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1 Introduction

In 2009, a book dedicated to the Turing Award winner Jim

Gray introduced the idea of a fourth paradigm of science

(Hey et al. 2009). The concept behind this new paradigm

was based on a provocation: the existing paradigms, i.e.

those of experimental science, theoretical science, and

computational science, were, on the one hand, unsuit-

able for analyzing the increasing amounts of available data,

while on the other hand, they were contributing to the

generation of such masses of data. In this context, data is

measured by instruments or generated by simulations

before being processed by software and the resulting

information or knowledge being saved in computers. As a

result, scientists do not have access to their data until much

later in the process. This data-intensive science demands

the definition of new techniques and technologies that

differ from those utilized in earlier scientific paradigms.

Therefore, a new paradigm is required: the one of data

science (Kotu and Deshpande 2019). In a broader sense,

Data Science is a discipline that combines domain exper-

tise, computer science skills, mathematical and statistical

algorithms to transform data into actionable knowledge

allowing to support and validate decisions as well as per-

forming predictions.

While this new paradigm has found widespread appli-

cation in a variety of scientific domains, progresses in geo-

environmental sciences have been sluggish and have had a

limited impact on our understanding of environmental,

climatic, and social processes. This situation is exacerbated

given the massive amount of data generated by earth-ob-

serving systems, in-situ observations (including crowd-

sourced data), and climate-related models. To turn these

data into valuable knowledge, scientists will have to cope

with the so-called five V’s of big data: velocity, volume,

value, variety and veracity. They will, however, also con-

front challenges due to the unique characteristics of geo-

environmental data, the most evident one being linked to

their spatial nature. In 1992, Carl Franklin estimated that

about 80% of data included a spatial component (Franklin

and Hane 1992). It can be imagined that this proportion has

increased over time, as more data have been collected by

satellites, mobile devices, and internet of things (IoT) tools.

Furthermore, most of these data include a temporal

dimension, often inextricably linked to the spatial one by

the underlying physical process that the data represent. The

analysis of these spatiotemporal data is rendered more

complex by other compelling issues involving, among

others: (i) data heterogeneity, due to different sources or

multiple spatiotemporal scales; (ii) collection biases, due to

clustered observation networks, the presence of under-

sampled/oversampled regions or short observational

records; (iii) complex spatiotemporal dependencies,
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including lagged and long-distance relationships between

variables. In addition, most of the common data analysis

approaches are not designed for autocorrelated, heteroge-

neous, and non-linear socio-environmental data. For all of

these reasons, mining geo-environmental data sets raises

difficulties that are rarely addressed in other domains.

We believe that spatiotemporal data science will have a

crucial role in addressing many of the great environmental

and social challenges of the XXI century and of the other

centuries to come. In this context, this special issue con-

tributes to the open discussion on the methodological

advances needed to analyze complex spatiotemporal pro-

cesses. At the same time, several applied case studies

highlight the potential of spatiotemporal data science in

giving reliable solutions to real-world problems. Papers in

this issue include case studies from hydrology and hydro-

morphology (Budiman et al. 2021; Wang et al. 2021;

Rolim et al. 2021; Tang et al. 2021; Tian et al. 2021;

Sottile et al. 2021; Han and Morrison 2021), to geology

(Giaccone et al. 2021), geomechanics (Li et al. 2021; Luo

et al. 2021; Lombardo and Tanyas 2021; Aguilera et al.

2022; D’Angelo et al. 2022; Bryce et al. 2022; Grimm

et al. 2022), atmospheric phenomena and renewable energy

(La Fata et al. 2022; Amato et al. 2022; Kajbaf et al.

2022), pathogenic viruses and associated diseases (Niraula

et al. 2022; Temple et al. 2022).
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