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Abstract
Occupancy models determine the true presence or absence of a species by adjusting for imperfect detection in surveys.

They often assume that species presences can be detected only if sites are occupied during a sampling season. We extended

these models to estimate occupancy rates that vary throughout a sampling season as well as account for spatial dependence

among sites. For these methods, we constructed a fast Gibbs sampler with the Pólya-Gamma augmentation strategy to

conduct inference on covariate effects. We applied these methods to evaluate how environmental conditions and

surveillance practices are associated with the presence of West Nile virus in mosquito traps across Ontario, Canada from

2002 to 2017. We found that urban land cover and warm temperatures drove viral occupancy, whereas viral testing on

pools with higher proportions of Culex mosquitoes was more likely to result in a positive test for West Nile virus. Models

with time-varying occupancy effects achieved much lower Watanabe-Akaike information criteria than models without

such effects. Our final model had strong predictive performance on test data that included some of the most extreme

seasons, demonstrating the promise of these methods in the study of pathogens spread by mosquito vectors.

Keywords Occupancy models � Spatio-temporal � Bayesian logistic regression � Vector-borne pathogens

1 Introduction

Vector-borne pathogens are becoming more prevalent and

colonizing new spatial regions as a result of climate change

and other human impacts, posing serious threats to human

and animal populations. This trend is true for mosquito-

borne pathogens because the mosquito life cycle depends

on local weather and land use conditions (Bartlow et al.

2019). For instance, Gorris et al. (2021) inferred northward

range expansions for several Culex mosquito species in

updating the original maps of Darsie and Ward (1981).

They found that abiotic factors like warm temperatures,

water availability, terrain, and land cover characterized

ecological niches for these mosquitoes. Relating environ-

mental conditions to vector disease ecology under a sta-

tistical modeling framework can reveal key relationships

between vectors and their environments and facilitate

projections of disease spread.

Mosquitoes carry the potential to transmit pathogens

maintained in reservoir hosts to humans and other animals.

Culex mosquitoes, in particular, have been documented as

potent disease vectors for West Nile virus (WNV), Eastern

equine encephalitis virus (EEV), Zika virus, and other

pathogens (Gorris et al. 2021). Turell et al. (2005) con-

firmed through laboratory experiments that Culex species

could spread WNV efficiently as enzootic or bridge vec-

tors. Since its arrival in North America in the late 1990s,

WNV has spread across the United States and Canada and

become endemic (Hadfield et al. 2019). It is a major public

health concern, costing the American and Canadian

economies hundreds of millions of dollars (Giordano et al.

2018).
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Various public health agencies across the US and

Canada maintain records on mosquito abundance and viral

testing. These programs involve classifying and counting

mosquito species found at trap sites across a geographic

region. In many instances, pools of mosquitoes were tested

for WNV and/or other pathogens. Although the dataset we

are using contains direct information about vector-borne

pathogens, most studies have only explored the patterns of

vector abundance. There are established methods to model

abundance in ecology (Royle and Nichols 2003; Royle and

Dorazio 2006), whereas analyzing viral data requires

another approach. Considering that WNV is a serious

public health concern, we developed a new statistical

method to make use of presence/absence indicators from

viral tests to create an occupancy model specifically for

viral presence in mosquitoes.

One of the challenges in developing an accurate viral

occupancy model is that mosquito populations, viral

transmission, and human sampling effort vary across time

and space. Our method generalizes the occupancy model to

allow occupancy to change during a sampling season

(MacKenzie et al. 2002, 2003, 2017). Occupancy modeling

posits a data-generating process by which a presence arises

when a species is both occupying a sampling site and

detected during a sampling period. The forces affecting

occupancy and detection differ; occupancy may depend on

local environmental conditions whereas detection may

depend on sampling procedures and effort. Historically,

these models have assumed that fauna either occupied or

did not occupy a site throughout a sampling season

(MacKenzie et al. 2002, 2003; Johnson et al. 2013; Hooten

and Hobbs 2015). We relaxed this assumption to adjust for

seasonality in vector-borne pathogens. Occupancy and

detection probabilities can be construed as the outputs of

generalized linear models (GLMs) with predictors

belonging to three different dimensions of heterogeneity:

site, season, and period. In our example, site is the areal

region, season is the yearly pattern, and period is the epi-

demiological week. Hence, time-varying occupancy mod-

els can be implemented by introducing occupancy

covariate effects that vary over periods.

The rest of this paper is presented as follows. Section 2

motivates the method development by introducing empir-

ical data on West Nile virus in Ontario, Canada. Section 3

formalizes the time-varying occupancy model and places it

alongside its historical counterparts. Monte Carlo Markov

Chain (MCMC) methods for Bayesian binary regression

are laid out in Section 3.3. Models with spatial random

effects are discussed in Section 3.4. In Section 4, we pre-

sent a model to study occupancy and detection patterns for

WNV in Ontario. Besides serving as an example for time-

varying occupancy, this case study uncovered strong sta-

tistical signals that were in line with contemporary scien-

tific knowledge. We conclude with commentary on the

time-varying occupancy model and its future use in vector

disease ecology.

2 West Nile virus mosquito data

The province of Ontario is 1.076 million km2 and holds

about 20% of Canada’s population. It is apportioned into

34 public health units (PHUs), ranging from rural, large,

and sparsely populated PHUs in the northwest to urban,

small, and densely populated PHUs in the southeast.

Between 2002 and 2017, these PHUs trapped mosquitoes

and tested them for WNV. Officials baited miniature light

traps and returned 24 hours later to collect mosquitoes and

diagnose WNV status (Giordano et al. 2018). Surveillance

was conducted at hundreds of trap sites each week from

May to October. Most PHUs surveyed traps at least once a

week, so weekly aggregation resulted in fewer missing

observations. Using the MMWRweek R package (Niemi

2020), we defined epidemiological weeks (epiweeks)

according to the Morbidity and Mortality Weekly Report

standard of the Centers for Disease Control and Prevention

(CDC) and other public health agencies throughout the

world. We chose this definition because human cases for

infectious diseases like WNV are commonly reported this

way.

2.1 Mosquito traps

Trap data included species classifications, abundance

counts, and test results for WNV from mosquito seasons in

2002-2017. Pools of mosquitoes were blended together and

then evaluated in aggregate for WNV, obscuring true

counts for how many mosquitoes harbored the virus

(Kesavaraju et al. 2012). Agency protocols and local

mosquito abundance and diversity also impacted this

detection process. Some PHUs collected and assessed more

specimens than others. On the other hand, baiting for

potential WNV vectors could have affected the viral test-

ing. For example, the Culex genus is especially relevant to

WNV transmission (Turell et al. 2005) and widespread

throughout Ontario (Gorris et al. 2021). Zero inflation was

a concern as well at finer spatial resolutions. These nuances

and limitations in the viral testing informed our decision to

model the binary response positive test versus negative

test(s). We converted counts of WNV tests to presence-

absence observations; namely, 1 corresponded to a positive

test and 0 corresponded to no positive tests.
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After data aggregation, there were 7396 trap observa-

tions, 1054 of which had a positive WNV test. Exploratory

data analysis highlighted some interesting trends: (1) the

majority of positive cases belonged to the Culex pipiens

morphological group, (2) PHUs in the Greater Toronto

Area (GTA) tested the most, (3) testing was generally

consistent between years, and (4) most positive tests

occurred between mid to late summer. Presences were

mainly in southern Ontario and unequally distributed about

the metro areas of Toronto, Ottawa, and Detroit. 2002,

2012, and 2017 had more cases than the average season

whereas 2009 had fewer cases (Figure 1).

2.2 Environmental factors

Prior studies of this dataset have reported temperature,

water resources, and land cover types that covary strongly

with mosquito abundance (DeMets et al. 2020a, b). Using

Poisson GLMs for the GTA data, Yoo (2014) and Yoo

et al. (2016) discovered positive associations between

temperature, precipitation, and population density and

Culex pipiens-restuans abundance. Wang et al. (2011)

found that temperature provided a stronger leading indi-

cation than precipitation in a Gamma GLM for Culex

pipiens-restuans abundance in the Peel region (PEE). In

general, mosquito species important to WNV transmission

thrive in human-occupied land with standing water avail-

able and warm weather conditions. Birds also play a part in

the enzootic cycle of WNV. Their competence as reservoir

hosts impacts transmission in dynamic ways (Allan et al.

2009; Ciota and Kramer 2013).

Based on this literature review, we gathered environ-

mental predictors to consider in our models. For climate

and land type, we collected 19 bioclimatic variables (Vega

et al. 2017) and 12 land classification proportions (Tuanmu

and Jetz 2014) that had been inferred from satellite ima-

gery. For weather trends and water availability, we

assembled temperature, precipitation, and water level

statistics from the daily reports of weather (Dunnington

2017) and hydrological stations (Albers 2017). Lastly, we

computed Shannon and Gini-Simpson diversity indices

(Simpson 1949; Willis and Martin 2020) based on obser-

vational data from the citizen-science project eBird (Sul-

livan et al. 2009). We chose these indices because they

were less affected by the sampling effort biases of the

eBird user base.

We aggregated these covariates to align with the PHUs

and weekly reporting. In some time periods, some PHUs

lacked weather, hydrological, or bird diversity measure-

ments. We imputed values for this small fraction of the

covariate data. Missing temperature, precipitation, and

water level values were replaced with distance-weighted

averages, whereas missing bird diversity indices were filled

in with medians.

These environmental covariates varied over space and

time. Regions at lower latitudes experienced warmer tem-

peratures, and epiweeks 30 to 40 aligned with the summer

heat. Bird diversity was typically strong throughout our

study period, but dips did occur and may be predictive. We

found water level to be relatively stable for each PHU,

which may indicate that its data source consists of managed

water resources. Plotting precipitation over time did not

uncover any noteworthy trends. Agricultural land was

prevalent in southern Ontario outside of downtown Tor-

onto. While land cover and climate characterized sites

only, temperature, precipitation, hydrological resources,

and bird diversity changed over time and may inform time-

varying occupancy.

3 Bayesian time-varying occupancy model

Study designs for occupancy modeling encompass hetero-

geneity along three different dimensions: site, season, and

period. Responses and covariates comprise a fourth

dimension. Let i, j, and k index sites, seasons, and periods,

respectively. Throughout this paper, we keep track of these

indices in variable subscripts. For our motivating WNV

data analysis, sites were PHUs, seasons ranged from 2002

to 2017, and periods concerned the epiweeks 18 to 44.

3.1 Standard occupancy models

Mackenzie et al. developed likelihood-based approaches in

the early 2000s to accommodate imperfect detection when

surveying animals (MacKenzie et al. 2002). We refer to

this model and its many extensions (MacKenzie et al.

2017) as occupancy models. These models separate

observation probabilities into products of occupancy and

detection probabilities. Before generalizing to multiple

seasons, we introduce the single-season occupancy model.Fig. 1 Total number of positive WNV cases by sampling season
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For an observation to be made, a species must have been

both present in an area and detected during sampling. Let y

denote a binary observation and z be a latent occupancy

status. For our case study, y is 1 if there was a positive

WNV test and 0 otherwise, and z is 1 if WNV was circu-

lating in a mosquito population and 0 otherwise. There are

three cases to consider: (a) observed ððy; zÞ ¼ ð1; 1ÞÞ, (b)

not observed but occupied ððy; zÞ ¼ ð0; 1ÞÞ, and (c) not

occupied ððy; zÞ ¼ ð0; 0ÞÞ. (Detection can only occur if

there is occupancy, hence ððy; zÞ ¼ ð1; 0ÞÞ is impossible.) If

the species was observed at least once in the season, the

third case did not apply. If the species was never observed,

this was either because it did not occupy the site or because

of repeated failures to detect it. The data-generating pro-

cess is formally stated as:

Yik �BernoulliðZi � pikÞ
Zi �BernoulliðwiÞ;

where vectors w and p are occupancy and detection prob-

abilities. Detection probabilities can be different over time

and among sites, whereas occupancy probabilities may

only change by site. If a site did not have a survey for a

given period, no data contributes to the model likelihood.

Given presence-absence data Y, the likelihood is as

follows:

Lðw; pjyÞ ¼
�Y

i

�
wi

Y
k

pyikik ð1 � pikÞ1�yik

�
�

I

�X
k

yik � 1

�
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Observed at least once

�

�
�Y

i

�
wi

Y
k

ð1 � pikÞ þ ð1 � wiÞ
�
�

I

�X
k

yik ¼ 0

�

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Never observed

�

ð1Þ

A colonization-extinction framework applies to multiple

sampling seasons in which site occupancy probabilities

may have changed. This model involves additional

parameters c and e for colonization and extincition proba-

bilities (MacKenzie et al. 2003). Occupancy probabilities

are calculated recursively:

wij ¼ wiðj�1Þð1 � eiðj�1ÞÞ þ ð1 � wiðj�1ÞÞciðj�1Þ

With too many parameters, maximum likelihood methods

are unlikely to converge, so the standard practice is to

model these component probabilities with probit or logistic

regression (MacKenzie et al. 2002). An appealing aspect of

the colonization-extinction model is that these components

may depend on different covariates than the occupancy and

detection components.

3.2 Time-varying occupancy

Single-season occupancy and colonization-extinction

models are restrictive in their assumption that site occu-

pancy was constant throughout a sampling season. We

weaken this assumption, letting site occupancy vary by

period. Thus, the data-generating process and likelihood

are:

Yijk �BernouilliðZijk � pijkÞ
Zijk �BernouilliðwijkÞ
Lðw; pjyÞ ¼

Y
ijk

ðwijkpijk|fflfflffl{zfflfflffl}
ðaÞ

Þyijk ðwijkð1 � pijkÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
ðbÞ

þ ð1 � wijkÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ðcÞ

Þ1�yijk

ð2Þ

In our methods, we achieve time-varying occupancy wijk by

including covariates xijk that varied between sampling

periods, since wijk is modeled with sigmoid regression.

Excluding period-dependent occupancy covariates means

wijk is the same for all periods k. However, when a species

was never observed at a site, the likelihoods (1) and (2)

differ slightly. Namely,Y
k

ðwijð1 � pijkÞ þ ð1 � wijÞÞ 6¼ ð1 � wijÞ þ wij

Y
k

ð1 � pijkÞ

Our likelihood includes non-occupancy in the product.

While this distinction may be important for likelihood

optimization methods, we did not explore it further as it did

not affect our MCMC sampling routines. Another differ-

ence is that seasonal effects are handled jointly with other

occupancy effects. We interpret seasonal effects to have

impacted occupancy directly, rather than impacting occu-

pancy indirectly through colonization and extinction. For

instance, we might conclude that harsh winters decreased

occupancy whereas MacKenzie et al. (2003) would say

that harsh winters increased extinction and decreased col-

onization. In this respect, the time-varying occupancy

model appears suitable for a species that is widespread and

mobile, responding uniformly to macro environmental

changes. This scenario is the case for WNV, as it is

maintained in migratory avian hosts and transmitted by

flying insect vectors.

3.3 Gibbs samplers for occupancy models

Classical Bayesian methods for modeling binary data take

the perspective that the outcomes depend on a latent

regression structure; namely,
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ul ¼
1; vl � 0

0; vl\0

�

~ul ¼ gl þ �l

where gl is a linear predictor and �l is an error distribution.

The errors follow normal distributions for probit regression

and logistic distributions for logistic regression. Albert and

Chib (1993) demonstrated for probit regression that the

latent variables could be sampled from truncated-normal

distributions. This strategy of sampling latent variables in a

hierarchical model is referred to as data-augmentation.

Conditional on the augmented variables, regression effects

can be shown to be a posteriori normally-distributed.

Polson et al. (2013) showed that such a scheme is possible

for Bayesian logistic regression as well. Their method is

nearly the same except their latent variables are sampled

from Pólya-Gamma (PG) distributions, where PG random

variables can be represented as infinite sums of scaled

Gamma random variables. Since the regression effects

remain a posteriori multivariate normal (MVN) condi-

tional on the latent PG variables, we can sample them in

two steps in a Gibbs way.

Combining Bayesian sigmoid regressions for occupancy

and detection together results in a blocked Gibbs sampler.

Dorazio and Rodriguez (2012) and Clark and Altwegg

(2019) have shown as much for probit and logistic

regression, respectively. For time-varying occupancy

models, we have to draw zijk at each period. We imple-

mented blocked Gibbs samplers for time-varying occu-

pancy with probit or logit link functions. We added further

hierarchy to our samplers with inverse-Wishart (IW) con-

jugacy for the covariances of the MVN effects. There are

many alternative ways to sample these posteriors distri-

butions from exact (Metropolis et al. 1953; Hoffman et al.

2014) to approximate (Rue et al. 2009; Blei et al. 2017)

MCMC methods. Polson et al. (2013) argue in simulated

and real data studies that the PG method does not depend

on careful hyperparameter tuning for proposal densities

and is more efficient than Metropolis-Hastings methods,

especially for complex model frameworks like ours. This

conclusion has been verified in the case of large spatial

occupancy models (Clark and Altwegg 2019, Table 3).

Before presenting our samplers, we lay out some nota-

tion. Let X and W be four-dimensional occupancy and

detection covariate arrays with column vectors xijk and wijk.

b and a denote occupancy and detection effects, and

multivariate normal means and covariances are l and R.

Using this notation and link function f, the data-generating

process is as follows:

Yijk �BernoulliðZijk � pijkÞ
Zijk �BernoulliðwijkÞ

f ðwijkÞ ¼ x0ijkb

f ðpijkÞ ¼ w0
ijka

b�Normalðlb;RbÞ
a�Normalðla;RaÞ

Rb � Inverse-Wishartðmb;KbÞ
Ra � Inverse-Wishartðma;KaÞ

Link functions logitðgÞ ¼ logðg=ð1 � gÞÞ and

f ðgÞ ¼ U�1ðgÞ, where Uð�Þ is the cumulative distribution

function of a standard normal random variable, character-

ize Bayesian logistic and probit regression for our hierar-

chical model. We decided to model with the logit link

function because interpretation with respect to log-odds is

more intuitive and preferred in statistical ecology

(Northrup and Gerber 2018).

3.3.1 Logistic regression for time-varying occupancy

We outline an algorithm (Algorithm 1) to perform Gibbs

sampling for a Bayesian time-varying occupancy model

with logit link functions. (A similar algorithm (Algorithm

2) for probit link functions is available in the Appendix.)

The data augmentation strategy of Polson et al. (2013) is to

draw continuous augmented variables from PG distribu-

tions and then use them to sample regression effects. For

occupancy modeling, we employ data augmentation to

sample detection effects as well if the latent status is

occupied for the current iteration. The supplement of Clark

and Altwegg (2019) includes algebraic derivations for this

sampler.

For the sampling algorithms, we use superscripts ðtÞ to

keep track of iterations, subscripts a and b to distinguish

between detection and occupancy, and accents to denote

augmented variables ~yijk and ~zijk associated with observa-

tions yijk and latent occupancy zijk. The arrays X and W are

collapsed to matrix form by stacking one on top of another

the row vectors x0ijk and w0
ijk for non-missing presence-ab-

sence observations. Intermediate mean m and covariance V

terms are computed each time for MVN updates. Lastly,

hyperpriors l ¼ 0, K ¼ I (identity matrix), and m ¼
dim(design matrix) are chosen to be weakly informative. A

review of prior specifications for occupancy models can be

found in Northrup and Gerber (2018).
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3.4 Spatial occupancy models

Dependence among areal units may confound inference in

spatial models. Hughes and Haran (2013) recommend

incorporating synthetic covariates that are orthogonal to

fixed effects covariates to model positive dependence via

spatial random effects (SREs) h�Normalð0;RhÞ. This

approach has been taken before by Johnson et al. (2013)

and Clark and Altwegg (2019) in fitting large spatial

occupancy models.

Let Xs be occupancy covariates that are fixed for each

site and A be an adjacency matrix, i.e., Ail ¼ 1 if i and l

touch and Ail ¼ 0 otherwise. The Moran operator for Xs is

P?
Xs
AP?

Xs
, where P?

Xs
¼ I� XsðX0

sXsÞ�1X0
s. Eigenvectors

from the spectral decomposition of the Moran operator

become the synthetic covariates attached to the SREs; their

corresponding eigenvalues indicate positive and/or nega-

tive spatial dependence. Let matrix M contain the orthog-

onal spatial covariates. The occupancy component is now

modeled by the equation f ðwijkÞ ¼ x0ijkbþm0
ih, and the

covariance matrix Rh is defined as r2
hðM0QMÞ�1

, where Q

is the intrinsic conditionally autoregressive precision

matrix (Besag and Kooperberg 1995). Inverse-Gamma (IG)

conjugacy is assumed for the variance scalar r2
h. In the

Appendix, we present MCMC samplers for time-varying

occupancy models with SREs.

4 West Nile virus in Ontario

We analyzed the West Nile virus data in Ontario, Canada

using our methodology (Algorithm 1). We used R to

sample from the posterior distribution in a Gibbs way the

parameters of Bayesian time-varying occupancy models.

For the logistic model, we call the R package Baye-

sLogit which implements an exact and efficient accept/

reject sampler for PG random variables (Polson et al.

2019). In addition, we programmed utility tools for data

preparation, model diagnostics, model evaluation, and

model visualization.

4.1 Model selection procedure

We split our data into training, validation, and testing

datasets. We held out seasons 2008, 2012, and 2016 as

examples of low, high, and medium case counts. With the

remaining 13 years, we trained and validated models on

seventy-five and twenty-five percent of the observations.

One diagnostic we checked was the Watanabe-Akaike

information criterion (WAIC) as a measurement of out-of-

sample predictive accuracy for Bayesian models (Watan-

abe 2013; Gelman et al. 2014). We implemented WAIC as

�2 � ðlog pointwise predictive density � pWAIC1
Þ (Gelman

et al. 2013, pp. 169,173). We measured WAIC on the

training dataset. Additionally, we made note of model

effects in which ninety-five percent credible intervals did

not overlap with zero. We interpreted such findings to

mean that the effect has a strong statistical signal. Lastly,

we formulated our own posterior predictive check for

Bayesian occupancy models (Algorithm 2). First, we cal-

culate presence probabilities for a given array by sampling

posterior effects and applying their link functions. Second,

we simulate presence-absence data 1000 times and con-

struct summary statistics. Our main summary statistic is the

relative presence, which is the average positive count

divided by the true positive count. Relative presence

evaluates how many binary 1 observations a model gen-

erates normalized by the true observations. It can be

computed over subsets of the sites (PHUs), seasons (years),

and periods (epiweeks) to diagnose strengths and weak-

nesses of a model. We looked at this posterior predictive

check for select sites and seasons in the validation dataset

to assess out-of-sample accuracy.
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4.2 Model building

Given that our model space was large, we chose to con-

struct models by iteratively adding covariates with plausi-

ble scientific meaning. All model covariates were derived

from the datasets described in Section 2. We applied root

and log transformations to covariates with skewed distri-

butions, including land cover proportions (Agrii and Urbani

for agricultural and urban land cover), mosquito genus

proportions (Culexijk), survey count (Surveysijk), catch rate

(CatchRateijk), the yearly count of weeks 1 to 17 with mean

temperature below zero Celsius (Freezingij), and water

level (Waterijk). To keep the models parsimonious, we did

not explore variable interactions.

For occupancy modeling, standard practice is to put a

covariate in either the occupancy or the detection compo-

nent but not both; otherwise, the effect may oscillate

between the two components and fail to converge. We

assigned covariates from the trap data to the detection

component and those from the environmental literature

review to the occupancy component. While mosquito

genus proportions and vector abundances could explain

occupancy, these were influenced by surveillance decisions

at the PHU level.

Initially, we fit some exploratory models to establish

intuition for which covariates contribute the most to model

improvements. Bioclimatic effects tended to have credible

intervals covering zero and did not improve WAIC scores.

At closer inspection, MERRAclim variables displayed little

variation over the province. We focused on agricultural and

urban land types with a downstream application in mind of

relating WNV in mosquito populations to human WNV

cases. These land types carry great significance as well

because they are habitats frequented by Culex species

(Gorris et al. 2021). Population density from the 2016

census was strongly correlated with urban land type, so we

did not use it in our models. Survey count, Culex propor-

tion, and catch rate all appeared useful in calibrating

detection probabilities.

Based on exploratory model building, we arrived at a

good null model without time-varying occupancy. This

model improved on an intercept only model in both WAIC

and relative presence.

Detectionijk ¼ a0 þ a1Surveysijk þ a2Culexijk þ a3CatchRateijk

Occupancyi ¼ b0 þ b1Agrii þ b2Urbani

In an iterative fashion, we added a seasonal covariate,

freezing weeks (Freezingij), and period covariates for

temperature (Tempijk), water level (Waterijk), and Gini-

Simpson diversity among birds (Birdijk) to the occupancy

component. Since environmental conditions in winter and

spring can impact mosquito development, we explored lags

of 2, 4, 6, and 8 weeks for the period covariates, finding

that six week lags substantially improved training and

validation WAIC scores. Next, we built in epidemic

behavior through a custom covariate, the two week lagged

count of known infected neighboring sites, including one-

self. That is, a site only contributes to the count if WNV

was detected there in the previous epiweek.

Occupancyijk ¼ b0 þ b1Agrii þ b2Urbani

þ b3Freezingij þ b4Tempijk

þ b5Waterijk þ b6Birdijk þ b7Neighborsijk

Finally, we included five spatial random effects in the

occupancy component. Our spatial design Xs included

agricultural and urban land types and site averages for

freezing weeks, temperature, water level, and bird diver-

sity. Smaller spatial designs resulted in strong posterior

correlations between land type fixed effects and SREs. For

each model, we checked trace plots and the Gelman-Rubin

diagnostic (Gelman et al. 2013) to ensure convergence of

all regression effects.

We report model comparisons in Table 1. In addition to

WAIC scores, for the validation data we computed our

custom posterior predictive check, relative presence, for all

sites, for the GTA region, and for seven sites above the

46th latitude (northern Ontario). Temperature and infected

neighboring sites made the biggest difference in the itera-

tive model build, which supports WNV occupancy varying

by period. The first SRE captured a residual effect of

longitude whereas the other SREs were less interpretable.

Otherwise, including SREs did not impact predictive per-

formance or change the posterior inference of occupancy

and detection effects (Appendix, Figure 5). All models had

poor predictive performance for northern Ontario. We

followed up this finding by fitting these models on northern

Ontario data only. We found that all posterior effects

overlapped with zero, indicating that these covariates did

not explain the observed WNV cases. Based on these
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diagnostics and our scientific understanding of WNV

transmission dynamics, we selected the final model with

SREs as our best model. We refit this model with training

and validation data for 3 chains of 12,000 iterations with

2,000 iterations of burn-in.

4.3 Model results

Our final model identified associations that have plausible

scientific interpretations and have been previously reported

in the literature (Table 2). Urban zones were more strongly

associated with WNV occupancy than agricultural land,

though both land types supported the pathogen. Warmer

temperatures appeared to provide favorable environmental

conditions for mosquitoes and WNV to thrive. Likewise,

colder winters affected WNV occupancy, possibly by

decreasing survival during the mosquitoes’ overwintering

period. Decreases in eBird species diversity indicated more

occupancy. This negative correlation was also observed in

a separate analysis by Allan et al. (2009) who surmised that

more bird species with low reservoir competence may exist

in diverse communities. More traps and more mosquitoes,

especially Culex mosquitoes, increased virus detection.

Temperature and surveillance changes over the sam-

pling season modified occupancy and detection. Figure 2

illustrates this pattern in the model predictions for a subset

of PHUs in 2016. Heat waves in the early summer drove up

occupancy rates for late summer. These seasonal peaks in

occupancy aligned well with the pattern of human WNV

cases from the Centers for Disease Control and Prevention

(McDonald et al. 2021, Figure 1). More Culex mosquitoes

were captured and tested in the late summer as well,

increasing detection rates. Figure 2 displays temporal

trends and uncertainty quantification, but it hides the

inherently spatial nature of this model. Maps for modeled

occupancy and detection in the 34th epiweek of 2016

capture this spatial behavior (Figures 3 and 4). Southeast-

ern Ontario, especially GTA, had high occupancy rates.

During the peak season, epiweeks 30 to 40, detection

generally exceeded 0.50 in GTA and sometimes surpassed

this mark in Ottawa (OTT), Windsor-Essex (WEC), and

other PHUs. Animated maps for the entire 2016 sampling

season are available online as Supplementary Materials.

We also assessed our model’s posterior predictive per-

formance for the test dataset (Table 3). For each PHU, we

simulated 200 presences and averaged the results. PHUs

Table 1 Iteratively built models

with WAIC applied to the

training dataset and relative

presence diagnostics applied to

the validation dataset

Model WAIC Relative Presence

Training All Sites GTA Northern

Intercept only 3562.037 1.050 0.425 5.189

Base model 2794.778 1.026 0.935 0.796

? freezing weeks 2776.312 1.010 0.935 0.921

? temperature 2582.637 0.981 0.789 0.549

? water level, bird diversity 2584.243 0.972 0.786 0.644

? infected neighbors 2293.325 0.951 0.823 0.779

? 5 SREs 2293.407 0.949 0.806 0.747

Table 2 Posterior effects for

final model. The first eight rows

are occupancy effects b and the

last four rows are detection

effects a

Covariate Effect Quantiles Gelman-Rubin

Variable Transform 0.025 0.500 0.975

Intercept - 5.046 - 3.115 - 1.357 1.001

Agricultural sqrt - 0.141 0.613 1.419 1.002

Urban sqrt 1.178 1.983 2.814 1.003

Freezing Weeks sqrt - 1.038 - 0.706 - 0.374 1.001

Temperature lag 6 0.115 0.151 0.188 1.003

Water level lag 6, sqrt - 0.031 0.108 0.233 1.000

Bird Diversity lag 6 - 1.360 - 0.276 0.847 1.001

Infected neighbors lag 2 1.208 1.414 1.654 1.005

Intercept - 10.100 - 9.004 - 7.982 1.001

Surveys sqrt 0.440 0.557 0.682 1.001

Catch rate cbrt 1.012 1.193 1.398 1.001

Culex proportion sqrt 5.358 6.339 7.398 1.000
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with no presences were typically modeled to have frac-

tional average presences. Meanwhile, PHUs with many

presences were modeled to have many average presences.

Metropolitan Toronto, one of the most surveyed PHUs, was

remarkably well estimated by our method. In sum, our

model simulated too few presences, especially for 2012;

however, regression emphasizes mean behavior, and 2012

had the highest case counts of any season.

5 Discussion

We developed a new approach to solve binary regression

problems in which the observed process is the product of a

detection process and a latent binary process. Our method

is in some sense a generalization of the single-season

occupancy model (MacKenzie et al. 2002) but without the

assumption of fixed occupancy. Our implementation relies

on the state-of-the-art data augmentation strategy of Polson

et al. (2013) to generate posterior samples in a Gibbs way.

We suspect that these methods could be thoughtfully

applied to analyze presence-absence data for other vector-

borne pathogens in which survey detection is imperfect,

e.g., the bacteria causing Lyme disease in ticks.

In an extended case study of West Nile virus in Ontario,

Canada, we demonstrated that Bayesian time-varying

occupancy models can attain good predictive performance

and identify scientifically meaningful relationships

between responses and covariates. Notably, we found

strong evidence to suggest that warmer temperatures in

general foster WNV spread in our study region. Careful

data fusion with citizen science and other Internet data

resources could provide value to future ecological and

environmental studies. Our analysis also suggests that

using traps to specifically capture Culex mosquitoes may

assist in WNV surveillance efforts. Finally, our modeling is

the first among studies on this dataset to examine mos-

quitoes and WNV across all of Ontario. Our efforts have

laid groundwork in the pursuit of an omnibus model for the

province.

Models for WNV occupancy in Ontario could be

improved and extended in various ways. Compiling and

integrating more covariate data of ecological importance

may elucidate new associations. Normalized difference

vegetation index (NDVI), a greenness measurement from

Fig. 2 (a) Occupancy and

(b) detection probabilities for

PHUs Ottawa (OTT), Sudbury

(SUD), Toronto (TOR), and

Windsor-Essex (WEC) in 2016.

Solid lines are posterior

medians, and bands are ninety-

five percent credible intervals.

(c) Lagged mean temperature

and (d) Culex proportion are

influential occupancy and

detection covariates
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remote sensing, could indicate microchanges to land type

at the temporal scale of days/weeks (DeMets et al.

2020a, b). Another useful predictor would be based on

standing water and other basins in which mosquitoes breed,

given that water level demonstrated a suggestive direction

of effect (Shutt et al. 2021). Similar to freezing weeks, a

seasonal covariates for precipitation could investigate the

effects of droughts and flooding. On the other hand, we

could study WNV occupancy at a finer spatial mesh. From

the onset, we aggregated to 34 areal sites, some as large as

states. While there are existing spatial methods to analyze

coordinate locations (Yue and Speckman 2010), working

with site locations as points would be challenging, both to

collect covariate data and address sparsity concerns. SREs

may also be important to account for spatial confounding.

Such a model could provide locally informative updates on

epidemics.

From a policy standpoint, we require statistical analysis

like that presented in this paper to inform public health

efforts and to start to quantify the relative impacts of time-

varying occupancy versus time-varying sampling. Under a

changing climate, vector-borne pathogens have been col-

onizing new regions and increasing in frequency, again

highlighting the utility of being able to predict viral

occupancy in systems that are seasonal. Our methods can

be implemented on a personal laptop and employed in real-

time to accommodate epidemic responses. With adequate

vector surveillance, public health officials can now quan-

tify the probability of occupancy and detection of an

environmentally-driven pathogen and mitigate its spread in

Fig. 3 Posterior medians for occupancy probabilities in Ontario on the 34th epiweek of 2016. The inset map juxtaposes southern Ontario relative

to northern Ontario
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a timely manner. Our method can also be used to improve

parameterization of other model types, such as differential

equation and agent-based disease transmission models. By

providing estimates of the probability through time that a

virus is present and that it is detected, we can better cali-

brate the data-fitting process for spatio-temporal mecha-

nistic models fit to mosquito virus data.

Fig. 4 Posterior medians for detection probabilities in Ontario on the 34th epiweek of 2016. Detection was missing when no surveys were done.

The inset map juxtaposes southern Ontario relative to northern Ontario
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Table 3 Model average versus

actual presences for test data
PHU 2008 2012 2016 Total

Model Actual Model Actual Model Actual Model Actual

ALG 0.09 0 0.21 0 0.06 0 0.36 0

BRN 0.93 1 1.55 3 0.61 0 3.09 4

CHK 2.18 0 3.13 3 2.90 0 8.21 3

DUR 2.28 0 5.11 6 3.11 6 10.50 12

ELG 1.20 0 3.86 6 2.10 2 7.16 8

EOH 0.72 0 1.87 2 1.28 1 3.87 3

GBO 0.00 0 0.03 0 0.00 0 0.03 0

HAL 4.53 4 6.15 10 6.64 9 17.32 23

HAM 4.39 3 8.82 9 7.14 9 20.35 21

HDN 1.82 1 0.98 1 0.83 0 3.63 2

HKP 0.28 0 1.21 0 0.66 1 2.15 1

HPE 0.33 0 1.88 6 1.10 1 3.31 7

HUR 0.49 0 3.38 1 2.27 3 6.14 4

KFL 0.23 0 1.12 3 0.15 0 1.50 3

LAM 0.71 0 4.77 6 1.46 1 6.94 7

LGL 0.55 0 1.42 0 0.60 0 2.57 0

MSL 1.30 0 4.67 8 2.14 4 8.11 12

NIA 1.56 0 5.37 9 3.25 5 10.18 14

NPS 0.33 0 0.49 0 0.32 0 1.14 0

NWR 0.12 0 0.06 0 0.10 0 0.28 0

OTT 1.45 0 3.81 9 3.46 8 8.72 17

PEE 5.95 7 9.25 12 7.62 9 22.82 28

PQP 0.04 0 0.04 0 0.04 0 0.12 0

PTC 0.31 0 4.32 7 1.34 0 5.97 7

REN 0.21 0 0.61 0 0.26 0 1.08 0

SMD 1.35 0 3.22 2 1.42 2 5.99 4

SUD 0.57 0 0.29 1 0.26 0 1.12 1

THB 0.05 0 0.05 0 0.03 0 0.13 0

TOR 7.26 6 11.26 12 8.79 10 27.31 28

TSK 0.10 0 0.12 0 0.09 0 0.31 0

WAT 1.60 0 2.31 5 2.00 1 5.91 6

WDG 1.16 0 4.77 2 0.10 0 6.03 2

WEC 3.89 7 6.86 9 5.70 9 16.45 25

YRK 2.25 2 7.15 10 3.80 1 13.2 13

Total 50.23 31 110.14 142 71.63 82 232 255
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Appendix

Probit regression for time-varying occupancy

The data augmentation strategy of Albert and Chib (1993)

is to draw continuous augmented variables from truncated-

normal distributions and then use them to sample the

regression effects. Intermediate mean m and covariance R
terms are adjusted as well. Otherwise, the sampler, Algo-

rithm 3, is similar to Algorithm 1.

Table 4 Posterior SREs h for final model

Variable Transform 0.025 0.500 0.975 Gelman-

Rubin

SRE 1 -0.114 -0.003 0.094 1.001

SRE 2 -0.061 0.004 0.095 1.001

SRE 3 -0.062 0.000 0.069 1.000

SRE 4 -0.062 0.002 0.077 1.000

SRE 5 -0.044 0.006 0.095 1.000

Fig. 5 Areal covariate corresponding to the first SRE. Negative (positive) values are in blue (red). The inset map juxtaposes southern Ontario

relative to northern Ontario
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Spatial logistic regression for time-varying
occupancy

The Gibbs sampler for Bayesian logistic regression with

SREs requires modifications to a PG parameter and m and

V terms. We also have to sample from a MVN for the

SREs h and from an IG for the variance parameter r2
h.

Otherwise, the sampler is as in the main article. Below we

show these updates to the occupancy component step in

Algorithm 1.

z
ðtÞ
ijk�

Bernoullið1Þ; yijk¼1

Bernoulli

�
wðt�1Þ
ijk ð1�p

ðt�1Þ
ijk Þ
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8>><
>>:
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Spatial probit regression for time-varying
occupancy

The Gibbs sampler for Bayesian probit regression with

SREs requires similar modifications. Otherwise, the sam-

pler is as in Algorithm 3. Below we show these updates to

the occupancy component step.
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Spatial random effects

Figure 5 shows that the areal covariate corresponding to the

first SRE uncovered a residual effect of longitude. Table 4

reports that all SREs had posterior quantiles tightly centered

about zero.

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s00477-

022-02257-4.
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