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Abstract
Flooding is one of the most destructive natural catastrophes that can strike anywhere in the world. With the recent, but

frequent catastrophic flood events that occurred in the narrow stretch of land in southern India, sandwiched between the

Western Ghats and the Arabian Sea, this study was initiated. The goal of this research is to identify flood-vulnerable zones

in this area by making the local self governing bodies as the mapping unit. This study also assessed the predictive accuracy

of analytical hierarchy process (AHP) and fuzzy-analytical hierarchy process (F-AHP) models. A total of 20 indicators

(nine physical-environmental variables and 11 socio-economic variables) have been considered for the vulnerability

modelling. Flood-vulnerability maps, created using remotely sensed satellite data and geographic information systems, was

divided into five zones. AHP and F-AHP flood vulnerability models identified 12.29% and 11.81% of the area as very high-

vulnerable zones, respectively. The receiver operating characteristic (ROC) curve is used to validate these flood vulner-

ability maps. The flood vulnerable maps, created using the AHP and F-AHP methods, were found to be outstanding based

on the area under the ROC curve (AUC) values. This demonstrates the effectiveness of these two models. The results of

AUC for the AHP and F-AHP models were 0.946 and 0.943, respectively, articulating that the AHP model is more efficient

than its chosen counterpart in demarcating the flood vulnerable zones. Decision-makers and land-use planners will find the

generated vulnerable zone maps useful, particularly in implementing flood mitigation plans.
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1 Introduction

Floods are one of the deadliest natural catastrophes

occurring worldwide due to prolonged rainfall, but are

aggravated by land-use changes, unscientific modifications

of drainage channels, and unplanned development activi-

ties on flood plains and flood-prone areas (Deepak et al.

2020; Tehrany et al. 2015). Flood losses are generally

categorized as direct or indirect as classified by Smith and

Ward 1998. Direct losses are caused by physical contact of

floodwater with individuals, property, or other items;

whereas, indirect losses affect networks and social activi-

ties, resulting in losses such as traffic, trade, and public

service interruptions (Nicholls et al. 2015), infectious dis-

ease outbreaks (Chadsuthi et al. 2021; Okaka and Odhi-

ambo 2018), contamination of water resources (Ching et al.

2015; Sun et al. 2016; Yard et al. 2014), increased snake-

bite incidences (Ochoa et al. 2020), and psychological

trauma (Crabtree 2013; Hajat et al. 2005; Paranjothy et al.

2011; Seyedin et al. 2017). Futhermore, delays and diverts

in transportation networks cost money and loss of access to

markets, affects employment prospects, health and educa-

tion and social activities in far-flung places, which means

that indirect losses are also incurred (Winter et al. 2016).

According to the Global Natural Disaster Assessment

Report (2020), flood disasters with a frequency of 61.66%

account for 40.92% of deaths, with 33.56% of the popu-

lation affected, and 29.72% of direct economic losses

worldwide for the year 2020. Out of the top ten countries,

in terms of the number of people affected by flood disasters

from 1900 to 2022, eight are from Asia (https://www.

emdat.be/). Furthermore, in terms of the number of flood

occurrences, out of the top ten countries (with 1,800

occurrences), seven countries are from Asia, which

accounts for 1,339 occurrences (74.38%) (https://www.

emdat.be/). The number of fatalities due to flooding are

increasing in Asia (Franzke and Torelló i Sentelles 2020).

Global warming and associated polar ice meltdown, glacier

meltdown and sea-level rise are the major reasons for

frequent flooding (Kumcu 2022; Swain et al. 2020a; Tabari

2020). Alike the rest of the world, flooding is one of the

most prevalent natural hazards in India. India is one of the

top ten countries (ranks third) most frequently affected by

flooding (Liu et al. 2022). But what makes it different from

the rest is the very high population density. According to

EM-DAT (https://www.emdat.be/), the second highest

number of deaths (30,115) was recorded in India after

China due to riverine flooding between 1990 and 2022. In

terms of total estimated damage during this time period,

India ranks third (55.78 billion USD) after China and the

United States (https://www.emdat.be/). Also, the total

number of people affected by floods in India in the

aforementioned period is 348,902,349, with China being at

the top of the list (https://www.emdat.be/).

One of the recent catastrophic flood-affected areas in

India is the narrow stretch of land, called Kerala, located

between the Western Ghats and the Arabian Sea. Kerala is

one of thestates in India having the highest population

density (860 per km2), and is nestled in the foothills of the

Western Ghats, an orographic edifice. This state has 44

medium-to-small rivers, all with a short traverse of an

average of 100–150 km, flowing through all the physio-

graphic zones, viz., lowland, midland, and highland, before

debouching into the Arabian Sea (Sajinkumar et al. 2022).

Because of the preponderance of the monsoonal climate,

many parts of Kerala have been severely battered by floods,

with the recent floods being more devastating (i.e., the

2018, 2019, 2020, and 2021 floods). The severe floods of

2018 and 2019 caused significant damage to infrastructure

and property, and resulted in hundreds of deaths in Kerala

(Hao et al. 2020, 2022; Hunt and Menon 2020; Mishra and

Shah 2018; Vanama et al. 2021; Vishnu et al. 2019, 2020).

What makes more difficult to estimate the accurate losses

are: (i) the lack of a clear strategy, (ii) absence of a single,

reliable method for estimating damage and costs, (iii) non-

availability of multiple, but diversified, agencies in post-

disaster reconstruction activities, and (iv) the longer resi-

lience time (Donnini et al. 2017).

One of the pressing requirements in studying the

flooding events is the assessment of vulnerability.

Researchers generally uses AHP (Dandapat and Panda

2017; Deepak et al. 2020; Desalegn and Mulu 2020; Hoque

et al. 2019; Hussain et al. 2021; Radmehr and Araghinejad

2015), analytical network process (Chukwuma et al. 2021),

Bayesian belief network (Abebe et al. 2018), Weight of

evidence-information value (Saha et al. 2021), frequency

ratio (FR) (Saha et al. 2021; Sarkar and Mondal 2020),

F-AHP (Duan et al. 2021), and support vector machine

(Duan et al. 2021) for assessing flood vulnerability. Feloni

et al. (2020) created flood vulnerability maps of the Attica

region in Greece using the AHP and fuzzy-analytical

hierarchy process (F-AHP) methods. They used physical

vulnerability indicating factors such as digital elevation

model (DEM), slope, critical aspect, horizontal overland

flow distance, vertical distance of channel network, cur-

vature index, SAGA wetness index, composite curve

number, and daily-modified Fournier index. Ali et al.

(2019) compared FR and AHP for demarcating the flood

vulnerable zones in the Sundarbans region of India. They

used only the physical vulnerability factors such as slope,

elevation, topographic wetness index, land use land cover,

amount of rainfall deviation, distance from river, and clay

content in soil. Also, no researchers compared the AHP and

F-AHP models to identify flood vulnerable zones using

both physical-environmental and socio-economic
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indicators in any flood-prone area in the world. The

majority of the existing literature focused solely on the

areas’ physical vulnerability factors (Desalegn and Mulu

2020; Feloni et al. 2020).

In any disaster study, the geographical ambience where

the influencing parameters can be thoroughly studied could

be a natural boundary like a drainage basin, whereas the

implementation of management practices will be feasible

within a political boundary. In India, the political set-up in

the lowest rug is the local self governing (LSG) bodies.

One of the worst-affected districts (which consist of a

cluster of LSGs) is Kottayam (Vanama et al. 2021), located

in the foothills of the Western Ghats, where the rivers

Muvattupuzha, Meenachil, and Manimala were flooded

during the recent years. Thus, this study aims to identify

the flood vulnerable LSGs in the Kottayam district using

both the AHP and F-AHP models, select the best one

among these two models, and suggest

suitable recommendations.

2 Materials and methods

2.1 Study area

Located beneath the Western Ghats, Kottayam district has

longitudes of 76̊2000’ ’E and 77̊0000’’ E and latitudes of

9̊2000’’ N and 9̊5500’’ N and covers an area of about 2208

km2 (Fig. 1). Kottayam district experiences a tropical cli-

mate, with an average annual rainfall of 3130.33 mm

(https://kottayam.nic.in/climate/). The eastern part of the

district is composed of Precambrian metamorphic rocks

that form steep terrain; the central part is a low plateau with

Tertiary sediments and laterites; and the western part is a

low plain covered by Quaternary fluvial or partly marine

formations (Department of Mining and Geology 2016).

Meenachil, Muvattupuzha, and Manimala are the district’s

major rivers (https://kottayam.nic.in/en/geography/), all

originating from the Western Ghats and debouching into

the Vembanad Lake. The Meenachil River has a length of

78 km, whereas the Muvattupuzha and Manimala rivers

have lengths of 121 and 92 km, respectively. According to

the data acquired from the National Remote Sensing

Centre, 185.82 km2, 106.44 km2, and 88.96 km2 areas of

the district were inundated by the floods that happened in

the years 2018, 2019, and 2020, respectively. A total of 23

human fatalities have been recorded in Kottayam district

during the 2018 monsoon season, while there were two

during the 2019 monsoon season (Government of Kerala

2018a, 2018b, 2019a, b).

2.2 Data used

The modelling process involved the following five steps:

i. Data for the 20 vulnerability indicators were gath-

ered from various sources (Table 1). The thematic

layers of these vulnerability indicators were created

using ArcGIS 10.8 and ERDAS Imagine 9.2.

ii. After creating the thematic layers of these indicators,

the flood inundation data was gathered from the

National Remote Sensing Centre (NRSC), India.

iii. Validation locations were randomly selected within

the flood-inundated areas.

iv. The physical-environmental, socio-economic, and

flood vulnerability maps were created using AHP

and F-AHP methods. MS Excel and FisPro 3.8 were

used to derive the weights of the AHP and F-AHP

methods, respectively (Fig. 2).

v. The vulnerability maps were validated utilizing the

receiver operating characteristic (ROC) curve

method. Validation of the results was done using

IBM SPSS 26.0 .

2.3 Methodology for vulnerability indicators

A total of 20 vulnerability indicators (nine physical-envi-

ronmental variables and 11 socio-economic variables) have

been considered. Physical-environmental vulnerability

indicators such as slope angle, geomorphology, stream

density, soil texture, land use/land cover (LULC), modified

normalized difference water index (MNDWI), normalized

difference vegetation index (NDVI), normalized difference

built-up index (NDBI), water ratio index (WRI), and socio-

economic vulnerability indicators such as total population,

number of households, literacy rate, building roof type,

building condition, household size, child population, access

to information, building wall type, and marginalized pop-

ulations (scheduled caste and scheduled tribe) have been

utilized for the modelling.

2.3.1 Physical-environmental vulnerability indicators

Slope angle was computed from the ASTER GDEM using

ArcGIS spatial (surface) analyst tools. The soil types of the

study area were derived from the soil map published by the

National Bureau of Soil Survey and Land Use Planning

(NBSS&LUP) using ArcGIS tools. Land use and land

cover (LULC) types of this area were derived from the

Landsat 8 satellite images. The supervised maximum

likelihood (cf. Joshi et al. 2022; Sisodia et al. 2014; Sunar

Erbek et al. 2004) classification approach in the ERDAS

Imagine software was utilized to classify the LULC types.
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Stream density was computed from the Survey of India

(SoI) topographic map using ArcGIS spatial analyst (line

density) tools. The geomorphic classes were initially

derived from the Landsat 8 images through visual inter-

pretation, but aided by field experience. This was verified

with the SoI topographic map and high-resolution Google

Earth images. This was done using ERDAS Imagine soft-

ware. Water ratio index (WRI) was calculated using Eq. 1

(Shen and Li 2010) whereas modified normalized differ-

ence water index (MNDWI) was calculated using Eq. 2

(Xu 2006). Normalized difference built-up index (NDBI)

was calculated using Eq. 3 (Zha et al. 2003) and normal-

ized difference vegetation index (NDVI) was computed

using Eq. 4 (Rouse et al. 1974).

The spectral indices such as WRI, MNDWI, NDBI, and

NDVI were computed from the Landsat 8 images using

ArcGIS spatial analyst (raster calculator) tool. The con-

tinuous data layers such as slope angle, stream density,

WRI, MNDWI, NDBI, and NDVI were classified using the

natural breaks method (cf. Ahmed 2015; Pradeep et al.

2022).

WRI ¼ Greenþ Redð Þ
NIRþMIRð Þ ð1Þ

where green, red, NIR and MIR stand for spectral reflec-

tance of water in green, red, near-infrared and mid-infrared

bands, respectively.

MNDWI ¼ Green � SWIRð Þ
Green þ SWIRð Þ ð2Þ

where green, and SWIR stand for spectral reflectance of

water in green, and short-wave infrared bands,

respectively.

NDBI ¼ SWIR1� NIRð Þ
SWIR1þ NIRð Þ ð3Þ

where SWIR, and NIR stand for spectral reflectance in

short-wave infrared and near-infrared bands, respectively.

NDVI ¼ NIR� Rð Þ
NIRþ Rð Þ ð4Þ

Fig. 1 Location map of the study area: a. South India, b. Kerala, c. elevation map with major rivers of the study area (Kottayam district), and

d. Lithology map of the study area (Source: Elevation data of ASTER; Lithology data of Geological Survey of India)
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where NIR and R stand for spectral reflectance in the near-

infrared and red bands, respectively.

2.3.2 Socio-economic vulnerability indicators

All the eleven socio-economic vulnerability indicators

were derived from the 2011 census data and were catego-

rized into five classes through the natural breaks method

(cf. Wubalem 2021) using ArcGIS tools.

2.4 AHP modeling

The AHP method, developed by Thomas L. Saaty (Saaty

1980) is used to make difficult problems into a hierarchy

and find the best answer for the goal (Qazi and

Abushammala 2020). The creation of the matrix for pair-

wise comparisons, the computation of the eigen vector, the

weighting coefficient (Tables 2 and 3), and the consistency

ratio (Tables 4 and 5) are the major procedures involved

with the AHP modelling (Akshaya et al. 2021; Amrutha

et al. 2022; Nikhil et al. 2021; Thomas et al. 2021).

Using Eqs. 5 and 6, the eigen vector (Vp), and the

weighting coefficient (Cp) were determined (as in Akshaya

et al. 2021; Nikhil et al. 2021; Thomas et al. 2021).

VP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W1x. . .Wk
k
p

ð5Þ

where k = number of factors, and W = ratings.

Cp ¼
Vp

Vp1þ . . .Vpk
ð6Þ

The priority vector [C], overall priority [D], and rational

priority [E] were computed as in Danumah et al. (2016).

Equations 7, 8, and 9 (Akshaya et al. 2021; Nikhil et al.

2021; Thomas et al. 2021), were employed to compute the

eigen value (kmax), consistency index (CI), and consis-

tency ratio (CR).

kmax ¼
E½ �
k

ð7Þ

CI = kmax � kð Þ= k � 1ð Þ ð8Þ

CR ¼ CI

RI
ð9Þ

Table 1 Inventory on the data used in this study

Data Source Thematic layers derived Scale/spatial

resolution

Type of

data

Topographic

map

Survey of India Stream density 1:50,000 Spatial

ASTER GDEM https://earthexplorer.usgs.gov/ Slope 30 m Spatial

Landsat 8 OLI

image

https://earthexplorer.usgs.gov/ Land use/land cover,

Geomorphology

NDVI,

MNDWI,

NDBI

WRI

30 m Spatial

Soil map National bureau of soil survey & Land use

planning (NBSS&LUP)

Soil texture 1:250,000 Spatial

Census data https://censusindia.gov.in/ Total population

Number of households,

Literacy rate,

Building roof type,

Building condition,

Household size,

Child population,

Marginalized population 1,

Marginalized population 2,

Access to information,

Building wall type

– Non-

spatial

Flood

inundated

data

National Remote Sensing centre Flood inundated areas for the years 2018,

2019, and 2020

30 m Spatial
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where RI = random index (Saaty 1980).

Saaty (1980) considers a CR of less than 0.1 acceptable.

If the CR is larger than 0.1, repeat the analysis until the CR

is acceptable. The CR (0.031) in this AHP modelling is

found acceptable. As a result, the outcomes are reliable.

The weights derived by the AHP model for the physical-

environmental vulnerability (PEV) and socio-economic

vulnerability (SEV) indicators are depicted in Eqs. 10 and

11.

PEV ¼ 0:308� Slp:ð Þ þ 0:223� Soilð Þ þ 0:157� LULCð Þ
þ 0:108� SDð Þ þ 0:074� Geom:ð Þ
þ 0:051�WRIð Þ þ 0:035�MNDWIð Þ

þ 0:025� NDBIð Þ þ 0:018� NDVIð Þ
ð10Þ

Fig. 2 Flowchart of the vulnerability modelling

Table 2 Pairwise comparison

matrix for Physical-

environmental indicators

Slp. Soil LULC SD Geom. WRI MNDWI NDBI NDVI Vp Cp

Slp. 1 2 3 4 5 6 7 8 9 4.147 0.308

Soil 1/2 1 2 3 4 5 6 7 8 3.008 0.223

LULC 1/3 1/2 1 2 3 4 5 6 7 2.113 0.157

SD 1/4 1/3 1/2 1 2 3 4 5 6 1.459 0.108

Geom. 1/5 1/4 1/3 1/2 1 2 3 4 5 1.000 0.074

WRI 1/6 1/5 1/4 1/3 1/2 1 2 3 4 0.685 0.051

MNDWI 1/7 1/6 1/5 1/4 1/3 1/2 1 2 3 0.473 0.035

NDBI 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 2 0.332 0.025

NDVI 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 0.241 0.018
P

2.83 4.72 7.59 11.45 16.28 22.08 28.83 36.50 45.00 13.46 1.00

*Where Slp. is the slope, SD is the stream density, and Geom. is the geomorphology
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SEV = 0:187� TPð Þ þ 0:144� NHð Þ þ 0:082� BRTð Þ
þ 0:074� BCð Þ þ 0:073� HHSð Þ þ 0:071� CPð Þ
þ 0:070�MP1ð Þ þ 0:067�MP2ð Þ
þ 0:064� ATIð Þ þ 0:060� BWTð Þ

ð11Þ

2.5 F-AHP modeling

A combination of AHP and fuzzy logic theory was

employed to weight the relevant factors in the F-AHP

model (Eskandari and Miesel 2017). The F-AHP model

overcomes the limitations of the AHP model by allowing

decision-makers to assess their preferences within an

acceptable interval (Afolayan et al. 2020). Buckley (1985)

presented a method for comparing fuzzy ratios that has

been adopted for the study. The key procedures involved

are pair-wise comparison matrix creation (see Tables 6 and

7), geometric mean calculation (see Tables 8 and 9),

determination of relative fuzzy weights, and computation

of averaged and normalized relative weights (see Tables 10

and 11). The following are the steps in F-AHP modelling:

Step 1 Comparison of the indicators or alternatives.

The fuzzy triangular scale (2, 3, 4) will be used when

factor 1 (P1) is less significant than factor 2 (P2). For the

comparison matrix, the fuzzy triangle scale will be (1/4,

1/3, 1/2) (Ayhan 2013).

Equation 12 depicts the matrix.

~Ak ¼

~dk11
~dk12 ::: ~dk1n

~dk21 ::: ::: ~dk2n
::: ::: ::: :::
~dkn1

~dkn2 ::: ~dkmn

2

6

6

4

3

7

7

5

ð12Þ

where ~dkij by way of fuzzy triangular numbers, reflects the

kth decision maker’s preference for the ith factor over the

jth factor (Ayhan 2013).

Step 2 ~dij was computed using Eq. 13, after averaging

the preferences ( ~dkij)

~dij ¼
PK

k¼1
~dkij

K
ð13Þ

Step 3 The matrix was modified applying Eq. 14.

~A ¼
~d11 � � � ~d1n
..
. . .

. ..
.

~dn1 � � � ~dnn

2

6

4

3

7

5

ð14Þ

Step 4 Computation of the geometric average using

(Buckley 1985) Eq. 15

~ri ¼
Y

n

j¼1

~dij

 !1=n

; i ¼ 1; 2; ::::; n ð15Þ

where eri = triangular values.

Step 5 Computation of fuzzy weight using the following

three sub processes (5a, 5b, and 5c).

5a: Computation of vector summation of each eri
5b: The fuzzy triangular number was substituted to

convert it to an increasing order, after determining the (-1)

power of the summation vector.

5c: Computation of fuzzy weights: Each eri was multi-

plied with its reverse vector as in Eq. 16 to compute the

weights

~wi ¼~ri � ð~r1 � ~r2 � . . .� ~rnÞ�1

¼ ðlwi;mwi; uwiÞ
ð16Þ

Table 3 Pairwise comparison matrix for socio-economic vulnerability

TP NH LR BRT BC HHS CP MP1 MP2 ATI BWT Vp Cp

TP 1 2 3 4 5 6 7 8 9 10 11 3.202 0.187

NH 1/2 1 2 3 4 5 6 7 8 9 10 2.462 0.144

LR 1/3 � 1 2 3 4 5 6 7 8 9 1.848 0.108

BRT 1/4 1/3 1/2 1 2 3 4 5 6 7 8 1.413 0.082

BC 1/5 � 1/3 1/2 1 2 3 4 5 6 7 1.271 0.074

HHS 1/6 1/5 1/4 1/3 1/2 1 2 3 4 5 6 1.244 0.073

CP 1/7 1/6 1/5 1/4 1/3 1/2 1 2 3 4 5 1.221 0.071

MP1 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 2 3 4 1.194 0.070

MP2 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 2 3 1.158 0.067

ATI 1/10 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 2 1.105 0.064

BWT 1/11 1/10 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 1.038 0.060
P

3.02 4.93 7.83 11.72 16.59 22.45 29.28 37.08 45.83 55.50 66.00 17.16 1.00

*Where TP is the total population, NH is the number of households, LR is the literacy rate, BRT is the building roof types, BC is the building

condition, HHS is the household size, CP is the child population, MP1 is the marginalized population 1 (SC), MP2 is the marginalized population

2 (ST), ATI is the access to information, and BWT is the building wall types
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Table 8 Geometric means of fuzzy comparison values: Physical-environmental vulnerability

Fuzzy geometric mean value ð�tiÞ

Slp. 3.292 4.147 4.902

Soil 2.282 3.008 3.840

LULC 1.576 2.113 2.785

SD 1.080 1.459 1.956

Geom. 0.740 1.000 1.351

WRI 0.511 0.685 0.926

MNDWI 0.359 0.473 0.634

NDBI 0.260 0.332 0.438

NDVI 0.204 0.241 0.304
P

�ti 10.305 13.460 17.136

ð
P

�tiÞ�1 0.058 0.074 0.097

Table 9 Geometric means of fuzzy comparison values: socio-economic vulnerability

Fuzzy geometric mean value ð�tiÞ

TP 3.98 4.91 5.73

NH 2.90 3.71 4.61

LR 2.09 2.72 3.48

BRT 1.50 1.96 2.55

BC 1.07 1.40 1.84

HHS 0.76 1.00 1.32

CP 0.54 0.71 0.94

MP1 0.39 0.51 0.67

MP2 0.29 0.37 0.48

ATI 0.22 0.27 0.35

BWT 0.17 0.20 0.25
P

�ti 13.903 17.768 22.221

ð
P

�tiÞ�1 0.045 0.056 0.072

Table 10 Relative fuzzy weights, averaged and normalized relative weights: Physical-environmental vulnerability

Fuzzy weight Weight (wi) Normalized weight

½ �Wi ¼ �t i � ððR�t iÞ�1Þ�

Slp. 0.192 0.308 0.476 0.325 0.299

Soil 0.133 0.223 0.373 0.243 0.223

LULC 0.092 0.157 0.270 0.173 0.159

SD 0.063 0.108 0.190 0.120 0.111

Geom. 0.043 0.074 0.131 0.083 0.076

WRI 0.030 0.051 0.090 0.057 0.052

MNDWI 0.021 0.035 0.062 0.039 0.036

NDBI 0.015 0.025 0.043 0.027 0.025

NDVI 0.012 0.018 0.029 0.020 0.018
P

1.09 1.00
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Step 6 Eq. 17 was utilized for the de-fuzzification of

fuzzy weights (Chou and Chang 2008)

Mi ¼
lwi;mwi; uwi

3
ð17Þ

Step 7 Standardization of Mi using Eq. 18.

Ni ¼
Mi

Pn
i¼1 Mi

ð18Þ

The weights derived by the F-AHP model for the PEV

and SEV indicators are depicted in Eqs. 19 and 20.

PEV ¼ 0:299�Slp:ð Þþ 0:223�Soilð Þþ 0:159�LULCð Þ
þ 0:111�SDð Þþ 0:076�Geom:ð Þþ
0:052�WRIð Þþ 0:036�MNDWIð Þ
þ 0:025�NDBIð Þþ 0:018�NDVIð Þ

ð19Þ

SEV ¼ 0:269�TPð Þþ 0:208�NHð Þþ 0:154�LRð Þ
þ 0:112�BRTð Þþ 0:081�BCð Þþ 0:057�HHSð Þ
þ 0:041�CPð Þþ 0:029�MP1ð Þþ 0:021�MP2ð Þ
þ 0:020�ATIð Þþ 0:012�BWTð Þ

ð20Þ

2.6 Validation of modelling results using
the ROC method

ROC graphs are widely used to evaluate a classifier’s

performance. On the y-axis, sensitivity is plotted, while

1-specificity is plotted on the x-axis (Grimnes and

Martinsen 2015). The AUC is a single scalar statistic that

quantifies a binary classifier’s total performance (Hanley

and McNeil 1982). An AUC value of 0.7 to 0.8 is

acceptable, 0.8 to 0.9 is excellent, and more than 0.9 is

outstanding (Hosmer and Lemeshow 2000). The results of

the study were validated using the flood inundation data

provided by the NRSC for the years 2018, 2019, and 2020

(Fig. 3a, 3b, and 3c). In this research, a total of 100 loca-

tions within the flood-inundated areas have been randomly

selected as a validation dataset (Fig. 4). The SPSS software

was utilized for plotting the ROC graph and estimating the

AUC values.

3 Results

3.1 Vulnerability indicators

3.1.1 Slope angle

When the slope angle is less, the probability of flooding

increases (Rahman et al. 2019). Runoff from rainfall

accumulates and inundates areas with gentle slopes due to

the low flow velocity in these areas (Lee and Kim 2021).

The slope of the district ranges from 0 to 74.48� (Fig. 5a)
and is categorized into five zones (0–4.67�, 4.68–9.93�,
9.94–17.52�, 17.53–27.75�, and 27.76–74.48�). The west-

ern portion of the district has gentle slopes, while the

northeastern portion has steeper slopes.

3.1.2 Soil texture

The greater the infiltration rate of soil, the less likely a

flood will occur (Islam et al. 2021). Impermeable forma-

tions, such as clay, enhance runoff rates, increasing the

Table 11 Relative fuzzy weights, averaged and normalized relative weights: Socio-economic vulnerability

Fuzzy weight Weight (wi) Normalized weight

½ �Wi ¼ �t i � ððR�t iÞ�1Þ�

TP 0.179 0.276 0.412 0.289 0.269

NH 0.130 0.209 0.332 0.224 0.208

LR 0.094 0.153 0.250 0.166 0.154

BRT 0.067 0.111 0.184 0.121 0.112

BC 0.048 0.079 0.133 0.087 0.081

HHS 0.034 0.056 0.095 0.062 0.057

CP 0.024 0.040 0.068 0.044 0.041

MP1 0.018 0.029 0.048 0.031 0.029

MP2 0.013 0.021 0.034 0.023 0.021

ATI 0.010 0.015 0.025 0.017 0.020

BWT 0.008 0.011 0.018 0.012 0.012
P

1.07 1.00
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probability of flooding (Swain et al. 2020b). On the basis of

soil texture, the soils are classified into clay, gravelly clay,

gravelly loam, loam, and sand (Fig. 5b). The lower ele-

vated parts of the district have predominantly clayey soil.

3.1.3 Land use/land cover (LULC)

Flooding is more likely in built-up areas because water

cannot infiltrate and generate surface runoff (Islam et al.

2021). Increased forest and vegetation cover enhances

Fig. 3 a. 2018 Flood inundated area; b. 2019 Flood inundated area; c. 2020 Flood inundated area

Fig. 4 Flood inundation data (2018–2020) and validation dataset

Stochastic Environmental Research and Risk Assessment (2023) 37:527–556 539

123



water infiltration and reduces runoff depth, thus lowering

the chance of flooding (Swain et al. 2020b). The land

use/land cover (LULC) types comprise agricultural land,

forest plantations, grassland, plantations (mixed vegeta-

tion), evergreen forest, built-up areas, water bodies, and

wetlands (Fig. 5c). Agricultural land (paddy fields) and

wetlands dominate the low-elevation part of the study area.

3.1.4 Stream density

Flooding is more likely in locations with lower stream

densities because there aren’t enough streams to drain out

the surplus rainwater (Ajin et al. 2013; 2019). On the basis

of the density of stream channels, the district is categorized

into five zones (0–1.02 km/km2, 1.02–2.47 km/km2,

2.47–3.53 km/km2, 3.53–6.48 km/km2, and

6.48–10.87 km/km2). The lower elevation region of the

study area has a stream density ranging from 0 to 1.02 km/

sq.km (Fig. 5d).

3.1.5 Geomorphology

The geomorphic classes of the study area comprise the

coastal plain, denudational hills, floodplain, islands, and

plateau (Fig. 6a). The coastal plain and floodplains, located

in the lower elevated region of the study area, are more

susceptible to flooding due to flat topography, which

favours inundation.

3.1.6 Water ratio index (WRI)

Shen and Li (2010) suggest a WRI with a value greater

than 1 for waterbodies. WRI values less than or close to 1

(especially values closer to and below zero) indicate that

the soil moisture content is higher, making the area more

vulnerable to flooding. The WRI of Kottayam district

ranges from 0.30 to 1.45 and is grouped into five zones

(0.30–0.54, 0.55–0.62, 0.63–0.78, 0.79–1.09, and

1.10–1.45) as depicted in Fig. 6b. The low elevated regions

have a WRI value above 1.

Fig. 5 a. Slope; b. Soil types; c. Land use/land cover types; d. Stream density

540 Stochastic Environmental Research and Risk Assessment (2023) 37:527–556

123



3.1.7 Modified normalized difference water index (MNDWI)

The MNDWI (Xu 2006) suggests greater positive values

for water bodies and smaller negative values for soil,

vegetation, and built-up areas (Du et al. 2016). The higher

MNDWI values represent areas with higher soil moisture

content and are more vulnerable to flooding. The MNDWI

of the study area ranges from -0.69 to 0.31 and is grouped

into five zones (- 0.69 to - 0.24, - 0.23 to - 0.17,

- 0.16 to - 0.11, - 0.10 to 0.05, and 0.06 to 0.31) as

depicted in Fig. 6c. The low-elevated regions of the study

area have positive MNDWI values and hence, more vul-

nerable to flooding.

3.1.8 Normalized difference built-up index (NDBI)

The positive NDBI values show built-up areas (Shahfahad

et al. 2021). Urbanization increases the amount of imper-

vious surface area in a location, slowing the hydrologic

system’s response time and thereby increasing the risk of

flooding (Feng et al. 2021). The NDBI of the study area

ranges from - 0.45 to 0.57 and is grouped into five zones

(- 0.45 to - 0.23, - 0.22 to - 0.17, - 0.16 to - 0.10,

- 0.09 to 0.00, and 0.01 to 0.57) as depicted in Fig. 6d.

The low-elevated regions of the area have positive NDBI

value and hence, induce flooding.

3.1.9 Normalized difference vegetation index (NDVI)

The NDVI ranges between - 1 and ? 1 (Gessesse and

Melesse 2019), and densely vegetated areas will be rep-

resented by positive values, and water and built-up areas,

on the other hand, will be indicated by near-zero or neg-

ative values (Viana et al. 2019). The possibility of flooding

is high in areas with lower NDVI values, as these values

represent non-vegetated areas where the chance of surface

runoff is greater. The thick vegetative cover can improve

water infiltration and reduce runoff depth, lowering the risk

of flooding (Swain et al. 2020b). The NDVI of the study

area ranges from - 0.11 to 0.59 and is grouped into five

zones (- 0.11 to 0.08, 0.09 to 0.25, 0.26 to 0.34, 0.35 to

0.41, and 0.42 to 0.59) as depicted in Fig. 7. The low-

elevated regions of the study area have negative NDVI

values.

Fig. 6 a. Geomorphology; b. Water ratio index; c. Modified normalized difference water index; d. Normalized difference built-up index
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3.1.10 Total population

Areas with a larger population will be more exposed to a

hazard and the evacuation process may be challenging,

making them more vulnerable (Tascón-González et al.

2020). The population of the study area ranges between

7029 and 55,374 (Fig. 8a) and is divided into five zones

(7029–14,339, 14,340–20,752, 20,753–27,977,

27,978–38,445, and 38,446–55,374).

3.1.11 Number of households

As the rescue and evacuation processes will be much more

complicated, the areas with a higher number of buildings

will be more vulnerable than those with a lower number of

buildings (Fernandez et al. 2016). The households in the

study area range between 1706 and 14,366 (Fig. 8b) and

are divided into five zones (1706–3556, 3557–4910,

4911–6952, 6953–9737, and 9738–14,366).

3.1.12 Literacy rate

A population’s level and quality of education is a strong

indicator of its vulnerability (Rasch 2016). Illiterates were

thought to be more vulnerable because they lack the basic

skills necessary to adapt to a risky situation (Deepak et al.

2020). The literacy rate of the study area ranges from 82.61

to 90.47% (Fig. 8c) and is categorized into five zones

(82.61%, 82.62–87.66%, 87.67–88.63%, 88.64–89.61%,

and 89.62–90.47%).

3.1.13 Building roof type

The roof of the buildings was categorized into different

groups, viz., grass/thatch/bamboo/wood/mud, plastic/poly-

thene, handmade tiles, machine-made tiles, burnt brick,

stone/slate, G.I./metal/asbestos sheets, concrete, and others.

Houses with concrete roofs will be more resistant to

flooding. The majority of the houses in the study area have

concrete roofs and hence, those houses were selected for

the modelling. Houses other than concrete roofs will be

Fig. 7 Normalized Difference Vegetation Index (NDVI) of the study area. The highly urbanized Kottayam town is noteworthy in west-central

region
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more vulnerable to flooding. The percentage of buildings

with concrete roofs ranges between 16.00 and 66.20%

(Fig. 8d) and is categorized into five classes

(16.00–27.90%, 27.91–36.90%, 36.91–45.47%,

45.48–55.60%, and 55.61–66.20%).

3.1.14 Building conditions

In the census data, the houses were categorized into three

groups: good, liveable, and dilapidated. The dilapidated

houses will be more prone to flooding. The percentage of

dilapidated houses in the district ranges between 0.00 and

11.00% (Fig. 9a) and is grouped into five classes

(0.00–1.40%, 1.41–3.20%, 3.21–5.00%, 5.01–7.20%, and

7.21–11.00%).

3.1.15 Household size

The larger the household size, the greater the number of

people impacted and the severity of the damage, and also,

they have to share the resources. (Deepak et al. 2020). In

this study, only houses with five or more residents were

selected. The percentage of houses with five or more res-

idents ranges between 10.13 and 16.60% (Fig. 9b), and is

categorized into five classes (10.13–11.16%,

11.17–12.06%, 12.07–12.68%, 12.69–14.10%, and

14.11–16.60%).

3.1.16 Child population

Children are particularly vulnerable to flood hazards as

finding higher ground is more difficult for them and thus,

increasing the likelihood of drowning-related fatalities

(Rasch 2016). The child population is categorized into five

classes: 7.11–7.90%, 7.91–8.51%, 8.52–9.16%,

9.17–10.18%, and 10.19–13.25% (Fig. 9c).

3.1.17 Marginalized population 1

Scheduled caste (SC) and scheduled tribe (ST) are among

India’s most socio-economically disadvantaged groups. In

this study, marginalized population 1 represents SC,

whereas 2 denotes ST category. Areas with a higher

number of SC residents are therefore more vulnerable to

Fig. 8 a. Total population; b. No. of households; c. Literacy rate; d. Building roof type
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flooding. The percentage of the marginalized population 1

(SC) in the study area ranges from 0.76 to 22.31% (Fig. 9d)

and is categorized into five: 0.76–3.74%, 3.75–5.63%,

5.64–8.33%, 8.34–11.92%, and 11.93–22.31%.

3.1.18 Marginalized population 2

As mentioned earlier, the ST population is a socio-eco-

nomically weaker group in India. Hence, they are more

vulnerable to flooding. The percentage of the marginalized

Fig. 9 a. Building condition; b. Household size; c. Child population; d. Marginalized population 1

Fig. 10 a Marginalized population 2; b access to information; c building wall type
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population 2 (ST) in the study area ranges from 0.09 to

30.40% (Fig. 10a) and is categorized into five:

0.09–0.89%, 0.90–1.91%, 1.92–5.45%, 5.46–15.12%, and

15.13–30.40%.

3.1.19 Access to information

Vulnerability is influenced by one’s capacity to access

pertinent hazard information (Rasch 2016).Broadcasting of

flood warnings through television and radio are frequent,

and the community without access to television/radio will

be more vulnerable to flooding. The percentage of people

with access to information (television/radio) is categorized

into five: 77.30–81.70%, 81.71–85.10%, 85.11–87.85%,

87.86–91.30%, and 91.31–97.30% (Fig. 10b).

3.1.20 Building wall type

The strength of a house’s walls will determine how vul-

nerable it is to flood damage (Rasch 2016). The materials

for the wall were grouped into grass/thatch/bamboo, plas-

tic/polythene, mud/unburnt brick, wood, stone not packed

with mortar, stone packed with mortar, G.I./metal/asbestos

sheets, burnt brick, concrete, and others. Houses with walls

made of burnt bricks and concrete are more resistant to

flooding. The majority of the houses in the study area have

walls made of burnt bricks and concrete and hence, those

houses were selected for the modelling. The walls con-

structed using materials other than burnt bricks and con-

crete will be more vulnerable to flooding. The percentage

of buildings with walls made of burnt bricks and concrete

ranges between 0.50 and 90.80% (Fig. 10c) and is cate-

gorized into five classes (0.50–18.60%, 18.61–37.63%,

37.64–52.22%, 52.23–67.00%, and 67.01–90.80%).

3.2 Flood vulnerability

The flood vulnerability of Kottayam district is depicted in

Figs. 11 and 12. The very high flood vulnerable zones are

mainly confined to the western portion of the study area.

This is due to the high to very high physical-environmental

vulnerability and socio-economic vulnerability of this area.

According to this study, a total of 12.29% and 11.81% of

the district are categorized into very highly vulnerable

Fig. 11 Flood vulnerability: AHP method
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zones by the AHP and F-AHP models, respectively

(Table 12). The ROC curve analysis proved that both the

models are effective, with an outstanding AUC value of

0.94 (Fig. 13). However, the AHP model (0.946) provided

slightly better results than the F-AHP model (0.943).

According to the vulnerability created using the AHP

model, the panchayats (Hamlet level LSG), namely

Neendoor, Vechoor, Aymanam, Arpookara, Chempu,

Thalayolaparambu, Kumarakom, Thiruvarppu, Kaduthu-

ruthy, Vazhappally, Kurichy, Udayanapuram, and Mara-

vanthuruthu, and the municipality of Changanassery, are

the very high flood vulnerable zones. From the study, it

was found that a major portion of the very high flood

Fig. 12 Flood vulnerability: F-AHP method

Table 12 Area and percentage of flood vulnerable zones

Vulnerable zones AHP method F-AHP method

Area (sq. km) Percentage of the area

of the vulnerable zones

Area (sq. km) Percentage of the area

of the vulnerable zones

Very low 302.28 13.69 290.79 13.17

Low 591.08 26.77 577.39 26.15

Moderate 587.11 26.59 553.55 25.07

High 455.95 20.65 525.50 23.80

Very high 271.36 12.29 260.77 11.81

Total 2208 100 2208 100
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vulnerable zone is agricultural land, followed by wetlands

(Table 13).

3.3 Physical-environmental vulnerability (PEV)

The vulnerability maps for the physical-environmental

indicators are depicted in Figs. 14 and 15. Major portions

of the high and very highly vulnerable zones are confined

to the western part of the study area. The area of each

vulnerable zone is shown in Table 14. From the modelling,

it is confirmed that slope, soil, LULC, stream density, and

geomorphology are the major causative factors. The high

and very high vulnerable areas have lower slopes, clayey

soil, agricultural land (paddy fields), lowest stream density,

and are coastal plains. A considerable percentage of the

area of the high and very highly vulnerable zones has lower

NDVI values, higher WRI, MNDWI, and NDBI values.

Thus, it is proved beyond doubt that all the factors selected

for the modelling are relevant. The AUC scores of 0.88 and

0.91 for the vulnerability maps created using the AHP and

F-AHP methods confirm that the results are excellent and

outstanding for these two models, respectively (Fig. 16).

The AUC score of 0.91 proves that the F-AHP method has

better prediction accuracy than the AHP method. Accord-

ing to the map created using the F-AHP method, the high

and very high vulnerable zones together constitute 20.73%

of the district.

3.4 Socio-economic vulnerability (SEV)

Figures 17 and 18 show the vulnerability maps for the

socio-economic indicators. The ROC curve analysis

(Fig. 19) proved that the F-AHP model (with an AUC

score of 0.953) is better than the AHP model (with an AUC

score of 0.92). Hence, the F-AHP model was selected as

the best model. Both the models provided outstanding

results. According to the vulnerability map created using

the F-AHP model, panchayats viz. Kurichy, Vazhappally,

Kaduthuruthy, Kanjirappally, Mundakkayam, Erumely and

Changanasserry, and Erattupetta municipalities (middle

level LSG) are very highly vulnerable. Most of the highly

vulnerable LSGs are concentrated in the low-lying regions

of the district. The highly and very highly vulnerable zones

have lower literacy rates, lower access to information, a

comparatively higher child population, larger household

sizes, larger MP2, and a lower percentage of houses with

concrete roofs. The low socio-economic conditions of the

people living in the high and very high vulnerable areas

impact egregiously on their lives and property as a result of

a natural disaster. Even a frail disaster might lead to great

loss and damage to society and its people.

Fig. 13 The ROC curves: flood vulnerability

Table 13 Land use/land cover classes in each flood vulnerable zones

Vulnerable

zones

AHP method F-AHP method

Area in sq. km Area in sq. km

GL PL BA WB WL AL EF FP GL PL BA WB WL AL EF FP

Very low 6.38 210.63 6.29 0.20 1.39 0.51 2.62 74.26 7.03 197.51 5.73 0.19 0.00 0.38 4.15 75.80

Low 2.95 487.58 33.56 0.61 2.82 6.47 6.33 50.76 2.42 477.80 33.96 0.61 0.00 6.46 8.33 47.81

Moderate 3.13 432.62 73.31 1.30 0.06 31.29 7.28 38.12 2.04 407.03 63.52 1.25 0.04 28.45 8.89 42.33

High 19.10 205.13 88.48 5.84 7.93 105.94 3.81 20.53 17.72 254.78 94.15 6.08 9.61 117.74 2.47 22.95

Very high 9.89 16.63 25.20 18.86 60.05 138.71 0.00 2.02 11.20 14.45 28.45 18.64 57.70 129.62 0.00 0.71

Where GL = Grassland, PL = Plantation, BA = Built-up area, WB = Water body, WL = Wetland, AL = Agricultural land, EF = Evergreen

Forest, and FP = Forest plantation
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4 Discussion

The vulnerability studies, melding the PEV and SEV

indicators, reveal that AHP and F-AHP as ideal methods.

Through the use of the consistency measure, the AHP

model improves the decision-making process (Olson

1988). During pairwise comparisons of factors, AHP

allows for a certain level of inconsistency (Afolayan et al.

2020). Fuzzy logic, a method based on possibility theory

(Thompson et al. 2012), can be highly useful in describing

complex systems, especially those containing ambiguities

and non-linearities (Chanal et al. 2021). The fuzzy logic

method is advantageous since it is simple and easy to

understand, and it does not require a large amount of data

for training purposes. Many problems involving imprecise

and uncertain data can be solved using the fuzzy logic

method (Afolayan et al. 2020). F-AHP is an AHP method

based on fuzzy logic theory (Putra et al. 2018). F-AHP will

be used to address AHP’s inability to handle imprecision

and subjectivity in judgments (Carnero 2020; Liu et al.

2020). A few previous studies (cf. Ali et al. 2019; Feloni

et al. 2020) compared the AHP versus FR models, and the

AHP versus F-AHP models for flood vulnerability mod-

elling. Moreover, the reliability of using such models

depends on the factors that are selected for the analy-

sis. The study conducted by Feloni et al. (2020) hasn’t

considered the SEV indicators. Deepak et al. (2020)

applied the AHP method and Random Forest models for

demarcating the flood vulnerable zones of a municipality in

the Ernakulam district (India). They considered both PEV

and SEV indicators, but the study was limited to a smaller

area. The present study found that the F-AHP model is

more effective than the AHP model for the assessment of

PEV and SEV, whereas the AHP model was found to be

slightly better than the F-AHP for the flood vulnerability

assessment. Akshaya et al. (2021), Khashei-Siuki et al.

(2020), and Tripathi et al. (2021) also found that the

F-AHP model is effective than the AHP model.

According to the PEV modelling, very high and high

vulnerable zones have lower slopes, clayey soil, agricul-

tural land, the lowest stream density, and are coastal plains.

Lower NDVI, higher WRI, MNDWI, and NDBI values are

found in a significant percentage in these zones. The clayey

Fig. 14 Physical-environmental vulnerability: AHP method
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soil with poor infiltration capacity and lower slopes are

ideal conditions for flooding. This observation concurs

with the findings of Samanta et al. (2018), where they

found that regions with poorly drained soil and lower

slopes (0–5�) are the primary reasons for flooding. The

low-lying, flood-prone areas of the Kottayam district are

agricultural land (especially paddy fields) and coastal

plains. These geomorphic/physiographic conditions usually

facilitate flooding.

Based on the SEV modeling, highly and very highly

vulnerable zones have lower literacy rates, lower access to

information, a comparatively higher child population, lar-

ger household sizes, larger marginalized population 2, and

a smaller percentage of dwellings with concrete roofs.

Fig. 15 Physical-environmental vulnerability: F-AHP method

Table 14 Area and percentage of vulnerable zones (Physical-environmental)

Vulnerable

zones

AHP method F-AHP method

Area (sq.

km)

Percentage of the area of the vulnerable

zones

Area (sq.

km)

Percentage of the area of the vulnerable

zones

Very low 300.73 13.62 296.53 13.43

Low 771.70 34.95 787.82 35.68

Moderate 664.83 30.11 665.93 30.16

High 375.36 17.00 368.08 16.67

Very high 95.38 4.32 89.64 4.06

Total 2208 100 2208 100
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Literacy can have a direct and indirect influence on disaster

vulnerability (Hoffmann and Blecha 2020), which is

defined as the ability to foresee, cope with, resist, and

recover from natural hazards. Literacy can directly

influence the knowledge, capabilities, skills, and percep-

tions acquired by individuals that allow them to effectively

prepare for and deal with disaster shocks (Hoffmann and

Blecha 2020). Indirectly, literacy makes individuals and

households have indirect access to material, informational,

and social resources, which can assist in reducing disaster

vulnerability (Hoffmann and Blecha 2020). The findings of

this study concur those of Sam et al. (2017), where they

identified low literacy rates and weak housing structures

are the primary causes for flood vulnerability. According to

Peek (2008), children are psychologically vulnerable and

may suffer from post-traumatic stress disorder during such

disasters. They are also physically vulnerable to death,

injury, illness, and abuse, and disasters often impair or

delay their educational progress (Peek 2008). Moreover,

the lack of financial resources of the marginalized popu-

lations to recover from disasters, are regarded as vulnerable

to disasters (Fucile-Sanchez and Davlasheridze 2020).

Fig. 16 The ROC curves: physical-environmental vulnerability

Fig. 17 Socio-economic vulnerability: AHP method
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4.1 Advantages of this or similar studies

The increasing frequency of flood occurrences due to

heavy rainfall, and subsequent overflowing and discoursing

of rivers in the study area led to heavy financial hardship

and distress among individuals and governments. Usually,

most countries have contingency funds to face any kind of

disastrous situation. In the case of India, from 2006

onwards, both the center (Federal Government) and the

states have established the National Disaster Response

Fund (NDRF) and the State Disaster Response Fund

(SDRF), respectively, as per the enactment of the Disaster

Management Act 2005 by Parliament. These funds are only

utilized as per the list of items and the norms of relief

assistance that are included in its guidelines. As per the

norms of the NDRF and SDRF, the government of India is

paying 0.4 million INR for the death of a person due to

flooding; * 0.1 million INR for a fully damaged house (in

plain areas); and * 0.04 million INR/hectare for sub-

stantial loss of agricultural land (only to small and marginal

farmers) (https://sdma.kerala.gov.in/sdrf-norms/). These

assistance funds are significantly insufficient when com-

pared to the actual value of the loss or damage to life and

property. As the relief assistance was inadequate, the

Kerala government increased the amount for some of the

items. This additional fund is allocated from the Chief

Ministers’ Disaster Relief Fund (CMDRF). Hence, the

exchequer is spending an enormous amount of money on

Fig. 18 Socio-economic vulnerability: F-AHP method

Fig. 19 The ROC curves: socio-economic vulnerability
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flood damage. Thus, this sort of study will help in identi-

fying areas vulnerable to flooding and taking precautionary

measures so that the effects of flooding can be minimized.

The huge amount of money saved through this can be

utilized for implementing mitigation measures. Priority

areas that require mitigation measures can also be identi-

fied through studies of this nature.

Akin to this, measures that are adopted in developed

countries like the US, which do not provide any assistance

to people for flood-related deaths, injuries, and damage

(agriculture loss, infrastructure loss, and so on) from their

budget, rather pay through flood insurance, and such

options should also be explored by developing countries

like India. For example, the Federal Emergency Manage-

ment Agency (FEMA) manages the National Flood Insur-

ance Program (NFIP) for the US, which is provided to the

public by a network of more than 50 insurance firms

(https://www.fema.gov/flood-insurance). Hence, imple-

mentation of disaster risk financing strategies is of utmost

importance to reduce the burden of the government. The

majority of the people in Kerala have a higher income than

the national average, where the replacement cost of the

average house would be more than 4–5 million INR

(UNDP 2018). Implementation of a suitable disaster risk

financing strategy is of utmost importance to society.

Presently, the disaster risk financing schemes available in

the state are mostly ex-post mechanisms such as budget

reallocations and SDRF/NDRF, rather than ex-ante in

nature, like insurance and catastrophic bonds (Government

of Kerala 2019b). Hence, by implementing new flood

insurance schemes with the support of private insurance

companies, a huge amount of money spent from the budget

can be saved and utilized for flood mitigation measures.

5 Conclusions

Before delving into the significance of this study, the major

constrains are: this study utilized the 2011 census data,

which is the only available valid data published by the

Indian government. The next census data, scheduled for

2021, is overdue in lieu of the COVID-19 pandemic. Due

to a lack of authentic data on the elderly population, this

was not considered in this study. The data on the elderly

population is very relevant for flood vulnerability assess-

ment, as the elderly population is more vulnerable to

flooding. Also, due to a lack of an adequate number of

weather stations, the rainfall (the triggering factor) data

was not considered in this modelling. Moreover, the grid-

ded data from the India Meteorological Department (IMD)

is available for free, but it has a lower resolution

(*25 km).

And the following are the study’s key findings:

• The AHP and F-AHP methods classified 12.29% and

11.81%, respectively, of the study area as very highly

vulnerable to floods.

• Soil is the most important PEV indicator, followed by

LULC, slope angle, stream density, and

geomorphology.

• A large portion of the high and very high flood

vulnerability zones is agricultural land. As a result, the

economic loss connected with agricultural land and

crop destruction will be significant.

• Lower literacy rates, lower access to information, a

disproportionately higher child population, larger

household size, a larger SC population, and a lower

number of dwellings with concrete roofs characterize

the high and very high flood vulnerable zones.

• With an AUC value greater than 0.94, both the AHP

and the F-AHP methods are outstanding in identifying

flood-vulnerable zones.

• The F-AHP method (AUC values: 0.919 and 0.953)

outperforms the AHP method (AUC values: 0.883 and

0.92) for PEV and SEV modelling, while the AHP

method (AUC value: 0.946) slightly outperforms the

F-AHP method (AUC value: 0.943) for flood vulner-

ability modelling.

According to this study, both methods were found to be

effective in mapping flood vulnerability and can be adapted

to other locations with similar physiographical settings.

The generated flood vulnerability maps will assist land-use

planners in identifying critical locations in Kottayam dis-

trict, allowing them to implement effective mitigation

measures to prevent loss of life, infrastructure, and prop-

erty, as well as avoid development in these areas.

Based on the findings of the present study, the following

recommendations are made:

• Implement a suitable disaster risk financing strategy and

flood insurance schemes.

• Conduct household survey-based studies to assess the

willingness of communities in flood vulnerable and

flood-affected areas to pay for flood insurance.

• Install automated weather stations or automated rain

gauges at the village/LSG level. This will enhance the

monitoring of rainfall and provide more accurate

weather predictions.

• Clear debris, aquatic weed plants like water hyacinth

(Eichhornia crassipes), and other obstructions from the

stream channels and widen the stream channels so as to

drain out the excess rain water.

• Ban construction on the river course and floodplains,

implement zoning of the areas based on the flood

hazard level, and stop development activities that block

the stream channels.
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• Make available high-resolution DEM (such as LiDAR

data or drone images) to create high-resolution flood

susceptibility maps for further micro-scale studies.

Acknowledgements This study was supported by a research centre in

Iran (Grant No. 54RCTR763542). The authors would like to express

their gratitude to the editor and anonymous reviewers for their

insightful comments on earlier versions of the manuscript.

Funding This study was supported by a research centre in Iran (Grant

No. 54RCTR763542).

Availability of data and materials The datasets generated during and/

or analysed during the current study are available from the corre-

sponding author on reasonable request.

Declarations

Conflict of interest The authors have no conflicts of interest to

declare.

Ethical approval This article does not contain any studies with human

participants or animals performed by any of the authors.

Informed consent Not applicable.

References

Abebe Y, Kabir G, Tesfamariam S (2018) Assessing urban areas

vulnerability to pluvial flooding using GIS applications and

Bayesian belief network model. J Clean Prod 174:1629–1641.

https://doi.org/10.1016/j.jclepro.2017.11.066

Abu Reza M, Islam T, Talukdar S, Mahato S, Kundu S, Eibek KU,

Pham QB, Kuriqi A, Linh NTT (2021) Flood susceptibility

modelling using advanced ensemble machine learning models.

Geosci Front 12(3):101075. https://doi.org/10.1016/j.gsf.2020.

09.006

Afolayan AH, Ojokoh BA, Adetunmbi AO (2020) Performance

analysis of fuzzy analytic hierarchy process multi-criteria

decision support models for contractor selection. Sci Afr.

https://doi.org/10.1016/j.sciaf.2020.e00471

Ahmed B (2015) Landslide susceptibility mapping using multi-

criteria evaluation techniques in Chittagong metropolitan area,

Bangladesh. Landslides 12:1077–1095. https://doi.org/10.1007/

s10346-014-0521-x

Ajin RS, Krishnamurthy RR, Jayaprakash M, Vinod PG (2013) Flood

hazard assessment of Vamanapuram river basin, Kerala, India:

an approach using remote Sensing & GIS techniques. Adv Appl

Sci Res 4(3):263–274

Ajin RS, Loghin AM, Vinod PG, Jacob MK (2019) Flood hazard zone

mapping in the tropical Achankovil river basin in Kerala: a study

using remote sensing data and geographic information system.

J Wetlands Biodiv 9:45–58

Akshaya M, Danumah JH, Saha S, Ajin RS, Kuriakose SL (2021)

Landslide susceptibility zonation of the Western Ghats region in

Thiruvananthapuram district (Kerala) using geospatial tools: a

comparison of the AHP and Fuzzy-AHP methods. Saf Extreme

Environ 3:181–202. https://doi.org/10.1007/s42797-021-00042-0

Ali SA, Khatun R, Ahmad A, Ahmad SN (2019) Application of GIS-

based analytic hierarchy process and frequency ratio model to

flood vulnerable mapping and risk area estimation at Sundarban

region, India. Model Earth Syst Environ 5:1083–1102. https://

doi.org/10.1007/s40808-019-00593-z

Amrutha K, Danumah JH, Nikhil S, Saha S, Rajaneesh A, Mammen

PC, Ajin RS, Kuriakose SL (2022) Demarcation of forest fire

risk zones in silent valley national park and the effectiveness of

forest management regime. J Geovisual Spat Anal. https://doi.

org/10.1007/s41651-022-00103-3

Ayhan MB (2013) A fuzzy AHP approach for supplier selection

problem: a case study in a gear motor company. Int J Manag

Value Supply Chains 4(3):11–23. https://doi.org/10.5121/ijmvsc.

2013.4302

Buckley JJ (1985) Fuzzy hierarchical analysis. Fuzzy Sets Syst

17(1):233–247

Carnero MC (2020) Fuzzy multicriteria models for decision making

in gamification. Mathematics. https://doi.org/10.3390/

math8050682

Chadsuthi S, Chalvet-Monfray K, Wiratsudakul A, Modchang C

(2021) The effects of flooding and weather conditions on

leptospirosis transmission in Thailand. Sci Rep. https://doi.org/

10.1038/s41598-020-79546-x

Chanal D, Steiner NY, Petrone R, Chamagne D, Péra MC (2021)
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