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Abstract
We develop and calibrate stochastic continuous models that capture crime dynamics in the city of Valencia, Spain. From

the emergency phone, data corresponding to three crime events, aggressions, stealing and women alarms, are available

from the year 2010 until 2020. As the resulting time series, with monthly counts, are highly noisy, we decompose them into

trend and seasonality parts. The former is modeled by geometric Brownian motions, both uncorrelated and correlated, and

the latter is accommodated by randomly perturbed sine-cosine waves. Albeit simple, the models exhibit high ability to

simulate the real data and show promising for crimes-interaction identification and short-term predictive policing.

Keywords Crime-incidence assessment � Trend and seasonality � Stochastic differential equation � Inverse problem �
Simulations � Correlated data

Mathematics Subject Classification 60H10 � 34F05 � 62F10 � 62P25

1 Introduction

Criminality is a serious problem for any region, which risks

its economy, security and quality of life. In the field of

mathematical modeling, the study of crime events from the

point of view of differential equations has been developed

in several directions. On the one hand, with partial differ-

ential equations, space locations are characterized by a

potential of criminal activity, taking into account feasibil-

ity, attractiveness, opportunities, and knowledge of

offenders about target, vulnerability, victims, area, etc.; the

main objective is the study of the dynamics of crime hot-

spots (Short et al. 2010b; Rodriguez and Bertozzi 2010;

Short et al. 2010a; Manásevich et al. 2013; Berestycki

et al. 2013; Kolokolnikov et al. 2014; Tse and Ward 2015;

Gu et al. 2017). On the other hand, ordinary differential

equations coupled through population compartments pro-

vide the mechanisms for the flow and the social transmis-

sion between criminality states (McMillon et al 2014;

Misra 2014; Abbas et al. 2017; González-Parra et al. 2018;

Srivastav et al. 2019, 2020). Albeit these theories are

powerful to get a deeper understanding of crime patterns,

fitting the models to actual crime data is not straightfor-

ward and therefore their applicability is lessened. In fact, to

our knowledge, only two differential equation-based works

overtake qualitative aspects and attempt to calibrate

parameters to match model output and recorded observa-

tions, see Lacey and Tsardakas (2016) and Jane White

et al. (2021). In paper (Lacey and Tsardakas 2016), the

authors consider serious and minor criminal activities in

Manchester, which are influenced by the attractiveness of

the place at each time instant, and set a system of ordinary

differential equations for model fitting. However, the per-

formance is limited, since the parameters seem to be

unidentifiable and the inverse problem is challenging and

not uniquely solvable. Further, although a stochastic model

is proposed, it is not fully calibrated. Article (Jane White

et al. 2021), for its part, models criminality data in an area

of South Africa, by dividing the region into high- and low-
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conflicting zones. A system of two ordinary differential

equations is proposed, by assuming certain behavioral and

spatial fluxes. However, it is not clear how to divide the

area of study in general. Also, data are aggregated on an

annual basis, so noisy patterns do not arise and nearly

linear models make a very good job at replicating the

observations with no need of stochastic effects.

In our paper, we intend to model time series of crime in

a city of Spain, Valencia, by dealing with highly noisy

patterns and calibrating stochastic effects. In this manner,

we seek to supplement the interesting cases investigated in

Lacey and Tsardakas (2016) and Jane White et al. (2021).

To provide context, Valencia is a city located in the

Mediterranean coast, with 800,000 inhabitants. Even

though it is a safe place, it is a major city in Spain and

several illegal acts may occur per day. When suffered or

witnessed, these activities are communicated to the

112-emergency phone. For the design of the paper, we

have access to a list of crime events in the streets of

Valencia from 2010 until 2020: aggression (theft with

violence), stealing (theft with no violence), women alarms

(attack to a woman with violence), and others. Our main

goal is the proposal and calibration of stochastic differen-

tial equation models that can capture the trends of the

crimes and quantify their uncertainties (Mao 2007; Allen

2007; Lamberton and Lapeyre 2011), by using standard

models from the financial literature on stock price evolu-

tion. The ability of our simple stochastic equations to

simulate the real data suggests a new view of crime-dy-

namics modeling. Ideally, for real-world applications

seeking predictability by the police, short training periods

may be employed for calibration and then forecast a few

subsequent times (‘‘predictive policing’’).

The structure of the paper is as follows. In Sect. 2, data

are presented and decomposed to capture a trend and sea-

sonality. Methods are proposed to model trend by uncor-

related or correlated Itô diffusion, and seasonality.

Numerical results for each methodology are reported in

Sect. 3, with tabulated calibrations and graphed model

outputs. Section 4 is devoted to the discussion of the main

aspects of the paper and a detailed comparison with the

literature. Finally, in Sect. 5, conclusions are drawn.

2 Methods

In this section, we describe the methods followed in the

analysis of crime data. After presenting the data, we extract

its components for simplification. Then we develop

stochastic models that can well capture the new time series.

2.1 Data

Our dataset contains information about reported criminal

events in the city of Valencia for ten complete years, from

2010 to 2020. We have a total of 90,247 events commu-

nicated to the 112-emergency phone, split into aggression

(55,610 cases), stealing (25,342 cases), woman alarm (454

cases) and others (8841 cases). These four categories refer

to different types of thefts or robberies in the streets: ag-

gression means a theft after hitting a person, stealing is a

smooth theft with no force used, woman alarm is a theft to

a woman with violence, and others means other thefts or

robberies that cannot be considered within the previous

three groups. This last category is formed by several events

with different types of structures, making it highly variable

and difficult to model; thus, we focus on the other three

categories.

In Fig. 1, we present the data on aggressions, stealing

and women alarms. We employ monthly observations,

along 132 months. Observe that the time series are very

noisy, with some sort of white noise pattern. This motivates

the separation of the series into trend (with an Itô-diffusion

pattern) and seasonality (with some noisy bias).

2.2 Trend and seasonality

The time series are split into two components: trend and

seasonality. The trend captures the general pattern of the

data over time; we obtain it by using a moving average of

twelve months (months of periodicity) to smooth out the

original time series. On the other hand, seasonality captures

periodic patterns over time, in this case annual; we obtain it

by subtracting the original data and the trend. Both com-

ponents present noise, due to the inherent uncertainty in the

phenomenon and in data collection.

In Figs. 2 and 3, we present the data trend and season-

ality, respectively. We see that, approximately, the trends

increase until summer 2011, decrease until the beginning of

2013, and then augment until a spike at mid 2016, to later

show a falling pattern up to December 2020. The three

criminal events have a similar evolution, although their

incidences are quite different: aggressions double stealing

incidents, while women alarms are seldom reported. On the

other hand, we observe distinct yearly upward spikes in the

seasonality time series.

Due to the smoothing of the original noise and the

fluctuations observed in Fig. 2, we attempt to describe the

trend by an Itô-diffusion process, rather than a white noise

process. Specifically, as in the financial literature of stock

price evolution, we employ a geometric Brownian motion

process to fit the data trend. The seasonality, by contrast,
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Fig. 1 Monthly counting of aggressions, stealing and women alarms in the city of Valencia, from January 2010 to December 2020. Source:

112-emergency phone

Fig. 2 Trend component of aggressions, stealing and women alarms in the city of Valencia. The raw data sets were smoothed by using a moving

window average
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will be given a noise complementing a deterministic

Fourier series.

2.3 Modeling of trend with a geometric
Brownian motion

Given any of the three trends, to be described by xt ¼
modeled value of the real trend at instant t; we start with

the ordinary differential equation model

x0t ¼ lxt; ð2:1Þ

where the prime denotes the derivative with respect to

time. Parameter l 2 R may be interpreted as the instanta-

neous relative risk of criminality. It is assumed to be

constant over time. However, life is inherently uncertain,

and there are certainly random factors that may affect the

risk along time. Thus, parameter l is perturbed through a

Gaussian white noise process with intensity (magnitude)

r[ 0:

l lþ rB0t:

The noise B0t, uncorrelated with infinite variance and zero

mean, is the formal derivative of a standard Brownian

motion, or Wiener process, Bt. This Brownian motion has

the properties of zero mean and covariance given by the

minimum of the two time instants; its trajectories are

continuous but nowhere differentiable or monotone. Since

Bt is nowhere differentiable, the white noise B
0
t is idealized

and its properties are derived from merely formal calcu-

lations; actually, B0t is only well-defined as a Schwartz

distribution or generalized process. The model (2.1) for the

trend becomes a stochastic differential equation

x0t ¼ lxt þ rxtB
0
t: ð2:2Þ

The white noise is multiplied by the population, so that

both are proportional; greater oscillations occur when there

are higher rates of crimes. In differential notation, the

model (2.2) is

dxt ¼ lxt dt þ rxt dBt; ð2:3Þ

which is interpreted in integral form under the theory of Itô

calculus. Another viewpoint for the Itô stochastic differ-

ential equation (2.3) is the continuous limit of the discrete

system

Dxt ¼ lxt Dt þ rxt
ffiffiffiffiffi

Dt
p

Zt;

given fine partitions, where Zt�Normalð0; 1Þ is an

uncorrelated process. Now xt is a stochastic process, called

geometric Brownian motion. By Itô lemma, which extends

the standard chain rule theorem for non-differentiable

processes, the solution to (2.3) is given by

xt ¼ x0e
ðl�1

2
r2ÞtþrBt ; ð2:4Þ

Fig. 3 Seasonality component of aggressions, stealing and women alarms in the city of Valencia. The trends were extracted from the raw data

sets
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where x0 [ 0 is the initial, deterministic state. Interest-

ingly, the expected value of xt coincides with the solution

to the deterministic model. The stochastic solution serves

to indicate random variability and is qualitatively closer to

data. Its trajectories are positive and continuous but

nowhere differentiable or monotone.

We fit the real trend time series fstgt� 0 at times

0\t1\t2\. . ., by matching st and the model (2.4) xt and

calibrating l and r. The simplest method to derive esti-

mates of these two parameters is based on statistical

moments. By using (Napierian) log-returns

ut ¼ log st � log st�1, and by equating the sample mean

and variance, u and d2 respectively, to the distributional

mean and variance, the estimates obtained are

l̂ ¼ uþ d2=2

Dt
; r̂ ¼ d

ffiffiffiffiffi

Dt
p : ð2:5Þ

We will consider times 0\1\2\. . . and Dt ¼ 1. As will

be perceived, the realizations of the geometric Brownian

motion (2.4) will mimic the trends qualitatively, which

justifies the use of stochastic differential equations of Itô

type.

2.4 Modeling of seasonality with Fourier series
and noise

In this part, sine-cosine waves are used to accommodate

the seasonal pattern of crimes. Unspecified features of each

month are represented by a random effect.

Seasonality is modeled through a truncated Fourier

series of period 12 plus a noise,

yt ¼
a0
2
þ
X

K

k¼1
ak cos

2kpt
12

� �

þ bk sin
2kpt
12

� �� �

þ �t;

ð2:6Þ

where �t�Normalð0; rÞ is an uncorrelated process with

homogeneous variance r2 (distinct from the trend case).

The Fourier coefficients a0; a1; . . .; aK ; b1; . . .; bK
in (2.6) are estimated by least-squares minimization from

the seasonality time series. Since the problem is linear with

respect to the coefficients, there is one best-fit solution. The

standard deviation r is then simply estimated from the

standard deviation of the residuals sample.

2.5 Modeling of correlated trends
with correlated geometric Brownian motions

In Fig. 2, one notes that time series exhibit cross-correla-

tion. For example, the evolution patterns of aggressions

and stealing are similar, as both may be viewed as serious

and minor acts of the same criminal activity. Thus, instead

of working with independent geometric Brownian motion

processes, one may consider certain dependencies. Given

two ordinary differential equations

x01;t ¼ l1x1;t

and

x02;t ¼ l2x2;t

for the trend of aggressions and stealing, respectively, the

parameters are perturbed as

l1  l1 þ r1B
0
1;t

and

l2  l2 þ r2B
0
2;t;

where B1;t and B2;t are correlated Brownian motions and

r1; r2 [ 0 are the intensities (magnitudes) of the noises.

Indeed, the random factors that may affect the risk of

aggression or stealing are not entirely independent. To

build the two correlated Brownian motions, one starts with

a Brownian process B1;t and then defines

B2;t ¼ qB1;t þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2
p

B3;t;

where B3;t is an auxiliary Brownian motion that is inde-

pendent of B1;t. Parameter q is the resulting correlation

between B1;t and B2;t, which is homogeneous in time:

cov½B1;t;B2;t� ¼ cov½B1;t; qB1;t þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2
p

B3;t�
¼ q cov½B1;t;B1;t� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2
p

cov½B1;t;B3;t�
¼ q t

and

corr½B1;t;B2;t� ¼
cov½B1;t;B2;t�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var½B1;t�var½B2;t�
p ¼ q t

ffiffiffiffiffiffiffi

t � t
p ¼ q:

In differential form, the models for both trends are

dx1;t ¼l1x1;t dt þ r1x1;t dB1;t;

dx2;t ¼l2x2;t dt þ r2x2;t dB2;t:

Itô lemma yields the solutions

x1;t ¼x1;0eðl1�
1
2
r2
1
Þtþr1B1;t ; ð2:7Þ

x2;t ¼x2;0eðl2�
1
2
r2
2
Þtþr2B2;t ¼ x2;0e

ðl2�1
2
r2
2
Þtþr2qB1;tþr2

ffiffiffiffiffiffiffiffi

1�q2
p

B3;t :

ð2:8Þ

To estimate the five parameters l1, l2, r1, r2 and q in (2.7)

and (2.8), log-returns are considered. If fs1;tgt� 0 and

fs2;tgt� 0 denote the real trend time series at time instants

0\1\2\. . ., with Dt ¼ 1, the log-returns u1;t ¼ log s1;t �
log s1;t�1 and u2;t ¼ log s2;t � log s2;t�1 are considered. The
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method of moments is used. By equating the sample means

and variances, u1, u2, d
2
1 and d22 respectively, to the dis-

tributional means and variances, the estimates obtained are

l̂1 ¼
u1 þ d21=2

Dt
; r̂1 ¼

d1
ffiffiffiffiffi

Dt
p ; ð2:9Þ

l̂2 ¼
u2 þ d22=2

Dt
; r̂2 ¼

d2
ffiffiffiffiffi

Dt
p : ð2:10Þ

These values coincide with those in the case of no corre-

lation, see (2.5). This is an important feature of our

approach for dealing with cross-correlation; since interac-

tions arise from the noises’ correlation q only, the esti-

mates for the remaining parameters do not change. The

estimate for the correlation between the two Brownian

motions is

q̂ ¼ d1;2
r̂1r̂2Dt

; ð2:11Þ

where d1;2 is the sample covariance between fu1;tgt and
fu2;tgt. When q̂ 6¼ 0, we are identifying interaction

between the two crimes.

3 Results

In this section, we describe the main results obtained in the

analysis of the crime data. Specifically, trend time series

modeled by uncorrelated and correlated geometric Brow-

nian motions, and seasonality time series modeled by

truncated Fourier series with random effects. We use the

software Mathematicar (Wolfram Research 2020).

3.1 Fitting of trend with a geometric Brownian
motion

In Figs. 4 and 5, we show how geometric Brownian

motion (2.4) accommodates the aggression trend. In both

plots, the mean and a 0.95 probabilistic interval are rep-

resented. Recall that the mean is the curve of a

deterministic exponential model, (2.1). The interval gathers

the trajectories and becomes wider as time passes, by the

linear increase of the variance of Brownian motion with

time; indeed, as we move away from the initial condition,

the uncertainty in the output estimation raises. In Fig. 4,

two realizations of (2.4) are depicted as an example, which

mimic the fluctuations of the trend qualitatively. In Fig. 5,

the optimal path among an ensemble of 105 trajectories of

(2.4) is drawn, which provides a good fit of the time series

quantitatively. The optimal path, say xoptt , minimizes the

sum of the squared differences between the simulated

values xt and the trend data st:

xopt ¼ argmin
105 trajectories x

X

allt

xt � stð Þ2: ð3:1Þ

The capture of fluctuations would be impossible with

deterministic formulations. As the number of runs (i.e.

simulated trajectories of (2.4)) increases, it is expected that

the least-squares optimal path shows less discrepancy and a

better overlap with respect to the trend time series because

the ensemble is larger.

For the events of stealing and women alarms, analogous

figures are presented. In Figs. 6 and 7, we show the fit of

the stealing trend. In Figs. 8 and 9, the trend of women

alarms is modeled. In this part of Results, the three crime

events are considered to be independent; they are fitted

separately, as detailed in Sect. 2.3.

The estimates of the parameters l and r obtained by the

method of moments, see (2.5), are given in Table 1. For

the three types of events, the estimated global growth rate l̂
is positive, although nearly zero. This indicates that crim-

inality is similar at the beginning and at the end of the

whole time period. The value of r̂ gives the magnitude of

the infinitesimal standard deviation.

The predictive capability of the stochastic model (2.4) is

assessed in Figs. 10, 11, 12 and 13. To avoid repetitions,

only the case of aggressions is shown. For each figure,

several months are fixed for calibrating the parameters l
and r by (2.5), and then it is checked whether the criminal

events of the remaining months are correctly captured. It

Fig. 4 Trend-component fitting

of aggressions in the city of

Valencia. Mean, 0.95

probabilistic interval, and two

realizations as an example
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Fig. 5 Trend-component fitting

of aggressions in the city of

Valencia. Mean, 0.95

probabilistic interval, and least-

squares optimal realization

among 105 runs

Fig. 6 Trend-component fitting

of stealing in the city of

Valencia. Mean, 0.95

probabilistic interval, and two

realizations as an example

Fig. 7 Trend-component fitting

of stealing in the city of

Valencia. Mean, 0.95

probabilistic interval, and least-

squares optimal realization

among 105 runs

Fig. 8 Trend-component fitting

of women alarms in the city of

Valencia. Mean, 0.95

probabilistic interval, and two

realizations as an example
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should be stressed that we are not seeking quantitative,

pointwise forecasts, since this is impossible when working

with randomly fluctuating phenomena; rather, we are

committed to averaged predictions of crimes, with proba-

bilistic bands. In Figs. 10, 11, 12 and 13, we take 3, 6 and

8 years of training. It is perceived that, as the training data

increase, the prediction may become worse, since changes

in the last months may not be correctly captured.

Moreover, forecasts may change with training data, espe-

cially for large training periods. For instance, the lower

limit of the confidence intervals shows a possibility of

decreasing criminality when 3 and 8 years of training are

used, but for 6 years the possibility of crime decreasing is

very low. Also, for 6 years the upper limit grows faster.

These facts stem from the level of variability within the

training span. As shown in Fig. 13, the data between the

sixth and the eighth years are a better predictor for the last

year than the whole time series; in this manner, the

decreasing pattern of the last period is properly reflected.

For real-life applications seeking predictability of crime

trends, short training scales with recent case counts may be

employed to cautiously forecast a few subsequent times.

The determination of the training span is not easy and

would deserve further research, but it seems that it should

be some months long (2 years according to the last figure).

Fig. 9 Trend-component fitting

of women alarms in the city of

Valencia. Mean, 0.95

probabilistic interval, and least-

squares optimal realization

among 105 runs

Table 1 Estimates of the parameters for the three trend components,

by the method of moments

Aggressions Stealing Women

alarms

l̂ 0.000220781 0.000740088 0.00450867

r̂ 0.0282544 0.0328026 0.0867399

Fig. 10 Trend-component

prediction of aggressions in the

city of Valencia, by using

3 years of training

Fig. 11 Trend-component

prediction of aggressions in the

city of Valencia, by using

6 years of training
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3.2 Fitting of seasonality with Fourier series
and noise

Although it is less interesting for applications, Figs. 14, 15

and 16 show how a noisy, truncated Fourier series (2.6)

accommodates the seasonality component. We represent

the periodic mean, the 0.95 probabilistic interval, and the

least-squares optimal realization among 105 runs

(optimality means (3.1)). Of course, the fitting of this type

of noise is more difficult than in the Itô-diffusion case of

the trend.

We have used the truncation order K ¼ 4, and the

Fourier coefficients have been calibrated by least-squares

optimization. For K[ 4 harmonic waves, a similar least-

squares error is obtained, at the expense of more parame-

ters. The error variance is then fixed as the variance of the

Fig. 12 Trend-component

prediction of aggressions in the

city of Valencia, by using

8 years of training

Fig. 13 Trend-component

prediction of aggressions in the

city of Valencia, by using

training between the sixth and

the eighth years

Fig. 14 Seasonality-component

fitting of aggressions in the city

of Valencia. Mean, 0.95

probabilistic interval, and least-

squares optimal realization

among 105 runs

Fig. 15 Seasonality-component

fitting of stealing in the city of

Valencia. Mean, 0.95

probabilistic interval, and least-

squares optimal realization

among 105 runs
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residuals sample. In Table 2, the estimates are tabulated for

the three criminal events. Observe that the estimated

standard deviations r̂ are much higher than those for the

trends, due to the strongly noisy behavior of seasonality.

3.3 Fitting of correlated trends with correlated
geometric Brownian motions

In Figs. 17, 18, 19 and 20, we show the results of modeling

the trends of aggression and stealing with two correlated

geometric Brownian motion processes, see (2.7) and (2.8).

Indeed, as already commented, the evolution patterns of

these two events are similar. For each event, we plot the

mean, a 0.95 probabilistic interval, two examples of real-

izations, and the least-squares optimal path (with the

minimization for the two trend series at the same time)

among 105 simulations.

The estimates of the parameters are given in Table 3, by

using (2.9)–(2.11). The growth rates and the infinitesimal

standard deviations are the same as in Table 1. But now,

we are identifying the significant correlation between the

two Brownian motions, which demonstrates that the use of

this model is advisable. For an illustration of the existing

interaction, one may jointly sample from x1;t and x2;t at

fixed time t (i.e. from (2.7) and (2.8) jointly), and then

obtain a scatter plot and the correlation estimate. In

Fig. 21, scatter plots for t ¼ 2 and t ¼ 100 are displayed.

As t increases, the dispersion of the conditional distribution

x2;tjx1;t ¼ u gets larger with u. An approximate functional

relationship between x1;t and x2;t may be obtained via a

regression line.

3.4 Summary of the results

With geometric Brownian motion processes (2.4), the

historic time series on trends are fitted for each of the three

events separately: aggressions in Figs. 4 and 5, stealing in

Fig. 16 Seasonality-component

fitting of women alarms in the

city of Valencia. Mean, 0.95

probabilistic interval, and least-

squares optimal realization

among 105 runs

Table 2 Estimates of the parameters for the three seasonality com-

ponents, by the method of moments

Aggressions Stealing Women alarms

â0 - 4.11366 - 2.84963 - 0.0261963

â1 3.49520 6.37358 - 0.0518142

â2 - 19.5921 - 8.91074 - 0.20953

â3 - 12.1525 - 6.87741 - 0.185918

â4 - 4.29074 - 2.34963 - 0.467863

b̂1 22.9402 13.7019 0.600703

b̂2 1.13425 - 0.0914142 0.137121

b̂3 - 1.77500 1.35556 - 0.2875

b̂4 - 4.29074 - 1.2413 - 0.185233

r̂ 94.5516 53.9931 2.96081

Fig. 17 Trend-component

fitting of aggressions in the city

of Valencia, by taking into

account correlation between

aggression and stealing. Mean,

0.95 probabilistic interval, and

two realizations as an example
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Figs. 6 and 7, and women alarms in Figs. 8 and 9. The fit

consists of the mean value, a 95% probabilistic interval,

and realizations. The first figure of each pair simulates two

paths, to focus on the qualitative aspects of the fluctuations

of the trends. The second figure of each pair plots a least-

squares optimal trajectory (3.1) against the trend time

series, to focus on quantitative, pointwise fits. Despite its

simplicity, the performance of the model is good, since the

trend data are nearly reproduced. The estimated parameter

values of the model, by the method of moments (2.5), are

tabulated in Table 1.

The capability of a model to ‘‘view’’ the future is

important. Given a training dataset, which serves for

parameter calibration, the incidence of crime in subsequent

times is forecast. Figures 10, 11, 12 and 13 illustrate that

matter for aggressions and model (2.4). Future incidences

are delimited by probabilistic bands, with average values.

Pointwise predictions are not possible. Uncertainty quan-

tification for the model response is devoted to probabilistic

measures for outcomes: statistics, regions, thresholds, etc.

As the figures show, the selection of the training period is

Fig. 18 Trend-component

fitting of aggressions in the city

of Valencia, by taking into

account correlation between

aggression and stealing. Mean,

0.95 probabilistic interval, and

least-squares optimal realization

among 105 runs

Fig. 19 Trend-component

fitting of stealing in the city of

Valencia, by taking into account

correlation between aggression

and stealing. Mean, 0.95

probabilistic interval, and two

realizations as an example

Fig. 20 Trend-component

fitting of stealing in the city of

Valencia, by taking into account

correlation between aggression

and stealing. Mean, 0.95

probabilistic interval, and least-

squares optimal realization

among 105 runs

Table 3 Estimates of the

parameters when modeling the

trends of aggression and

stealing with correlations, by

using the method of moments

Aggression and stealing

l̂1 0.000220781

l̂2 000740088

r̂1 0.0282544

r̂2 0.0328026

q̂ 0.854833
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important, because too large periods may not forecast the

future well.

Seasonality is studied for the three crime events in

Figs. 14, 15 and 16. The seasonality time series are highly

noisy. A truncated Fourier series with uncorrelated noise,

(2.6), is employed for fitting. The estimated coefficients are

given in Table 2.

Finally, aggression and stealing incidents are coupled.

This serves as an instance to show the stochastic modeling

of any two interacting phenomena. Two non-independent

geometric Brownian motions are used to fit the historic

trend time series of aggression and stealing, see (2.7)

and (2.8). The method of moments renders closed-form

estimates for the parameters, by (2.9)–(2.11). Figures 17,

18, 19 and 20, represent the usual metrics of interest: the

mean value, a 95% probabilistic interval, and realizations.

Parameter calibrations are detailed in Table 3. Scatter plots

for the two events are given in Fig. 21. The significant

dependence demonstrates the need of introducing a corre-

lation parameter. This new coupled model (2.7)–(2.8) may

be used for forecasting too, with mean values and proba-

bilistic intervals as in Figs. 10, 11, 12 and 13.

4 Discussion

As shown in this paper, standard stochastic differential

equation models from finance are useful to model crime

dynamics. Quantitatively, model trajectories fit historic

data along a whole decade. Thus, for short-term predic-

tions, the model may be a useful tool for delineating the

incidence of crime, based on mean values and probabilistic

regions. Of course, pointwise quantitative forecasts cannot

be expected with randomly fluctuating dynamics. We

believe that the ability of the model to fit and predict,

applied to certain days/weeks/months and neighborhoods/

areas/cities, could be an aid for law enforcement.

A critique of our approach might be the lack of mech-

anistic components, which does not permit understanding

social or psychological sources of crime to derive eradi-

cation strategies. However, the incorporation of these

mechanisms complicates models. As reviewed in the

Introduction section, those complex models are restricted

to simulating data-independent dynamics (Short et al.

2010b; Rodriguez and Bertozzi 2010; Short et al. 2010a;

Manásevich et al. 2013; Berestycki et al. 2013; Kolokol-

nikov et al. 2014; Tse and Ward 2015; Gu et al. 2017;

McMillon et al 2014; Misra 2014; Abbas et al. 2017;

González-Parra et al. 2018; Srivastav et al. 2019, 2020) or

entail unidentifiable inverse problems (Lacey and Tsar-

dakas 2016), so we are sure that there should be a balance

between complexity and applicability. Here is where phe-

nomenological/statistical modeling comes in Lauer et al.

(2021), Section 2.1. Our adopted approach does not pose

any computational difficulty; it allows for fitting and

forecasting, and further, it identifies crime interactions (for

example, serious and minor events) by simply correlating

the noises. Nonetheless, statistical forecasting models are

limited by the assumption that future incidence will follow

the patterns of incidence observed in the past.

Although phenomenological models of crime based on

differential equations have not taken a noticeable place in

the literature, these types of models have been widely used

in environmental sciences. For example, Chowell et al.

(2016) and Pell et al. (2018) employ logistic differential

equations to forecast the burden of Zika and Ebola epi-

demics, respectively; Calatayud et al. (2022) proposes

multiple stochastic logistic functions to fit several COVID-

19 waves and forecast; and Nafidi et al. (2022) studies the

applicability of a stochastic modified Lundqvist–Korf dif-

fusion process to model CO2 emissions. As our paper

shows, differential equation-based statistical models shall

be considered a tool to assess the evolution of social

behaviors.

Following Jane White et al. (2021), we tried to spatially

divide our city of study into high- and low-criminality

zones, but both areas showed similar form of the time

series and no gain was clearly perceived. Even so, the

Fig. 21 Scatter plots for x1;t (aggression) and x2;t (stealing) at t ¼ 2 and t ¼ 100, by sampling, when modeling the trends of aggression and

stealing with correlations
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inclusion of spatial dependencies, by correlating noises,

will be the basis of our future efforts. Here, we are omitting

spatial statistics analysis, committed to point patterns from

a completely different perspective (Gelfand and Schliep

2018; Cressie and Wikle 2015).

The geometric Brownian motion process used for trend

evolution mimics the use for stock price evolution. In that

financial setting, the variances of the trajectories are

unbounded on ½0;1Þ and there is no mean reversion,

because the prices may rise or diminish indefinitely. An

alternative formulation is Vasicek’s model, which gives

rise to the Ornstein-Uhlenbeck process and possesses the

properties of mean reversion and asymptotic finite vari-

ance (Allen 2016). Used for interest rates in finance (Or-

lando et al. 2020) since these cannot increase or decrease

indefinitely, one may wonder whether the Vasicek’s model

would be more appropriate for crime dynamics. We tried

this model. In terms of pointwise fitting of historic data, we

did not find particular differences. Essentially, the differ-

ence relied on the probabilistic band, which exhibited

bounded amplitude along time. In this sense, the use of one

or the other model depends on whether the extent of

criminal activities is considered delimited or not.

Some modifications and enhancements of the present

paper are here commented. First, the growth-rate parameter

l was considered constant, but it would be more realistic to

work with certain dependencies on covariates via link/ef-

fect functions (Michelot et al. 2021). Second, in line with

the previous point, covariates could be incorporated as Itô

processes into the differential terms instead, by setting a

hierarchical stochastic model. While these ideas would

help for better forecasts in criminology, the complexity of

the model would certainly increase. Third, Poisson jumps

could be included in the model, apart from Itô diffusion; as

motivated by Synowiec (2008) in the financial setting, at

least these jumps may give a better fit of the log-returns.

Fourth, independently of the approach followed, it would

be of high interest to derive a general methodology for the

determination of the training span when forecasting. In our

paper, we give some insights on this fourth topic, but it

deserves further analysis. And fifth, our stochastic methods

could be applicable to spatio-temporal series, by correlat-

ing two patches like we did with the two interacting crimes.

This last topic is the focus of a future work.

5 Conclusion

The evolution of three time series of criminal activity

(aggressions, stealing and women alarms) is analyzed. Our

case study corresponds to the calls retrieved by the

112-emergency phone in the city of Valencia, Spain, for

the decade 2010–2020. The original noisy time series are

decomposed into trend, with an annual moving average,

and seasonality. The trend is a smoother version of the raw

data and fluctuates as an Itô process. We apply a geometric

Brownian motion process with method-of-moments

parameter estimation for the three types of events, which

also permits analyzing interacting crimes (such as aggres-

sion and stealing) by correlating noises and coupling

equations. Seasonality is fitted by a randomly perturbed

periodic function. Numerical results are essentially based

on tabulating parameter estimates and graphing fits of

historic data and simulations of forecasts. Our simple

approach allows for simulating the real data, rendering

short-term predictions, and identifying correlated crimes

and risky periods.
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