differential equation,

which is given by a limit of finite-difference equations in discrete time

(Euler-Maruyama discretizations). The Stratonovich interpretation of

noise, by contrast, is not appropriate for finite-difference approxima-

tions; it is rather used when the interest relies on colored-noise

approximations in continuous time (Wong-Zakai theorem) and on the

conservation of standard rules of calculus in the stochastic sense. Both

interpretations are related operationally. In addition, if l is viewed

in (2.4) as the average per capita growth rate, then the Itô definition

corresponds to the arithmetic average, whereas the Stratonovich

definition corresponds to the geometric average. More details are

given in paper (Braumann 2007).
2 If f is a deterministic function, then

df ðxtÞ ¼ f 0ðxtÞdxt þ
1

2
f 00ðxtÞðdxtÞ2;

with ðdtÞ2 ¼ 0 and ðdBtÞ2 ¼ dt 6¼ 0. Pick f ¼ ln.
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dx1;t ¼ l1x1;t dt þ r1x1;t dB1;t;

. . .

dxn;t ¼ lnxn;t dt þ rnxn;t dBn;t;

ð2:6Þ

with stochastic solutions

x1;t ¼ x1;0e
ðl1�1

2
r2
1
Þtþr1B1;t ;

. . .

xn;t ¼ xn;0e
ðln�1

2
r2nÞtþrnBn;t ;

ð2:7Þ

respectively, the Brownian motions satisfy

corr½Bi;t;Bj;t� ¼ qij 2 ½�1; 1�; ð2:8Þ

for all t� 0 and labels i; j 2 f1; 2; . . .; ng. The construction
of this set of Brownian motions is not difficult, by using the

properties of covariance matrices (Xiu 2010, Sec-

tion 4.1.1): given the correlation matrix A ¼ ðqijÞi;j and

given auxiliary independent Brownian motions ~B1;t ¼ B1;t,

~B2;t; . . .; ~Bn;t, just define

B1;t

..

.

Bn;t

0

B

B

@

1

C

C

A

¼ L

~B1;t

..

.

~Bn;t

0

B

B

@

1

C

C

A

;

where L is a lower-triangular matrix and A ¼ LL> is the

Cholesky decomposition of the symmetric and positive

definite matrix A. For example, for a pair of regions, we

have a Brownian process B1;t and we define

B2;t ¼ qB1;t þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2
p

~B2;t;

where ~B2;t is an auxiliary Brownian motion that is inde-

pendent of B1;t; then corr½B1;t;B2;t� ¼ q.
For a better understanding of the role of qij

beyond (2.8), it is interesting to observe in (2.6) that

cov½dxi;t; dxj;tjxi;t; xj;t� ¼ rirjxi;txj;tcov½dBi;t; dBj;tjxi;t; xj;t�
¼ rirjxi;txj;tcov½dBi;t; dBj;t�

¼ rirjxi;txj;tqij dt

and

corr½dxi;t; dxj;tjxi;t; xj;t� ¼ qij; ð2:9Þ

where dt[ 0 and df ðtÞ ¼ f ðt þ dtÞ � f ðtÞ. That is, qij is the
force of linear association between infinitesimal changes of

xi;t and xj;t. It measures how similar the increasing and

decreasing patterns of crime incidence around the expected

value are between zip codes. In practice, knowledge of

spatial correlations permits reallocating police personnel

on certain areas of the city, given an unexpected escalation

of criminal activity in a specific district. These areas of

police reallocation may not necessarily be adjacent.

It remains the task of inverse parameter estimation

for (2.6). We fit the real trend time series

fs1;tgt� 0; . . .; fs26;tgt� 0 at times 0\1\2\. . .\120, by

matching fs1;tgt� 0; . . .; fs26;tgt� 0 and the proposed pro-

cesses fx1;tgt� 0; . . .; fx26;tgt� 0 given by (2.6), respec-

tively, and calibrating l1, r1, . . ., l26, r26 and A. Log-

returns ui;j ¼ lnðsi;jþ1Þ � lnðsi;jÞ, i 2 f1; . . .; 26g,
j 2 f0; 1; . . .; 119g, are considered. These are modeled by

the random variables

Ui;j ¼ lnðxi;jþ1Þ � lnðxi;jÞ ¼ li �
1

2
r2i

� �

þ riDBi;j;

DBi;j ¼ Bi;jþ1 � Bi;j:

By the linear dependence with respect to the Brownian

increment DBi;j, the distribution of Ui;j is normal, with

mean value li � 1
2
r2i and standard deviation ri. By the

method of moments, widely used in inferential statistics

(Casella and Berger 2002, Section 7.2.1), we estimate li
and ri as

l̂i �
1

2
r̂2i ¼ ui; r̂i ¼ dui ;

where ui and dui are the sample mean and the sample

standard deviation of fui;0; ui;1; . . .; ui;119g. By isolating, the

estimates are

l̂i ¼ ui þ
1

2
d2ui ; r̂i ¼ dui : ð2:10Þ

These values coincide with those in the case of no corre-

lation. Finally, to estimate qkl, for k; l 2 f1; . . .; 26g, we
notice that the covariance between Uk;j and Ul;j is rkrlqkl.
Therefore, by the method of moments,

q̂kl ¼
duk ;ul
r̂kr̂l

; ð2:11Þ

where duk ;ul is the sample covariance between

fuk;0; uk;1; . . .; uk;119g and ful;0; ul;1; . . .; ul;119g. When

q̂kl 6¼ 0, we are identifying interaction between the two

regions.

As can be seen, our adopted approach does not pose any

computational difficulty, regardless of the spatial dimen-

sionality n. It allows for fitting past data and forecasting, as

well as capturing spatial interactions by correlating the

noises. Further details and comparisons with the literature

are left for the results and the discussion sections.

3 Results

In this section, we present the results obtained when

applying the proposed methods on the crime problem. The

starting point is the file of 90247 reported crime incidents
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in Valencia (thefts and robberies in the streets), from

January 2010 to December 2020, together with their geo-

graphical coordinates. After processing the data ade-

quately, we aim at finding correlations between the zip

codes and fitting and forecasting the trend time series, by

employing the geometric Brownian motion stochastic

process. We use the software Mathematica� (Wolfram

Research 2020), version 12.1, installed on an Intel�

CoreTM i7 CPU 2.9 GHz.

3.1 Data processing

Along the eleven years, the crime incidents in Valencia

were situated as illustrated in Fig. 2. To analyze spatial-

level relations within Valencia, each occurrence is associ-

ated to one of the 26 zip codes in the city. As explained in

the previous section, we have geographical representatives

of the zip codes (around 20 per code), and zip codes are

assigned to the 90247 recorded latitudes and longitudes by

minimizing distances. In Fig. 3, the representative posi-

tions are shown. From them, the partition of the map in

Fig. 2 into 26 patches is given in Fig. 4, where label i

refers to the zip code 46000þ i. This process required

around 3 min of CPU time.

3.2 Time-series modeling

The time series with monthly counts for each zip code are

the basis of the crime dynamics. According to the previous

section, the trend component of each time series is

extracted, with annual averages. This smooths out the

dynamics, removes seasonal effects, and permits then fit-

ting with a geometric Brownian motion process. In Fig. 5,

we plot the time series with monthly counts for the first

four zip codes. In Fig. 6, we show the corresponding trend

time series. The latter figure is less noisy and it allows for

0.42 0.40 0.38 0.36 0.34
lon

39.42

39.44

39.46

39.50

39.52

lat

Fig. 2 Geographical plot of the 90247 incidents in Valencia

communicated to the 112-emergency phone, from January 2010 to

December 2020, with their coordinates (longitude, latitude)

0.40 0.38 0.36 0.34 0.30 0.28
lon

39.30

39.35

39.40

39.45

39.50

lat

Fig. 3 Selected representative positions of the zip codes in Valencia –

there are 26 codes in Valencia, from 46001 to 46026, each one with a

color–, to assign zip codes to any recorded latitude and longitude of

criminal activity by minimizing distances
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39.50

39.52
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Fig. 4 Partition of the 90247 crime incidents in Valencia into 26

patches, period from January 2010 to December 2020. Patch number i
refers to the zip code 46000þ i. Then, each zip code has a time series

of monthly crime counts
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better perceiving patterns and eases the modeling. In the

plots, similar increasing and decreasing patterns of inci-

dence are observed between regions, which justifies the

analysis of spatial correlations, see (2.8) and (2.9).

The trend time series are modeled by geometric Brow-

nian processes, see the stochastic model (2.6) with solu-

tion (2.7). To account for spatial structure, we combine the

zip codes and correlate the corresponding Brownian

motions. In Table 1, the estimated correlations (2.11) are

reported to two significant digits. It gives an idea of the

force of association between the crime incidences at district

level. The values are naturally positive, since one expects

directly proportional relationships. Briefly, the highest

correlations are about 0.7, not necessarily for adjacent

regions, while near-zero correlations are also present. The

information in the table may be of use by practitioners to

improve resources on areas of the city, given an unex-

pected increase of criminal activity in a certain district.

Given the processed data, the CPU time to obtain the

table was 10 s.

We illustrate the fit of pairs of trend time series in the

highest-correlation case. The highest correlation occurs for

the zip codes 46009 and 46022. Interestingly, the two

regions are not geographically close in the map; the code

46009 is in the north, while 46022 is in the east. In Table 2,

the estimates of the parameters in the coupled stochastic

model are given, after fitting the whole trend series;

see (2.10) and (2.11). The computation of this table was

instantaneous; only 0.01 s of CPU time were required. The

parameters l9 and l22 are global growth rates; these are

slightly positive, near zero, because criminality levels are

similar at the beginning and at the end of the time span.

The parameters r9 and r22 are defined as the infinitesimal

standard deviations, which account for the random vari-

ability. These four parameters are calibrated independently

of the correlation coefficient, estimated by 0.71. In Figs. 7

and 8, we show the fit of the trend time series graphically.

It is based on the mean value, a 0.95 log-normal proba-

bilistic region, and an optimal trajectory among 105 Euler-

Maruyama-type realizations, in the sense of minimizing the

20 40 60 80 100 120
month

10

20

30

40

50

60

crimes

46001

46002

46003

46004

Fig. 5 Time series of monthly

criminal incidents in Valencia,

from January 2010 to December

2020. Four zip codes out of the

26 are shown

20 40 60 80 100 120
month
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20
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40

crimes
trend

46001

46002

46003

46004

Fig. 6 Trend time series of

monthly criminal incidents in

Valencia from Fig. 5, with

annual averages. Four zip codes

out of the 26 are shown. The 26

trend time series will be fitted

by correlated geometric

Brownian processes
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Table 1 Criminality correlations between the different zip codes of Valencia

Code 1 2 3 4 5 6 7 8 9 10 11 12 13

1 –

2 .49 –

3 .52 .54 –

4 .50 .61 .55 –

5 .55 .52 .47 .59 –

6 .48 .55 .58 .60 .63 –

7 .41 .45 .50 .52 .57 .57 –

8 .44 .33 .43 .51 .54 .53 .54 –

9 .52 .53 .59 .61 .60 .67 .62 .62 –

10 .52 .49 .54 .56 .50 .41 .49 .51 .53 –

11 .41 .46 .58 .57 .48 .58 .51 .58 .71 .46 –

12 .19 .15 .03 .09 .20 .04 .19 .20 .16 .16 .24 –

13 .44 .35 .39 .57 .32 .42 .44 .53 .55 .46 .58 .08 –

14 .35 .55 .45 .51 .57 .62 .58 .52 .60 .44 .62 .29 .43

15 .42 .45 .49 .51 .51 .52 .63 .59 .55 .41 .63 .20 .54

16 .21 .17 .13 .17 .30 .22 .17 .24 .21 .17 .21 .10 .14

17 .48 .56 .53 .59 .51 .62 .68 .65 .67 .52 .64 .18 .60

18 .60 .48 .56 .57 .58 .54 .61 .64 .65 .61 .65 .21 .54

19 .46 .47 .55 .58 .58 .63 .67 .56 .70 .49 .66 .30 .50

20 .42 .37 .47 .42 .40 .51 .49 .53 .52 .41 .46 .14 .59

21 .52 .44 .55 .60 .53 .53 .60 .48 .60 .54 .49 .09 .50

22 .47 .38 .53 .47 .47 .49 .67 .69 .71 .52 .65 .24 .61

23 .62 .40 .47 .40 .53 .55 .53 .49 .60 .44 .49 .20 .40

24 .48 .38 .36 .51 .42 .45 .43 .43 .45 .38 .44 .32 .44

25 .42 .56 .48 .53 .52 .54 .63 .56 .64 .49 .57 .24 .43

26 .33 .35 .39 .33 .50 .34 .42 .36 .43 .27 .47 .07 .28

Code 14 15 16 17 18 19 20 21 22 23 24 25 26

1

2

3

4

5

6

7

8

9

10

11

12

13

14 –

15 .57 –

16 .23 .13 –

17 .65 .64 .18 –

18 .52 .60 .17 .65 –

19 .62 .66 .14 .70 .66 –

20 .44 .53 .03 .57 .51 .47 –

21 .47 .51 .16 .55 .64 .55 .43 –
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sum of the squared differences between the simulated

values and the trend data. (We note that the Karhunen-

Loève expansion of Brownian motion may also be used for

generating trajectories (Lord et al. 2014, Chapter 5). These

are usual calculations for model validation (Calatayud

et al. 2023a; Cao et al. 2013). Recall that the mean is the

curve of the initial deterministic exponential model, which

takes into account flows from susceptibility to criminality

and vice versa by means of relative risks. The probabilistic

interval gathers the trajectories and becomes wider as time

Table 1 (continued)

Code 14 15 16 17 18 19 20 21 22 23 24 25 26

22 .64 .62 .16 .67 .69 .64 .59 .58 –

23 .56 .53 .18 .58 .62 .56 .45 .58 .60 –

24 .38 .46 .18 .52 .59 .52 .33 .44 .49 .53 –

25 .63 .54 .22 .69 .60 .64 .37 .54 .59 .54 .44 –

26 .36 .47 .11 .36 .51 .40 .34 .36 .39 .41 .38 .30 –

Code number i refers to the zip code 46000þ i. In the mathematical notation of the paper, we are reporting the estimated values of the parameters

qij. The upper part of the table is empty because correlations are symmetric. In the diagonal, there are perfect correlations. Given two zip codes,

correlation measures the similarity between the patterns of the trend time series around their expected paths, on a linear basis. Higher values of

correlation in [0, 1] indicate higher force of this association

Table 2 Estimates of the

parameters when modeling the

trends of the zip codes 46009

and 46022 with correlations, by

using the method of moments.

These two codes are the most-

correlated ones

Estimator Value

l̂9 .00062

l̂22 .0015

r̂9 .032

r̂22 .032

q̂9;22 .71

20 40 60 80 100 120
month

20

40

60

80

crimes
trend, zip 46009

data trend

mean

CI95
optimal realization

Fig. 7 Fit of the trend time

series for the zip code 46009. It

is based on the mean value, a

0.95 probabilistic region, and an

optimal trajectory among 105

realizations

20 40 60 80 100 120
month

20

40

60

crimes
trend, zip 46022

data trend

mean

CI95
optimal realization

Fig. 8 Fit of the trend time

series for the zip code 46022. It

is based on the mean value, a

0.95 probabilistic region, and an

optimal trajectory among 105

realizations
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passes, by the linear increase of the variance of Brownian

motion with time. The fluctuations are mimicked and the

time series are accommodated quantitatively. Certainly, the

capture of fluctuations would be impossible with deter-

ministic formulations. As the number of runs increases and

the ensemble of paths gets larger, it is expected that the

least-squares optimal path shows less discrepancy and a

better overlap with respect to the trend series. The CPU

time for generating Figs. 7 and 8 was around 2 min.

Finally, to illustrate the interaction between the two zip

codes, we jointly sample their models at t ¼ 2 and t ¼ 100

to obtain scatter plots, see Fig. 9.

An important feature of a model is its capability to

predict. To assess it, one fixes a proper training period of

the trend time series that is used to calibrate the parameters,

and then subsequent times are forecast. The forecast is

performed with average values and probabilistic bands,

since quantitative pointwise predictions are not possible

when working with randomly fluctuating phenomena.

Figure 10 illustrates a case of forecast for the zip code

46009, where two years are fixed to calibrate the parame-

ters and then the following year is simulated. Other fore-

casts are similar, but are not shown here for concision. For

real-life applications seeking predictability of crime trends,

a short training period with parameter calibrations may be

employed to cautiously forecast a few subsequent times.

Analogous results are shown for the least-correlation

case, between the zip codes 46016 and 46020. The two

regions are near, separated only by the zip code 46019.

Table 3 and Figs. 11, 12, 13 and 14 are analogous to the

previous Table 2 and Figs. 7, 8, 9 and 10. It is clearly

observed that the trend time series are not related and that

the scatter plots do not show any increasing relationship.

4 Discussion and conclusions

We segmented the city of Valencia into the 26 zip codes, to

partition the xy-positions of the 90247 crime data on rob-

beries and thefts. This division gave rise to 26 monthly

time series of crime incidence, for a span of eleven years

(2010–2020). After an appropriate motivation, the geo-

metric Brownian motion stochastic process was used to

model the annual-trend components, where district-level

correlations were taken into account. The correlation

coefficients corresponded to the pairs of Brownian motions

and to the infinitesimal increments of the pairs of response

processes. The parameters in the modeling were estimated

by the method of moments, with closed-form formulae.

The proposed methodology was applied to fit whole trend

time series (e.g. Tables 2 and 3, Figs. 7, 8, 9, 11, 12 and

13), obtain the correlations between the zip codes

(Table 1), and forecast incidences at short term (e.g.

Figs. 10 and 14). In practice, to support law enforcement,

one may simulate spatio-temporal situations and identify

risky areas and periods from present and past data. This

study may be particularly useful for police redistribution,

taking into account the existing scarce public resources,

and consequently attaining a significant fall of crime

(Machin and Marie 2011).

Our approach has several distinctive features. Compared

to usual models from partial differential equations or spa-

tial statistics (Cressie and Wikle 2015; Short et al.

2010a, b; Tse and Ward 2015), our paper is not focused on

simulating or describing concentrations of crime in par-

ticular zones, namely hotspots. We are rather committed to

quantitative fitting of real spatio-temporal data and fore-

casting. On the other hand, compared to usual differential

equation models, which include many mechanistic com-

ponents (social contagion, place attractiveness, etc.) that

severely affect the possibility of parameter estimation from

real data (Lacey and Tsardakas 2016), our proposal is

rather simple both theoretically and computationally. Fur-

ther, it includes spatial correlations in the formulation, in

contrast to similar stochastic models (Calatayud et al.

34 36 38 40 42
9, 2

30

32
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36

38

22, 2

20 40 60 80 100 120 140
9, 100

20

40

60

80

100

120

140

22, 100

Fig. 9 Scatter plots at t ¼ 2 and t ¼ 100 by jointly sampling the coupled stochastic model for the zip codes 46009 and 46022. Here, x denotes

any element of the sample space
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2023a; Cao et al. 2013). Based on our results, we believe

that differential equation-based phenomenological models

(Lauer et al. 2021, Section 2.1) shall be considered a tool

to assess the evolution of social behaviors. These types of

models have certainly been considered in environmental

sciences (Calatayud et al. 2022, 2023b; Chowell et al.

2016; Nafidi et al. 2022; Pell et al. 2018) (Zika, Ebola,

COVID-19 and CO2 emissions, with certain exponential

growths) and turn out to be successful in our context of

offenses. Nevertheless, phenomenological forecasting

models are limited by the assumption that future incidence

will follow the patterns of incidence observed in the past.

In any case, this problem may not necessarily be fixed by

adding more mechanistic parts (Green and Armstrong

2015), besides complicating estimations and simulations.

75 80 85 90 95 100 105
month

10

20

30

40

50

60

crimes
trend, zip 46009

data trend for fitting

data trend for prediction

mean

CI95

Fig. 10 A forecast for the trend

time series corresponding to the

zip code 46009. It is based on

the mean value and a 0.95

probabilistic region. Two years

are fixed to calibrate the

parameters and then the

following year is simulated

Table 3 Estimates of the

parameters when modeling the

trends of the zip codes 46016

and 46020 with correlations, by

using the method of moments.

These two codes are the least-

correlated ones

Estimator Value

l̂16 .0071

l̂20 .0013

r̂16 .11

r̂20 .041

q̂16;20 .033

20 40 60 80 100 120
month

5

10

15

crimes
trend, zip 46016

data trend

mean

CI95
optimal realization

Fig. 11 Fit of the trend time

series for the zip code 46016. It

is based on the mean value, a

0.95 probabilistic region, and an

optimal trajectory among 105

realizations
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crimes
trend, zip 46020
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optimal realization

Fig. 12 Fit of the trend time

series for the zip code 46020. It

is based on the mean value, a

0.95 probabilistic region, and an

optimal trajectory among 105

realizations

1850 Stochastic Environmental Research and Risk Assessment (2023) 37:1839–1854

123



The type of stochastic terms incorporated into the model

also deserves some further comments. Itô stochastic dif-

ferential equations were introduced here based on the data

fluctuations and dynamics observed in the plots, the need of

a probabilistic model for the infinitesimal growth rate, and

the facility to later include spatial correlations. Other types

of differential-equation randomization have been investi-

gated in the Physics and the environmental literature. In

Xiu (2010), Smith (2013), Chen-Charpentier and Stanescu

(2010), differential equations with random parameters were

studied; in our context, ignoring spatial effects, the corre-

sponding model would be x0t ¼ lxt, where l is a time-

independent random variable with a probability distribu-

tion. However, the solution stochastic process xt ¼ x0e
lt

would not be irregular in such a formulation, but smooth

(Neckel and Rupp 2013). This issue could be fixed by

incorporating a certain random model error E t, with

resulting response process xt ¼ x0e
lt þ E t, and then

applying Bayesian or maximum-likelihood inference for

parameter estimation (Calatayud and Jornet 2020; Cala-

tayud et al. 2022, 2023b; Smith 2013; Xiu 2010).

Nonetheless, a certain structure of the residuals of the

deterministic exponential model would then be required,

for example, symmetry around zero, homoscedasticity, etc.

By inspecting the plots of our paper, that would not be the

case. The key to the success of Itô stochastic differential

equations is that one starts perturbing the differential dxt of

the deterministic response, instead of xt itself.

In the section on Results, we included the CPU time of

our computations. In our machine, the data processing

(partition of the records into the 26 zip codes) required 3

min, the calculation of the correlation table lasted 10 s, the

calculation of parameters (l, r and correlation) for two zip

codes along eleven years required 0.01 s, and the simula-

tion of optimal trajectories for two zip codes along eleven

years (100,000 realizations) needed around 2 min. It would

be interesting to compare these times with other similar

methodologies. But, as already commented in the paper,

the literature on crime-data fitting with differential equa-

tions is very scarce, especially when stochastic effects are

considered. In Lacey and Tsardakas (2016); Jane White

et al. (2021); Cao et al. (2013), computational costs are not

commented. We found a paper on spatio-temporal

stochastic differential equations for urban-development

modeling (Duan et al. 2009), which proposed a Bayesian

hierarchical model with logistic growth and Matérn spatial

covariance function; according to the authors, it took about

15 hours to finish the computations. Thus, we think that our

ideas may provide a simple and efficient tool to model

crime dynamics.

Some modifications and enhancements may be devised

from the present study. Four are described next.

Fig. 13 Scatter plots at t ¼ 2 and t ¼ 100 by jointly sampling the coupled stochastic model for the zip codes 46016 and 46020. Here, x denotes

any element of the sample space
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Fig. 14 A forecast for the trend

time series corresponding to the

zip code 46016. It is based on

the mean value and a 0.95

probabilistic region. Two years

are fixed to calibrate the

parameters and then the

following year is simulated
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First, we used the geometric Brownian motion process

in analogy to quantitative finance and stock price evolu-

tion. Stock prices are positive, unbounded and do not show

mean reversion; our models for crime dynamics assume

these properties as well. Alternative formulations are based

on Vasicek’s model (which gives rise to the Ornstein-

Uhlenbeck process) or the CIR model. These processes

possess the properties of mean reversion and long-term

finite variance, although the former has positive probability

(maybe non-negligible) of getting negative values (Allen

2016). These models are employed in the context of

interest rates in finance (Orlando et al. 2020). In crimi-

nology, disregarding spatial issues, the use on time series

of one or the other models would depend on whether the

extent of criminal activities is considered stable and

delimited or not asymptotically (for short or moderate

periods, this is not specially important), while keeping

positivity.

Second, a possible extension of our stochastic differ-

ential equation models could be based on the incorporation

of jumps. In the financial setting, paper (Synowiec 2008)

proposed some jump-diffusion models, by adding a Poisson

noise apart from the Gaussian white noise. The proposal

stemmed from the fact that log-returns are usually negative

asymmetric, leptokurtic and highly fluctuating. In our case,

Kolmogorov-Smirnov, Cramér-von Mises and Anderson-

Darling tests, based on distances between empirical and

hypothesized distribution functions, did not reject nor-

mality of the log-returns (acceptance of the null hypothesis

at level 0.05 per zip code). Nonetheless, the applicability

and goodness of fit of Poisson jumps for criminological

time series shall be investigated, besides spatial effects.

The most important difficulties would be the construction

of the model with correlations and the parameters cali-

bration by maximum likelihood or moments, with a well-

posed and convergent optimization procedure.

Third, the growth-rate parameter l was assumed to be

constant, while perturbing it by means of Gaussian white

noise. However, it would be more realistic (albeit more

complex) to work with a time-varying parameter, for

example, by relating it with certain temporal covariates via

link/effect functions (Michelot et al. 2021). These temporal

covariates could be based on unemployment rate, economic

situation, penal laws, weather, etc. An alternative approach

that keeps the parameter constant would be the inclusion of

covariates through the noise, viewed as Itô processes

themselves; instead of using the differential of Brownian

motion at the beginning, one defines a hierarchical model

where differentials of covariates are firstly employed

(Martı́nez-Salinas 2020). More research is needed to

incorporate these types of mechanisms for fitting spatio-

temporal series of crime data.

Fourth, criminality levels at the different zip codes of

Valencia were correlated by means of geometric Brownian

motions. This methodology gives a spatio-temporal vision

on crime evolution. Actually, any time series with fluctu-

ations may be correlated in a similar manner. Currently, we

are planning to work not only with crime incidence, but

with distances of the incidents to city landmarks (spatial

covariates). On a monthly basis, these distances generate

other time series. Then, all the time series may be corre-

lated through the stochastic noises. This next study may

also be interesting for security policies. Indeed, under-

standing the relation between changes in crime locations

and changes in criminality levels is very important for law

enforcement to implement preventive measures.

These topics will be the target of future efforts. Despite

the limitations and possible extensions described, we

believe that our analysis is a starting point for the use of

‘‘financial’’ stochastic differential equations in mathemat-

ical criminology, at the level of spatio-temporal series.
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efectos de la variación de temperatura sobre la captura pesquera a

lo largo de la costa del Pacı́ficoColombiano (A stochasticmodel to

analyze the effects of temperature variation on the fish catch along

the Colombian Pacific coast). Universidad Nacional de Colombia,
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