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Abstract
As a key node city of the ‘‘Silk Road Economic Belt’’ Urumqi has been listed as one of the ten most polluted cities in the

world, posing a serious threat to the urban environment and residents’ health. This study analyzed the air quality before and

during the COVID-19 (Coronavirus disease 2019) pandemic and its potential health effects based on the data of PM2.5,

PM10, SO2, NO2, CO, and O3_8h levels from 10 air quality monitoring stations in Urumqi from January 1, 2017, to

December 31, 2021. As per the results, the concentrations of the air pollutants PM2.5, PM10, SO2, NO2, CO, and O3_8h in

Urumqi from 2017 to 2021 showed a cyclical trend, and the implementation of COVID-19 prevention and control measures

could effectively reduce the concentration(q) of air pollutants. The mean value of q(PM2.5) decreased from 2017 to 2021,

whereas q(O3_8h) showed a waveform change trend (increased in 2017–2018, decreased in 2018–2020, and increased after

2020). Meanwhile, the maximum annual average values of q(PM2.5) and q(O3_8h) for the six monitoring stations during

2017–2021 occurred at sites S2 (74.37 lg m-3) and S6 (91.80 lg m-3), respectively; rapid industrialization had a greater

impact on PM2.5 and O3_8h concentrations compared to commercial and residential areas. In addition, the air quality index

data series can characterize the fluctuation trend of PM2.5. The high pollution levels (Class IV and V) of the air pollutants

PM2.5 and O3_8h in Urumqi have been decreasing annually, and good days can account for 80–95% of the total number of

days in the year, indicating that the number of days with a potential threat to residents’ health is gradually decreasing.

Therefore, more attention should be paid in controlling and managing air pollution in Urumqi.
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1 Introduction

Air pollution is the main cause of environmental quality

deterioration in many cities around the world (Sofia et al.

2020; Ambade et al. 2021a, b), which not only adversely

affects human health but also poses a threat to sustainable

socio-economic development and even contributes to glo-

bal warming (Almetwally et al. 2020; Du et al. 2019).

According to the International Organization for Standard-

ization (ISO), air pollution refers to the phenomenon in

which the concentration of certain substances in the air

reaches a threshold within a certain period, thereby causing

damage to human health or the ecological environment

(https://www.iso.org/home.html).

With rapid economic growth, the expansion of indus-

trialization and urbanization, and the surge in population

density, urban air pollution has become increasingly seri-

ous, exposing many residents to health risks (Chen and

Chen 2021; Du et al. 2018; Jiang and Bai 2018; Xu et al.

2022). According to the latest statistics, air pollution has

become the fourth leading risk factor for death in China

after heart attack, dietary risk, and smoking (Jiang and Bai

2018). The level of air pollutants in Chinese cities is much

higher than that recommended by the World Health
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Organization (WHO) (He et al. 2017). Furthermore, seven

of the top ten most polluted cities in the world are located

in China (Chen and Chen 2021). Cities consume 20% of

the global energy, and the production of this energy (non-

renewable energy) increase fine particulate matter (PM2.5)

emissions (Luo et al. 2021).

It is well known that PM2.5 mainly comes from human

activities and has the characteristics of small particle size,

high toxicity, and long atmospheric residence time. In

addition, it easily enters the human body through breathing

and enters the blood circulation, via which it can endanger

the health of various organ systems (Cheng et al. 2020;

Zeng et al. 2022), especially the cardiovascular and respi-

ratory systems (Li et al. 2020; Huang et al.2021; Jia et al.

2022). According to joint research by Yale University,

Columbia University, and the World Economic Forum (Wu

et al. 2020), China ranked fourth from the bottom in the

2018 Environmental Performance Index, an assessment of

environmental quality involving PM2.5; the concentration

of PM2.5 in China often far exceeds the WHO Interim

Target-1 (IT-1) (Xu et al. 2017). The average life expec-

tancy of residents in northern China is estimated to be

5.5 years lower than that in southern China, mainly due to

the increased mortality from cardiopulmonary diseases due

to PM2.5 exposure (Xu et al. 2017). In addition, once the

ozone (O3) concentration is exceeded, it becomes a primary

air pollutant, which is mainly formed by complex photo-

chemical interactions triggered by sunlight and nitrogen

oxides (NOx) (Khomsi et al. 2022). According to the 2015

Global Burden of Disease Study, O3 ranked 33rd among

the risk factors for premature death and is a major con-

tributor to 254,000 deaths worldwide (Hakim et al. 2019).

Long-term exposure to high O3 concentrations can also

damage the human respiratory system, leading to a range of

eye diseases (Wang et al. 2022).

Since the Chinese government implemented the Ten

Measures for Prevention and Control of Air Pollution in

2013, the air pollution level has slightly decreased, but the

situation remains critical (Gu et al. 2019). In recent years,

relevant research has mostly focused on the correlation

between air pollution and meteorological factors as well as

human health in economically developed regions, such as

mitigation approaches for residential air pollution emis-

sions in the Beijing-Tianjin-Hebei region (Liu et al. 2019),

the relationship between PM2.5 and meteorological factors

in China at seasonal and regional scales (Yang et al. 2017),

and the latest meta-analysis to explore the inhomogeneous

effects of season, spatial scale, and latitude on the rela-

tionship between meteorological factors and COVID-19

propagation (Li et al. 2022a). However, only a few studies

have been conducted on cities in less economically

developed areas, such as arid and semi-arid regions in

northwestern China (Sheng et al. 2018). Urumqi is the

second Eurasian Continental Bridge, bridgehead in north-

west China and an important gateway for China’s opening

to the west (Sheng et al. 2018), but its air pollution is

particularly serious, ranking among the top ten most pol-

luted cities in China (Meng et al. 2019). Since 1998,

Urumqi has implemented the ‘‘Blue Sky Project’’ with the

main purpose of combating air pollution. Since 2012, it has

adjusted its energy structure and implemented the ‘‘coal-to-

gas’’ project, which is the largest and fastest construction

project in China. After the continuous monitoring of PM2.5

since 2014, the research on spatio-temporal variation of air

pollutant concentrations in Urumqi has been lacking

(Abudumutailifu et al. 2018).

Previous studies on urban air quality by domestic and

foreign researchers have focused on economically devel-

oped areas, and many studies have aimed to explore the

seasonal variation in air pollutants without considering the

potential human impact. Therefore, it is particularly

important to explore relevant studies involving urban air

pollution and its human health impacts in Urumqi, an arid

oasis city. We used the daily average data of major air

pollutant levels (PM2.5, PM10, SO2, NO2, CO, and O3_8h)

in Urumqi from 2017 to 2021 to quantitatively analyze the

spatiotemporal distribution characteristics of each pollu-

tant, briefly study the impact of COVID-19 prevention and

control measures on air pollution during the epidemic, and

clarify the impact of PM2.5 and O3_8h mass concentration

change characteristics and their wavelet coherence (WTC)

with the air quality index (AQI), as well as the changes in

PM2.5, O3_8h pollution levels, and potential human health

effects. The research findings provide a scientific reference

for local air pollution control and management and are of

important practical significance for improving air condi-

tions in Urumqi and other arid oasis cities.

2 Materials and methods

2.1 Study area

Urumqi (86� 370 3300 E-88� 580 2400 E, 42� 450 3200 N-45�
080 0000 N) is located in the hinterland of the Eurasian

continent in the arid region of northwest China and is the

farthest city from the ocean (Yin et al. 2019). The region

has a typical mid-temperate continental climate. The cli-

mate is relatively dry, with an average annual precipitation

of approximately 250 mm and an average annual temper-

ature of - 7.5 to 6.2 �C. Urumqi is a city that uses fossil

fuels such as coal and natural gas as its main energy

sources (Li et al. 2022b). At the same time, Urumqi is also

a valley-shaped city with a fragile natural ecology, char-

acterized by long winters, long heating periods, high fre-

quency of gusty winds, and an inversion layer, which are

1266 Stochastic Environmental Research and Risk Assessment (2023) 37:1265–1279

123



extremely unfavorable for the dilution and diffusion of

atmospheric pollutants and make the city prone to more

serious air pollution (Abudumutailifu et al. 2018; Li et al.

2015). As a megacity in China, Urumqi has a permanent

population of 4,054,369, its total administrative area is

approximately 13,800 km2, and the urban built-up area

reached 521.6 km2 by 2020 (http://tjj.xinjiang.gov.cn).

2.2 Data sources

The data for the concentrations (q) of PM2.5, PM10, SO2,

NO2, CO, and O3_8h for Urumqi City from January 1,

2017, to December 31, 2021, used in this study were

obtained from the Air Quality Historical Data Query

website (http://www.aqistudy.cn/historydata). Ten air

quality monitoring sites providing continuous daily moni-

toring based on data from Urumqi were selected (Fig. 1

and Table 1), of which the Xinjiang Academy of Agri-

cultural Sciences Farm (S2), Midong District Environ-

mental Protection Bureau (S6), and HongGuang Shan Area

(S9) were industrial reference sites to investigate the

impact of industry on air quality; the other seven moni-

toring sites, Railway Bureau, Toll House, No. 31 Middle

School, Monitoring Station, Dabancheng District

Environmental Protection Bureau, Great Green Valley, and

Xinjiang Normal University New Campus (S1, S3, S4, S5,

S7, S8, and S10) were commercial and residential refer-

ence sites to explore the impact of commercial develop-

ment and residential life on air quality.

3 Research methods

The AQI was calculated based on the Technical Provisions

on Ambient Air Quality Index (for Trial Implementation)

(HJ 633-2012) and Ambient Air Quality Standard‘‘ (GB

3095-2012) (Sheng et al. 2018), as detailed below:

IAQIP ¼ IAQIHi � IAQIL0

BPHi � BPL0

CP � BPL0ð Þ þ IAQIL0 ð1Þ

where IAQIP represents the air quality score of pollution

item P, CP is the concentration of pollutant item P, BPHi is

the upper limit of the corresponding standard concentra-

tion, BPL0 is the lower limit of the corresponding standard

concentration, IAQIHi is the air quality subindex corre-

sponding to BPHi, and IAQIL0 is the air quality subindex

corresponding to BPL0.

AQI ¼ max AIQI1;AIQI2;AIQI3; � � �AIQInf g ð2Þ

Fig. 1 Schematic map of air quality monitoring sites in the study area
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where IAQI and n represent the air quality subindex and

pollutant item, respectively. As seen from the above for-

mula, if the air quality sub-index of multiple pollutant

items exceeds the standard, then the AQI is the one with

the largest air quality sub-index of pollutant items.

According to the ambient air quality standard, the air

quality monitoring sites in our research area are located in

commercial, residential, and industrial zones (Table 2).

They all belong to the Class II zone of the ambient air

functional area classification. According to the associated

requirements, the class II zone applies to secondary con-

centration limits (Sheng et al. 2018). The 24-h average

national secondary standard concentration limits corre-

sponding to each air pollutant PM2.5, PM10, SO2, NO2, and

CO were 150 lg m-3, 75 lg m-3, 150 lg m-3,

80 lg m-3, and 4 mg m-3, respectively; the national sec-

ondary standard for the daily maximum 8-h average con-

centration limit of O3 was 160 lg m-3.

According to the AQI levels and the corresponding

concentration limits of the PM2.5, the O3_8h subindex in

the Technical Provisions on Ambient Air Quality Index

(AQI) (for trial implementation) (HJ 633–2012), q(PM2.5),

and q(O3_8h) are classified into five levels (Table 2)

(Chowdhuri et al. 2022). The higher the ambient air quality

index, the higher its level, which indicates more serious

pollution and is more detrimental to human health.

Table 1 Overview of air quality monitoring stations in Urumqi

Monitoring

station

Monitoring station name District Distribution Geographical

location

Area type

S1 Railway Bureau New urban area City center 43.87�N, 87.55�E Commercial and residential

areas

S2 Xinjiang Academy of Agricultural

Sciences Farm

Anning Qu City fringe 43.94�N, 87.47�E Industrial area

S3 Toll Collection Tianshan

District

City center 43.76�N, 87.60�E Commercial and residential

areas

S4 No. 31 Middle School Shuimogou

District

City center 43.83�N, 87.64�E Commercial and residential

areas

S5 Monitoring Station Saybak District City center 43.83�N, 87.58�E Commercial and residential

areas

S6 Midong District Environmental

Protection Bureau

Midong District City fringe 43.96�N, 87.64�E Industrial area

S7 Daban City Environmental Protection

Bureau

Dabancheng

District

City fringe 43.36�N, 88.31�E Commercial and residential

areas

S8 Great Green Valley Saybak District City center 43.84�N, 87.69�E Commercial and residential

areas

S9 Hong Guang Shan Area Midong District City fringe 43.88�N, 87.61�E Industrial area

S10 Normal University New Campus Shuimogou

District

City center 43.80�N, 87.70�E Commercial and residential

areas

Table 2 Ambient air quality level standards and pollutant concentration limits

Air quality

index (AQI)

q(PM2.5) 24-h average/lg m-3

concentration limit

q(O3_8h) 8-h average/lg m-3

concentration limit

Air quality

index level

Air quality

index category

Human Health Response

0–50 0–35 0–100 I Excellent Normal activities

51–100 36–75 101–160 II Good Affects sensitive people

101–200 76–150 161–265 III Light pollution Irritation symptoms

appear

201–300 151–250 265–800 IV Moderately

polluted

The heart and

respiratory stems

affected

[ 300 [ 250 – V Heavy pollution Reduced tolerance,

intense symptoms
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3.1 Data processing

The original 24-h arithmetic mean of q(PM2.5), q(PM10),

q(SO2), q(NO2), q(CO), and the 8-h arithmetic mean of

q(O3) from 10 monitoring stations in Urumqi were used in

Origin 2021 to generate graphs. At the same time, the

means were also used to plot the characteristic curve of the

temporal and spatial variation of each pollutant and the

proportion of pollutant levels. Differences in PM2.5 and

O3_8h data between sites and temporal changes within sites

were tested using one-way ANOVA (significance level of

P = 0.05), and all statistical analyses were performed using

SPSS statistics 26.0.

Furthermore, we used wavelet coherence analysis to

assess AQI, PM2.5, and O3_8h data in Urumqi from 2017 to

2021. Wavelet analysis is a method based on Fourier

analysis to display the localized characteristics of the

analyzed object from both the time and frequency domains,

and is used to study the correlation between two serial data

on multiple time scales. Its coefficient can be calculated

from the wavelet energy spectrum by using the following

equation (Khomsi et al. 2022):

R2
YZ sð Þ ¼ WYZh i sð Þj j2

WY sð Þh ij j2 WZ sð Þh ij j2

WYZ
i sð Þ

�
�

�
� ¼ WY

i sð ÞWZ
i sð Þ

�
�
�

�
�
�

ð3Þ

where Y and Z are the data sequences, R2
YZ(s) is the

wavelet coherence coefficient, Wi
YZ(s) is the wavelet cross-

spectrum of the data sequence YZ, Wi
Y and Wi

Z are the

wavelet coefficients of the data sequences Y and Z,

respectively, and ‘‘\ [’’ is the smooth function of the

wavelet energy spectrum. The wavelet toolbox in

MATLAB was used for computations.

4 Results and discussion

4.1 Spatiotemporal variation of air pollutant
concentrations and the effect of COVID-19
prevention and control measures

As shown in Fig. 2, the concentrations of PM2.5, PM10,

SO2, NO2, and CO in Urumqi showed a ‘‘U’’ shaped

cyclical trend from 2017 to 2021, and the trends of PM10

and SO2 were relatively flat compared to those of PM2.5,

NO2, and CO. Among them, the ‘‘U’’ shaped fluctuation of

SO2 decreases with time and tends to plateau after April

2019. The national secondary standard for SO2 concen-

tration is 150 lg m-3, which is not exceeded at any

monitoring sites in Urumqi, and the reason for this is

probably because Urumqi is home to a large national

petrochemical and coal chemical base. To reduce air pol-

lution emissions from this energy industry base, the state

has adopted other SO2 control measures proposed by the

Chinese State Council (CSC) Action Plan for Air Pollution

Prevention and Control and the Notice on Accelerating the

Proposed Small Thermal Power Units Shutdown in China

(Wang et al. 2017), thus providing effective control of SO2

emissions in this region, so that the SO2 concentration is

maintained at a low level. NO2 fluctuated significantly

during low concentration periods (summer and autumn)

relative to PM2.5, and CO, indicating that NO2 is more

significantly influenced by temperature and solar radiation.

The concentrations of PM2.5, PM10, SO2, NO2, and CO

showed a small peak from April to September each year,

while a high concentration peak occurred from September

to March of the following year, showing better air quality

in summer and autumn, worse air quality in winter and

spring, and pollutant concentration limits exceeding the

national secondary standards in winter and spring. The

reason for these phenomena may be that coal-fired heating

and motor vehicles in winter emit many pollutants, such as

sulfur dioxide, nitrogen oxides, particulate matter, and

other pollutants. In addition, due to various climate factors

such as less precipitation, dry climate, short sunshine time,

low wind speed, and a thick temperature inversion layer

can be detrimental to the diffusion of air pollutants and

seriously affect air quality (Meng et al. 2019). The daily

maximum 8-h average concentration of O3 showed the

opposite trend to the above five pollutants, demonstrating

an inverted ‘‘V’’ shape, and its high peak (June-July) and

low peak (January) values were found to correspond

inversely to the high peak (January) and low peak (June-

July) values of NO2. The reason for this phenomenon may

be that NO2, as the main precursor of secondary pollutants,

is involved in photochemical reactions, while O3 is mainly

generated due to photochemical reactions of nitrogen oxi-

des (NOx) and volatile organic compounds (VOCs) in the

presence of ultraviolet light. The intensity of solar radiation

has an important influence on atmospheric photochemical

reactions, and the changes in atmospheric temperature can

better reflect changes in the intensity of solar radiation, that

is, high temperature and high radiation are favorable for O3

generation (Liu and Wang 2020; Lu et al. 2021).

According to the announcement on the website of the

Urumqi Municipal People’s Government regarding the

prevention and control of the 2019 novel coronavirus

(COVID-19) outbreak, the first wave of prevention and

control measures ran from January 26, 2020, when the city

launched the Level 1 response to major public health

emergencies, to March 21, when the response level was

lowered to Level 4, coinciding with the Lunar New Year

festival. The second wave of prevention and control mea-

sures ran from July 20 at the high-risk level, until the risk

Stochastic Environmental Research and Risk Assessment (2023) 37:1265–1279 1269

123



level was lowered to low risk on August 29. The periods of

2017–2019 and 2021 were selected and simultaneously

analyzed to compare the impact of government prevention

and control measures on air pollutants during the COVID-

19 outbreak period. The first and second waves of epidemic

prevention and control occurred in the winter and summer,

respectively. The concentration of pollutants in Wave 1

was significantly higher than that in Wave 2 (Fig. 2), which

is consistent with the trend of pollutant concentrations in

previous years. The pollutants PM2.5, PM10, SO2, NO2, and

Fig. 2 Variation trends in air pollutant concentrations in Urumqi from 2017 to 2021 (the blue vertical line is the period of COVID-19 epidemic

prevention and control, periods 1 and period 2 are the first and the second blockade period)
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CO decreased significantly from February 12 to March 21

during the first wave of the study period compared with the

same period in 2017–2019 and 2021, and the increase in O3

was slightly reduced. Similar conclusions were reached by

Ravina et al. (2021), who suggested that brief and strict

lockdowns would help improve air quality (Das et al. 2021;

Kumar et al. 2022). The concentrations of each pollutant

also decreased during the second wave of the study period

compared to the control period, with significant decreases

in PM10 and NO2. Industrial production, combustion of

fossil fuels such as oil and coal, and vehicle exhaust from

motor vehicle travel are the main anthropogenic sources of

particulate matter and NOx generation (Zhang et al. 2021;

Ambade et al. 2021a, b). During COVID-19, home isola-

tion and reduction of human activities can effectively

reduce the concentration of air pollutants (Naqvi et al.

2022). The decreases in PM10 and NO2 concentrations

suggest that the government’s strict traffic controls,

restrictions on people’s movement, suspension of industrial

and commercial production activities, delaying schooling,

and other measures during the outbreak, played an

important role in reducing the concentration of air

pollutants.

4.2 Spatiotemporal variation in q(PM2.5)
and q(O3_8h) at six monitoring sites

Owing to rapid socioeconomic development, expansion of

urbanization, and increased consumption of coal resources,

the particulate matter content in the air is increasing, and

the pollution problem of O3 is becoming more prominent,

resulting in a significant decrease in the quality of the

atmospheric environment. Therefore, this study focuses on

the spatiotemporal variation characteristics of PM2.5, and

O3_8h from 2017 to 2021. As shown in Table 3, the

average values of q(PM2.5) at the six monitoring sites in

Urumqi from 2017 to 2021 were 78.93, 63.64, 60.13,

56.54, and 50.18 lg m-3, respectively, showing a decrease

each year. The maximum value (97.95 lg m-3) occurred

at site S2 in 2017 and the lowest value (40.77 lg m-3)

occurred at site S3 in 2021. In addition, the values mea-

sured at sites S1, S2, S3, S4, and S5 were significantly

different (P\ 0.05) between 2017 and 2018–2021,

whereas differences between years at site S6 were not

significant. The variability between monitoring sites indi-

cated less significant differences between monitoring sites

S2 and S6, but the difference with the other four sites was

more significant. The highest value of q(O3_8h),

96.39 lg m-3, occurred at site S6 in 2017, the lowest value

(54.61 lg m-3) occurred at site S3 in 2017, and the aver-

age value from 2017 to 2021 showed a trend that increased,

then decreased, and then increased. Among the values, the

differences between years within sites S1 and S6 were

insignificant, whereas the differences between different

monitoring sites in the same year were significant, espe-

cially between 2017 and 2019. Regarding the distribution

area, the measurements of q(PM2.5) and q(O3_8h) from

2017 to 2021 in Urumqi were higher at sites S2 and S6 than

at the other four sites, which may be because the sites S2

and S6 are industrial areas and the other four sites are

commercial and residential areas. As industrial production

consumes a large amount of fossil fuels and other energy

sources, the emission of various air pollutants increases

(Fang and Yu 2021; Wen et al. 2022; Ambade et al. 2022),

resulting in more severe air pollution at those two stations.

4.3 Wavelet-based analysis of the correlation
between AQI and q(PM2.5) and q(O3_8h)

This aim of this part of our study was to explore the cor-

relation between AQI, and PM2.5 and O3_8h using the

wavelet coherence method. The time scale is provided on

the horizontal axis, whereas the frequency scale is repre-

sented on the vertical axis (Ghazani et al. 2022). The fre-

quency range spans high frequency (0–16), medium

frequency (16–128) and low frequency (128–512), and we

used color coding (blue to red, low to high) to define the

coherent wavelet spectral intensity (Cheng et al. 2021;

Fareed et al. 2021). The cones of influence represent col-

ored regions unaffected by wavelet spectral edge effects,

and the range enclosed by the thick line represents 95%

confidence relative to red noise (Habib et al. 2021; Hung

2022).

Furthermore, the arrows in the wavelet coherence dia-

gram indicate the process of interconnection and causality

between AQI, PM2.5, and O3_8h. Arrows pointing to the

right (?) (in-phase) and left (/) (out-of-phase) indicate

the positive and negative correlations, respectively. The up

(:) and down (;) arrows indicate that there is a leading and

lagging relationship between the two factors, respectively

(Ghazani et al. 2022).

Figure 3a shows the WTC between AQI and PM2.5 at

site S1. The AQI and PM2.5 sequences at the S1 site are in

phase, and there is a strong (positive) relationship between

the two variables. Furthermore, when we focus on the

direction of the sign (to the right), we can infer that the two

variables were positively correlated throughout the study

period. Furthermore, we found strong correlations between

the data series of the two variables throughout the study

period, mainly in the range of 0–80 (mid-high frequency)

and 128–512 (low frequency). Figure 3b shows the WTC

between AQI and O3_8h at S1. The linkage between AQI

and O3_8h is in the range of 0–16 (high frequency) and

128–512 (low frequency) from to 2018–2021. This asso-

ciation was stronger at low frequencies. The down and left
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arrows indicate that AQI drives the increase in O3_8h

concentration with a negative sign.

Figure 4a shows the WTC between AQI and PM2.5 at

site S2. It can be concluded that there is a strong rela-

tionship (positive correlation) between AQI and PM2.5 at

site S2 throughout the study period. Furthermore, it showed

high power at ratios of 0–50 and 100–512 throughout the

period, suggesting that AQI significantly affected the

concentration changes of PM2.5. Figure 4b shows the WTC

between AQI and O3_8h at S2. The linkage between these

two variables was mainly reflected in the range of 0–25

(high frequency) in 2019–2021 and 256–512 (low fre-

quency) in 2018–2020. Looking at the direction of the

arrows, we found that AQI and O3_8h were positively

Table 3 Changes in q(PM2.5) and q(O3_8h) at different monitoring sites in Urumqi from 2017 to 2021

Project 2017 2018 2019 2020 2021 Annual mean

q(PM2.5)/ug m-3

S1 81.54 ± 4.34Ab 60.13 ± 3.21Bbc 61.72 ± 3.61Bb 59.11 ± 3.94Bb 53.07 ± 3.22Bab 63.11 ± 1.66

S2 97.95 ± 5.36Aa 76.73 ± 3.92Ba 72.77 ± 3.75BCa 63.45 ± 3.96Cab 61.00 ± 3.37Ca 74.37 ± 1.87

S3 72.59 ± 3.50Ab 57.84 ± 2.89Bc 52.90 ± 2.71BCbc 48.15 ± 3.35CDc 40.77 ± 1.80Dc 54.45 ± 1.24

S4 73.87 ± 4.17Ab 59.85 ± 3.29Bbc 49.56 ± 2.69Cc 46.44 ± 2.98Cc 43.37 ± 2.45Cc 54.61 ± 1.44

S5 75.97 ± 4.27Ab 57.58 ± 3.21Bc 52.15 ± 2.99BCbc 48.93 ± 3.20BCc 45.23 ± 2.75Cbc 55.97 ± 1.51

S6 71.67 ± 4.37Ab 69.72 ± 4.04Ab 71.71 ± 4.11Aa 73.21 ± 4.25Aa 57.68 ± 3.58Ba 68.70 ± 1.83

Mean 79.65 ± 1.79 63.64 ± 1.41 60.13 ± 1.38 56.54 ± 1.45 50.18 ± 1.20 –

q(O3_8h)/lg m-3

S1 71.60 ± 2.13Ab 76.55 ± 2.45Acd 71.99 ± 2.07Ac 77.24 ± 2.03Ab 76.24 ± 2.08Abc 74.72 ± 0.97

S2 68.11 ± 1.89Cbc 88.6 ± 2.41Aab 81.77 ± 2.01Bb 68.45 ± 2.25Cc 87.89 ± 2.06Aa 78.85 ± 0.98

S3 54.61 ± 2.02Cd 72.27 ± 2.09Ad 65.62 ± 1.96Bd 68.19 ± 1.77BCc 73.78 ± 1.83Ac 66.90 ± 0.88

S4 73.19 ± 2.36Bb 82.61 ± 2.28Abc 74.71 ± 2.16Bc 78.99 ± 1.98ABb 81.34 ± 2.14Ab 78.17 ± 0.98

S5 63.70 ± 2.06Cc 76.61 ± 2.41Acd 70.09 ± 2.14ABcd 68.59 ± 2.02BCc 75.53 ± 2.23Abc 71.07 ± 0.98

S6 96.39 ± 2.13Aa 90.26 ± 2.02Ba 90.39 ± 1.99Ba 92.22 ± 1.94ABa 89.75 ± 1.98Ba 91.80 ± 0.90

Mean 71.26 ± 0.90 81.15 ± 0.94 75.76 ± 0.86 75.61 ± 0.84 80.75 ± 0.85 –

Mean ± standard error, different capital letters indicate statistically significant differences between study years, and lowercase letters indicate

statistically significant differences between monitoring sites (P\ 0.05). No analysis was included because of missing data from monitoring sites

S7, S8, S9, and S10

Fig. 3 Wavelet coherence of AQI at site S1 with PM2.5 (a) and O3_8h (b)
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correlated with O3_8h at high wavelet power (right), but

negatively correlated at low wavelet power, with O3_8h

lagging behind AQI (bottom left).

Figure 5a shows the WTC between AQI and PM2.5 at

site S3. The results showed that AQI at site S3 had a

positive correlation with PM2.5 in all periods, suggesting

that the fluctuation of PM2.5 could be well expressed by

AQI. Figure 5b shows the WTC between the AQI and

O3_8h at S3. We can observe a linkage between AQI and

O3_8h in the range of 256–512 (low frequency) in

2018–2020. In addition, the downward and left arrows

indicate that O3_8h lagged the AQI data series, and there

was a negative correlation between AQI and O3_8h.

Figure 6a shows the WTC between AQI and PM2.5 at

site S4. It can be seen from Fig. 6a that the AQI of site S4

is in the same phase as PM2.5 (positive correlation), and the

linkage between the two is in the mid-to-high frequency

range of 0–64 in 2017–2021 and 128–512 low-frequency

Fig. 4 Wavelet coherence of AQI at site S2 with PM2.5 (a) and O3_8h (b)

Fig. 5 Wavelet coherence of AQI at site S3 with PM2.5 (a) and O3_8h (b)
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range in 2018–2021. Figure 6b shows the WTC between

the AQI and O3_8h at S4. The linkage between AQI and

O3_8h showed a negative correlation in the high-frequency

range of 0–32 in 2019, 2020, and 2021, and the low-fre-

quency range of 128–200 and 256–512 in 2018–2020. In

addition, the O3_8h data series had a certain lag relative to

the AQI.

Figure 7a shows the WTC between AQI and PM2.5 at

site S5. We observed a strong (positive) relationship

between the S5 site AQI and PM2.5. Additionally, when we

focus on the direction of the sign, we can infer that the two

variables are positively correlated across all periods. Fur-

thermore, this strong correlation was observed throughout

the study period with all ranges (high, mid, and low-fre-

quency scales). Figure 7b shows the WTC between AQI

and O3_8h at S5. There is a strong (negative) relationship

between AQI and O3_8h in the high-frequency range of

0–32 in 2020 and 2021, the 64–128 (mid frequency) range

Fig. 6 Wavelet coherence of AQI at site S4 with PM2.5 (a) and O3_8h (b)

Fig. 7 Wavelet coherence of AQI at site S5 with PM2.5 (a) and O3_8h (b)
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in 2017–2018, and the low-frequency range of 256–512 in

2018–2020. This association was stronger at low

frequencies.

Figure 8a shows the WTC between AQI and PM2.5 at

site S6. There was a strong (positive) relationship between

AQI and PM2.5 at site S6 in all periods; however, the

linkage between the two was stronger in the low-frequency

range (128–512). Meanwhile, the downward and right

arrows indicate that AQI has a positive effect on PM2.5.

Figure 8b shows the WTC between AQI and O3_8h at S6.

The strong linkage between AQI and O3_8h is mainly

reflected in the 64–128 (mid frequency) and 256–512 (low

frequency) ranges from 2018–2020. We carefully observe

the arrow directions; the downward and left arrow direc-

tions indicate that the data series of O3_8h lags the AQI,

and there is a negative correlation between the two.

As the above wavelet coherence analysis results show,

the AQI of each station had continuous wavelet coherence

with PM2.5 and O3_8h at different periods and demon-

strated the same or opposite phase, indicating that there

was a significant correlation between AQI, PM2.5, and

O3_8h. Moreover, the AQI data series describes fluctua-

tions in PM2.5. This result implies that in the future, the

AQI data series can be used to explore the study of PM2.5,

in different periods and frequency domains for a long time

and provide reliable data support for the management of air

pollution and assessment of health risks in the region.

4.4 Air pollution levels of q(PM2.5) and q(O3_8h)
and potential effects on human health

As shown in Table 2 and Fig. 9a, from 2017 to 2021, the

proportion of days with PM2.5 air quality at the S3, S4, and

S5 monitoring points in Urumqi City graded I (excellent)

and grade II (good) increased year by year, indicating that

the air qualities in these three areas tend to be good, and the

conditions are more habitable. Sites S1, S2, and S6 showed

a trend of first increasing, then decreasing, and finally

increasing again. Moreover, the total number of days gra-

ded as IV (moderate pollution) and V (severe pollution) at

sites S1, S2, and S6 accounted for approximately 15% of

the total days, which was twice the proportion of higher air

pollution days at sites S3, S4, and S5. This may be

attributed to the fact that site S1 is located in the center of

Urumqi City, with a dense population, increased use of

fossil fuels such as oil and coal for residential life, and

frequent motor vehicle trips, resulting in poor air quality in

the region (Zhang et al. 2021). In contrast, sites S2 and S6

are located in industrial areas, where industrial production

requires a large amount of energy, leading to increased

emissions of air pollutants and poor air quality (Ambade

et al. 2020; Pei et al. 2021; Wen et al. 2022). High con-

centrations of PM2.5, are likely to increase resident mor-

bidity, hospitalization, and mortality due to respiratory

diseases, cardiovascular diseases, and cancer (Zhang et al.

2000). Overall, the total number of days with excellent and

good grades accounted for 80% of the year 2021 at the six

monitoring sites. Compared to 2017, the number of days

with excellent and good grades increased significantly, and

Fig. 8 Wavelet coherence of AQI at site S6 with PM2.5 (a) and O3_8h (b)
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the number of days with moderate and heavy pollution

decreased significantly by 2021. The proportion of heavily

polluted days decreased to 0%-0.3% at sites S3, S4, and S5.

From Table 2 and Fig. 9b, the percentage of days with

O3_8h air quality at sites S1, S3, S5, and S6, classified as I

and II, showed a trend of increasing and then decreasing,

but the number of excellent and good days accounted for

more than 90% of the total number of days in a year. The

percentage of Class III days at sites S2, S4, and S6 was

slightly larger than that at the other three sites, and the

pollution was more severe, which can lead to irritated eyes

and respiratory system of high-risk people living at these

three sites and uncomfortable living conditions (Zhang

et al. 2019).

Based on Fig. 9, we found that the pollution levels of

PM2.5 and O3_8h at sites S2 and S6 were significantly

greater than those at several other sites, probably because

this air quality monitoring site is located in the industrial

development area of Urumqi City, where industrial emis-

sions of volatile organic compounds (VOCs) and motor

vehicle movements cause an increase in the concentrations

of PM2.5 and O3_8h in the air (Bian et al. 2019), causing air

pollution and posing certain health risks to the residents

living and moving around the site; therefore, it should be of

concern to the relevant authorities.

5 Conclusion

The concentrations of PM2.5, PM10, SO2, NO2, and CO

among the six air pollutants at 10 air monitoring stations in

Urumqi during 2017–2021 showed a cyclical trend of low

concentrations in summer and autumn, and high concen-

trations in winter and spring, while the concentration of O3

showed the opposite trend. The ‘‘valley-shaped’’ urban

characteristics of Urumqi and the residents’ long heating

period in winter have certain contributions to the high

concentration of air pollutants in winter and spring. In

addition, the ANOVA results for PM2.5 and O3_8h show

that air pollution is more serious in industrial areas than in

commercial and residential areas, and that the rapid

industrialization of the city has exacerbated air pollution to

some extent, threatening the health of urban residents in the

area. Therefore, relevant departments should take effective

measures to control air pollutant emissions from industrial

areas to improve the overall air pollution situation in the

city and protect the health of urban residents. Furthermore,

the concentrations of each pollutant decreased during the

brief blockade period during COVID-19, suggesting that

the apparent positive results on air quality during the

COVID-19 blockade period can serve as a basis for gov-

ernment and regulatory agencies to argue that stringent air

quality policies can significantly improve the environment

and human health.

This study may enrich the gap in the scientific research

on air pollution in arid oasis city. However, systematic

studies on the interactions between air pollutants and

COVID-19 (whether blockades during COVID-19 reduce

air pollution and whether increases in air pollutants have an

impact on virus transmission and human health threats) are

lacking and need to be refined in future research. Finally, in

the next few years, urban planners in Urumqi should take

actions such as reducing traffic congestion, guaranteeing

one day less driving per week, and strict regulations on

toxic industries to reduce emissions of major air pollutants

to control air pollution in targeted urban areas.
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T, Cao G, Sanabria AG, Sander R, Guo F, Zhang Q, Nguyen B,

Bertok I, Rafaj P, Amann M (2019) Mitigation pathways of air

pollution from residential emissions in the Beijing-Tianjin-Hebei

region in China. Environ Int 125:236–244. https://doi.org/10.

1016/j.envint.2018.09.059

Lu J, Xie F, Tian H, Luo J (2021) Impacts of ozone changes in the

tropopause layer on stratospheric water vapor. Atmosphere.

https://doi.org/10.3390/atmos12030291

Luo X, Sun K, Li L, Wu S, Yan D, Fu X, Luo H (2021) Impacts of

urbanization process on PM2.5 pollution in‘‘ 2? 26’’ cities.

J Clean Prod 284:124761. https://doi.org/10.1016/j.jclepro.2020.

124761

Meng X, Wu Y, Pan Z, Wang H, Yin G, Zhao H (2019) Seasonal

characteristics and particle-size distributions of particulate air

pollutants in Urumqi. Int J Environ Res Public Health. https://

doi.org/10.3390/ijerph16030396

Naqvi HR, Mutreja G, Shakeel A, Karan S, Abbas K, Naqvi DF,

Chaudhary AA, Siddiqui MA, Gautam AA, Gautam S, Naqvi

AR (2022) Wildfire-induced pollution and its short-term impact

on COVID-19 cases and mortality in California. Gondwana Res.

https://doi.org/10.1016/j.gr.2022.04.016

Pei T, Gao L, Yang C, Xu C, Tian Y, Song W (2021) The Impact of

FDI on Urban PM2.5 pollution in China: the mediating effect of

industrial structure transformation. Int J Environ Res Public

Health. https://doi.org/10.3390/ijerph18179107

Ravina M, Esfandabadi ZS, Panepinto D, Zanetti M (2021) Traffic-

induced atmospheric pollution during the COVID-19 lockdown:

dispersion modeling based on traffic flow monitoring in Turin.

Italy J Clean Prod 317:128425. https://doi.org/10.1016/j.jclepro.

2021.128425

Sheng Y, Simayi Z, Wang Y, Wang X, Li Y (2018) Spatiotemporal

distribution pattern of ambient air pollution and its correlation

with meteorological factors in Urumqi. J Earth Environ

9(4):323–333. https://doi.org/10.13671/j.hjkxxb.2016.0105

Sofia D, Gioiella F, Lotrecchiano N, Giuliano A (2020) Mitigation

strategies for reducing air pollution. Environ Sci Pollut Res

27(16):19226–19235. https://doi.org/10.1007/s11356-020-

08647-x

Wang J, Mo J, Li J, Ling Z, Huang T, Zhao Y, Zhang X, Mao X, Gao

H, Shen Y, Ma J (2017) OMI-measured SO2 in a large-scale

national energy industrial base and its effect on the capital city of

Xinjiang, Northwest China. Atmos Environ 167:159–169.

https://doi.org/10.1016/j.atmosenv.2017.08.002

Wang J, Wang D, Ge B, Lin W, Ji D, Pan X, Li J, Wang Z (2022)

Increase in daytime ozone exposure due to nighttime accumu-

lation in a typical city in eastern China during 2014–2020.

Atmos Pollut Res. https://doi.org/10.1016/j.apr.2022.101387

Wen L, Yang C, Liao X, Zhang Y, Chai X, Gao W, Guo S, Bi Y,

Tsang S, Chen Z, Qi Z, Cai Z (2022) Investigation of PM2.5

pollution during COVID-19 pandemic in Guangzhou, China.

J Environ Sci 115:443–452. https://doi.org/10.1016/j.jes.2021.

07.009

Wu H, Gai Z, Guo Y, Li Y, Hao Y, Lu Z (2020) Does environmental

pollution inhibit urbanization in China? A new perspective

through residents’ medical and health costs. Environ Res. https://

doi.org/10.1016/j.envres.2020.109128

Xu L, Batterman S, Chen F, Li J, Zhong X, Feng Y, Rao Q, Chen F

(2017) Spatiotemporal characteristics of PM2.5 and PIV10 at

urban and corresponding background sites in 23 cities in China.

Sci Total Environ 599:2074–2084. https://doi.org/10.1016/j.

scitotenv.2017.05.048

Xu W, Wang Y, Sun S, Yao L, Li T, Fu X (2022) Spatiotemporal

heterogeneity of PM2.5 and its driving difference comparison

associated with urbanization in China’s multiple urban agglom-

erations. Environ Sci Pollut Res 29(20):29689–29703. https://

doi.org/10.1007/s11356-021-17929-x

Yang Q, Yuan Q, Li T, Shen H, Zhang L (2017) The relationships

between PM2.5 and meteorological factors in China: seasonal

and regional variations. Int J Environ Res Public Health. https://

doi.org/10.3390/ijerph14121510

Yin Z, Cui K, Chen S, Zhao Y, Chao H, Chang-Chien G (2019)

Characterization of the Air Quality Index for Urumqi and Turfan

Cities. China Aerosol Air Qual Res 19(2):282–306. https://doi.

org/10.4209/aaqr.2018.11.0410

Zeng X, Liu D, Wu W (2022) \p[PM2.5 exposure and pediatric

health in e-waste dismantling areas\/p[. Environ Toxicol Phar.

https://doi.org/10.1007/s11356-021-17929-x

Zhang J, Wei Y, Fang Z (2019) Ozone pollution: a major health

hazard worldwide. Front Immunol 10:2518. https://doi.org/10.

3389/fimmu.2019.02518

Zhang X, Gu X, Cheng C, Yang D (2020) Spatiotemporal

heterogeneity of PM2.5 and its relationship with urbanization

in North China from 2000 to 2017. Sci Total Environ. https://doi.

org/10.1016/j.scitotenv.2020.140925

Zhang X, Ding X, Talifu D, Wang X, Abulizi A, Maihemuti M,

Rekefu S (2021) Humidity and PM2.5 composition determine

atmospheric light extinction in the arid region of northwest

China. J Environ Sci 100:279–286. https://doi.org/10.1016/j.jes.

2020.07.007

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Stochastic Environmental Research and Risk Assessment (2023) 37:1265–1279 1279

123

https://doi.org/10.1016/j.envres.2022.113297
https://doi.org/10.1016/j.envres.2022.113297
https://doi.org/10.3390/atmos13050781
https://doi.org/10.3390/atmos13050781
https://doi.org/10.5194/acp-20-6305-2020
https://doi.org/10.5194/acp-20-6305-2020
https://doi.org/10.1016/j.envint.2018.09.059
https://doi.org/10.1016/j.envint.2018.09.059
https://doi.org/10.3390/atmos12030291
https://doi.org/10.1016/j.jclepro.2020.124761
https://doi.org/10.1016/j.jclepro.2020.124761
https://doi.org/10.3390/ijerph16030396
https://doi.org/10.3390/ijerph16030396
https://doi.org/10.1016/j.gr.2022.04.016
https://doi.org/10.3390/ijerph18179107
https://doi.org/10.1016/j.jclepro.2021.128425
https://doi.org/10.1016/j.jclepro.2021.128425
https://doi.org/10.13671/j.hjkxxb.2016.0105
https://doi.org/10.1007/s11356-020-08647-x
https://doi.org/10.1007/s11356-020-08647-x
https://doi.org/10.1016/j.atmosenv.2017.08.002
https://doi.org/10.1016/j.apr.2022.101387
https://doi.org/10.1016/j.jes.2021.07.009
https://doi.org/10.1016/j.jes.2021.07.009
https://doi.org/10.1016/j.envres.2020.109128
https://doi.org/10.1016/j.envres.2020.109128
https://doi.org/10.1016/j.scitotenv.2017.05.048
https://doi.org/10.1016/j.scitotenv.2017.05.048
https://doi.org/10.1007/s11356-021-17929-x
https://doi.org/10.1007/s11356-021-17929-x
https://doi.org/10.3390/ijerph14121510
https://doi.org/10.3390/ijerph14121510
https://doi.org/10.4209/aaqr.2018.11.0410
https://doi.org/10.4209/aaqr.2018.11.0410
https://doi.org/10.1007/s11356-021-17929-x
https://doi.org/10.3389/fimmu.2019.02518
https://doi.org/10.3389/fimmu.2019.02518
https://doi.org/10.1016/j.scitotenv.2020.140925
https://doi.org/10.1016/j.scitotenv.2020.140925
https://doi.org/10.1016/j.jes.2020.07.007
https://doi.org/10.1016/j.jes.2020.07.007

	Assessment of air quality before and during the COVID-19 and its potential health impacts in an arid oasis city: Urumqi, China
	Abstract
	Introduction
	Materials and methods
	Study area
	Data sources

	Research methods
	Data processing

	Results and discussion
	Spatiotemporal variation of air pollutant concentrations and the effect of COVID-19 prevention and control measures
	Spatiotemporal variation in rho (PM2.5) and rho (O3_8h) at six monitoring sites
	Wavelet-based analysis of the correlation between AQI and rho (PM2.5) and rho (O3_8h)
	Air pollution levels of rho (PM2.5) and rho (O3_8h) and potential effects on human health

	Conclusion
	Author contributions
	Data availability
	References




