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Abstract
At the beginning of 2022 the global daily count of new cases of COVID-19 exceeded 3.2 million, a tripling of the historical

peak value reported between the initial outbreak of the pandemic and the end of 2021. Aerosol transmission through

interpersonal contact is the main cause of the disease’s spread, although control measures have been put in place to reduce

contact opportunities. Mobility pattern is a basic mechanism for understanding how people gather at a location and how

long they stay there. Due to the inherent dependencies in disease transmission, models for associating mobility data with

confirmed cases need to be individually designed for different regions and time periods. In this paper, we propose an

autoregressive count data model under the framework of a generalized linear model to illustrate a process of model

specification and selection. By evaluating a 14-day-ahead prediction from Sweden, the results showed that for a dense

population region, using mobility data with a lag of 8 days is the most reliable way of predicting the number of confirmed

cases in relative numbers at a high coverage rate. It is sufficient for both of the autoregressive terms, studied variable and

conditional expectation, to take one day back. For sparsely populated regions, a lag of 10 days produced the lowest error in

absolute value for the predictions, where weekly periodicity on the studied variable is recommended for use. Interventions

were further included to identify the most relevant mobility categories. Statistical features were also presented to verify the

model assumptions.
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1 Introduction

It has been two years since a group of patients with

pneumonia were found in Wuhan, China (Zhu et al. 2020).

While displaying symptoms similar to the severe acute

respiratory syndrome (SARS) (Zhou et al. 2020a), upon

investigation it was discovered that they had contracted a

novel form of a coronavirus, named SARS-CoV-2. The

disease was later named COVID-19 (WHO 2020). The

basic reproduction number R0 is a measurement of the

average number of secondary cases that one primary case

will generate. For COVID-19 this number was estimated to

be 2.2 in western Europe and 3.38 in China (Alimohamadi

et al. 2020; Locatelli et al. 2021). The R0 s of the Delta and

Omicron variants have been higher compared to the

ancestral SARS-CoV-2 virus (Liu and Rocklöv 2021;

Nishiura et al. 2021). There is currently no medication

approved by US Food and Drug Administration that offers

a cure for this disease (Güner et al. 2020). The death rate

for COVID-19 has been reported as 3.4%, but this fig-

ure can vary depending on factors such as age, sex, the

overall health of a population and the extent or otherwise of

a national health system. For example, for those with car-

diovascular disease the death rate from COVID-19 is

10.5% while for diabetes it is 7.3% (Ahmad 2020). Without

effective control measures, regions with relatively older

populations could see disproportionally more cases (Davies
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et al. 2020). Most countries struggle to control the social

and economic activities which lie behind many large-scale

gatherings, thus making it difficult to isolate the sources of

infection and cut off the channels of transmission. The

primary control measures continue to be good hand

hygiene, social distancing and quarantine. Any additional

preventative measures should consider the local environ-

ment and be country dependent.

Large-scale governmental measures, such as national

lockdowns and the widespread cancellation of mass gath-

erings, may be taken quickly and produce instant results.

However, the implementation of these strategies is usually

ex post facto leaving limited time for organizations and the

general public to adjust. In contrast, model-based predic-

tions could enable governments to announce soft control

measures and take action well in advance. Based on

accurate predictions, well-planned control measures could

lessen the number of infected individuals as well as mini-

mizing the costs of preventative measures (Mandal et al.

2020). In addition, control measures could provide the

medical system with sufficient time to allocate resources.

Models that can handle government interventions are pre-

ferred in actual decision-making. A dynamic loop between

modeling and measures deployment could be created to

establish an equilibrium point, where additional efforts

made on improving a model’s accuracy will not radically

affect a measure’s enaction. Thus, predictive models that

help to understand the future trends of confirmed COVID-

19 cases should serve as the basis for decision support at a

national or regional level. The SARS-CoV-2 spreads pri-

marily through respiratory droplets and close contact.

Given that the most probable transmission pathway is

between humans, even asymptomatic ones (Vella et al.

2020), of the best ways to chart its spread is by examining

the variable of human mobility and the different patterns

that can take. Mobility data has two key features: how

people move and how long people stay at a place. Due to

the characteristics of the data and the reduced opportunities

for public transport (see Sect. 4.1), we only considered the

second feature, mobility change at particular locations, to

build the models in this paper.

Adopting mobility could generate some uncertainties in

the modeling, for example, the choice of lag effect, the

impact of population density and the identification of

autoregressive terms. In order to handle these uncertainties,

the aim of this paper is to investigate how mobility change

can be effectively used to predict the number of cases of

COVID-19 infection. The empirical findings are illustrated

by using a set of regions, taken from a Nordic country, in

this case Sweden, with heterogeneous population densities.

The modeling framework is thought to be replicable in a

similar context. The specific contributions that this paper

aims to make are to:

1. Propose an autoregressive modeling framework for

count data in regions with different population

densities;

2. Identify the categories of locations where mobility

change is decisive for accurate predictions;

3. Provide a scheme to deal with the lag effects and

autoregressive terms;

4. Analyze the effect on modeling by including an

intervention;

5. Present statistical characteristics for two distributions

of the count data: Poisson and negative binomial.

The rest of the paper is organized as follows. Section 2

briefly reviews the research that has studied mobility as a

means of analyzing COVID-19. Section 3 presents the

generalized linear model for the autoregressive count data

and the quasi-likelihood for parameter estimation. Sec-

tion 4 outlines the nature of both the mobility data and the

daily confirmed cases of COVID-19 in Sweden. Modeling

implications and model applicability based on optimization

results and predictions are given in Sect. 5. The last two

sections discuss and conclude the work as well as point out

future work directions.

2 Existing research on mobility patterns
and COVID-19

The modeling methods and data resources used for

understanding the spread of COVID-19 are important

components for building a framework for prediction. The

same method may produce different results on different

datasets. To provide a basis for the modeling approach

taken in this paper, this section will provide a brief over-

view of the research on these components, as well as a

short discussion of the lag effect.

2.1 Empirical models for forecasting

Certain control measures, such as the suspension of trans-

port infrastructures and the placing of widespread bans on

public gatherings, can ensure a significant degree of social

distancing that can have a knock-on effect on disease

transmission (Tian et al. 2020; Vannoni et al. 2020).

However, the effect of these measures can vary between

region and time period, making them stochastic factors in

the accurate and long-term prediction of COVID-19 cases.

Mobility pattern, on the other hand, is a more sensible

proxy for the interpersonal contact rates that contribute to

COVIDd-19 transmission because it not only reflects the

consequences of measure execution, but also quantifies

how people gather and move. Reduced mobility can

simultaneously reduce the peak number of cases and delay
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the peak, which could help to alleviate the demand burden

in the medical system. For example, a 20% reduction in

mobility can cut down by 33% the peak number of cases

and delay the arrival of that peak by almost two weeks. The

reduction of the peak and the delay in its arrival could

reach 91% and 14 weeks with a 60% reduction in mobility

(Zhou et al. 2020b).

There are many data-driven models that associate

mobility patterns to case prediction. Basic statistical

models that are easy to implement, such as multiple

regression, least absolute shrinkage and selection operator,

as well as ridge regression (LASSO), have been tested for

short-term prediction (Wang et al. 2021). As the number of

predicted days-head increased, however, the number of

errors grew. Another simple and transparent statistical

model that has been tried was to estimate the effect of non-

pharmaceutical interventions on mobility by using basic

machine learning methods to generate a 10-day ahead

forecast. The indications are that mobility data on its own

is sufficient to forecast meaningfully at all geographic

scales (Ilin et al. 2021). Similarly, basic machine learning

methods, such as regression tree, random forest and arti-

ficial neural network, have been combined in a linear

model to deal with data in a non-linear relationship and

with a non-normal distribution (Kuo and Fu 2021). The

authors recommended that more sophisticated models for

better prediction accuracy need to be explored.

Some efforts have been made to capture inherent tem-

poral dependencies and spatial correlations. Using a LSTM

network, for example, the combination of mobility and

meteorological data was found to be the primary factor in

case prediction (Rashed and Hirata 2021). A susceptible to

infectious transition rate, as a function of mobility and

social behavior with time-dynamics parameters, was

modeled by a deep LSTM, which was further integrated

into a susceptible-exposed-infectious-recovered (SEIR)

model for case forecast (Bhouri et al. 2021). A graph neural

network is another attempt to capture the spatio-temporal

dynamics, where spatial edges represent mobility-based

inter-region connectivity and temporal edges represent

node features through time (Kapoor et al. 2020).

2.2 Lag effect

A crucial issue in modeling is to determine the lag in days

between the mobility data and the confirmed cases. From

the time an individual comes into contact with the COVID-

19 virus and contracts the disease, confirming the diagnosis

can be a complex process. The length of time it can take for

a case to be confirmed can be affected by incubation per-

iod, testing speed and report delay. The incubation period

can vary, but most cases manifest themselves between 3

and 7 days after initial infection (Wang et al. 2020). The

magnitude of the lag effect be even larger depending on the

reporting variations in medical systems in different coun-

tries. A lag of 4 days was used to investigate the inter-

vention policies across 33 provincial regions in China as a

means of identifying both internal and external transmis-

sion effects (Oka et al. 2021). An optimal lag of 11 days

was found to achieve the highest correlation between the

mobility and COVID-19 growth rate ratios for a single all-

county model in the United States (Badr et al. 2020) while

Noland used 7-day and 14-day lags to estimate the repro-

duction number R0 by a log-linear model (Noland 2021).

For the modeling of multiple countries, it would appear

that a generic 7-day lag can indicate that a 10 percentage

point reduction in mobility is associated with a 0.04–0.07

reduction in R0 (Bergman and Fishman 2020).

2.3 The Google data

Using smart devices and digital transactions is the most

rapid and convenient way to collect human mobility data

for forecasting the COVID-19 pandemic (Chang et al.

2021; Guan et al. 2021; Leung et al. 2021). While the smart

devices are GPS-tracked, the locations of the transaction

data can be found at retail outlets, leisure facilities and

other public amenities. Among the public datasets currently

available, the Google COVID-19 Community Mobility

Reports have been widely used for forecasting cases of

infection and providing insights on how to use mobility

characteristics efficiently (Wang and Yamamoto 2020;

Bryant and Elofsson 2020; Achterberg et al. 2020; Sch-

wabe et al. 2021; Garcı́a-Cremades et al. 2021). Sufficient

mobility records in both spatial and temporal dimensions

enable the training of machine learning models that require

large amount of data. Some research has adopted a number

of statistical and machine learning models based on a

recurrent neural network as well as an ensemble approach

in order to predict trend changes in the 14-day cumulative

incidence (Garcı́a-Cremades et al. 2021). In this work, two

datasets with similar training periods but different testing

periods were used to compare the models. It is not sur-

prising that the dataset with the shorter prediction period

and stable trend outperformed the other one and demon-

strated a greater predictability. The research also suggested

that a 14-day cumulative incidence is predictive of mobility

variables with the lag of seven days. In another work, a

Network Inference-based Prediction Algorithm (NIPA), a

combination of machine learning and phenomenological

epidemiology, was proposed to predict the cumulative

number of infected cases up to six days ahead (Achterberg

et al. 2020). The research that has been done using net-

work-based approaches has considered the interactions

between different regions. Including a time-varying or

static prior close to the true contact network may improve
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the performance of a NIPA across logistic function, sig-

moid curves and LSTM. A mobility-marked Hawkes

model was proposed for case prediction in the early stages

of the pandemic (Schwabe et al. 2021). The study retooled

to adopt a Hawkes process to capture the transmission

dynamics. A mark, estimated by a regularized Poisson

regression, was used to modulate the rate of infections and

to account for the variations of R0 across region and time.

Finally, a correction procedure incorporated new cases

seeded by people traveling between regions. With a fore-

casting period between 5 and 21 days, the model achieved

outstanding performance when compared with six other

baseline methods. Using the same data and the assumption

of a 14-day incubation period, a recursive training-and-

predicting process was conducted by characterizing the

spatio-temporal dynamics (Wang and Yamamoto 2020).

A Markov-Chain Monte-Carlo (MCMC) model was

developed to estimate the spread of COVID-19 across a

selection of 11 European countries and to further model the

number of deaths from negative binomial distribution

(Bryant and Elofsson 2020). For some unknown reason,

when a 3-week forecast was reached, the model tended to

overestimate the impact of non-pharmaceutical interven-

tions in Sweden and Denmark. These modeling outcomes

have provided us with ample resources for benchmarking

new modeling methods and suggesting a range of policy

implications.

2.4 Indications

Various models and data sources have been identified in

order to predict and manage the outbreak and spread of

COVID-19 at different locations and at different geo-

graphical scales (Mohamadou et al. 2020; Zhang et al.

2021). It is still challenging to build a common modeling

framework for COVID-19 case prediction that fits all

regions and time periods. In addition to the inherent and

complex dependencies in both spatial and temporal

dimensions, individual behaviors may also affect the pre-

dictions. For example, people wearing a mask spread the

virus to a smaller number of people and thus contribute to a

flattening of the infection curve, even in a scenario without

mobility restriction (Lima and Atman 2021). Travel

restrictions may be less effective once the outbreak is more

widespread, although they were highly effective measures

in the early stages of the pandemic (Kraemer et al. 2020).

However, the time boundary for distinguishing early and

post-early stages is still unclear. Thus, any potential models

need to be built separately in the study area and then

compared across different scenarios before being deployed

for policy making.

3 Modeling method

3.1 Models for count data

The number of daily confirmed COVID-19 cases can be

modelled as count data from a Poisson (Zhang et al. 2020;

Agosto and Giudici 2020) or a negative binomial distri-

bution (Oztig and Askin 2020). The conditional Poisson

model, denoted by Yt ¼ yjF t�1 �PoissonðktÞ, considers a

set of historical factors, F t�1, at time t � 1 to imply the

distribution at time t:

P Yt ¼ yjF t�1ð Þ ¼ kyt e
�kt

y!
; y ¼ 0; 1; 2; . . . ð1Þ

where Yt is a random variable with conditional expectation

and variance E Yt ¼ yjF t�1ð Þ ¼ Var Yt ¼ yjF t�1ð Þ ¼ kt.
Supposing that the expectation can be characterized by Ztkt
in a mixed Poisson model with a positive i.i.d. random

variable Zt from the gamma distribution, the marginal

distribution of ~Yt ¼ yjF t�1 then becomes a negative

binomial distribution when EðZtÞ ¼ 1 and Var Ztð Þ ¼ r2

(Lawless 1987). A dispersion parameter / ¼ 1=r2 is

introduced to formulate its probability mass function

P ~Yt ¼ yjF t�1

� �
¼ Cðyþ /Þ

y!Cð/Þ
kt

/þ kt

� �y /
/þ kt

� �/

;

y ¼ 0; 1; 2; . . .

ð2Þ

denoted by ~Yt ¼ yjF t�1 �NBðkt;/Þ. In this setting,

E ~Yt ¼ yjF t�1

� �
¼ kt and Var ~Yt ¼ yjF t�1

� �
¼ kt þ k2

t =/,

which indicates that the Poisson variable is a limiting case

when r2 ! 0.

3.2 Autoregressive model

In addition to the distributional features, the autoregressive

relationship is also reflected in the time series data. In this

paper, the Poisson autoregression is built upon an integer-

valued generalized autoregressive conditional

heteroskedastic (INGARCH) approach to linearly regress

on a process of lagged values and conditional means

(Ferland et al. 2006; Fokianos et al. 2009):

kt ¼ b0 þ
Xp

i¼1

ciYt�i þ
Xq

j¼1

djkt�j; ð3Þ

where b0, ci and dj are parameters to be estimated. The

model facilitates the selection of lagged periods and the

capture of seasonal effects by determining the values of ci
and dj. One of the limitations for using INGARCH is that

the inclusion of time varying covariates can only provide

positive effects. Negative effects lead to unreasonable

regressors for count variables. To allow for negative
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effects, this work thus adopts a more general modeling

form of conditional count time series data under the

framework of a generalized linear model (GLM) (Nelder

and Wedderburn 1972; McCullagh and Nelder 1989), but

extends this GLM by regressing on past terms such as Yt�i

and kt�j in Eq. (3) (Liboschik et al. 2017). The autore-

gressive count data (ACD) model used in this paper is:

g ktð Þ ¼ b0 þ
Xp

i¼1

cih Yt�ið Þ þ
Xq

j¼1

djg kt�j

� �
þ g>Xt; ð4Þ

where g : Rþ ! R is a link function that maps the

expectation to a linear regressor and relaxes the positive

constraint of the regressor in Eq. (3). The function h :
N0 ! R ensures that the lagged values are transformed to

real values. g ¼ ðg1; g2; . . .; gmÞ> is another set of param-

eters on the covariate vector Xt. Similar to the GLM set-

ting, the ACD model gives consistent maximum likelihood

estimators when g xð Þ ¼ logx and h xð Þ ¼ logðxþ 1Þ
(Fokianos and Tjøstheim 2011).

When an intervention, such as the introduction of a new

travel policy related to COVID-19, occurs prior to t, the

magnitude of its effect, nDt�s1ðt� sÞ, can be added, where

n is the parameter, D 2 0; 1½ � determines the decay rate of

the intervention effect and s is the time of occurrence.

Specifically, when D ¼ 0, the intervention effect only

exists at the time of its occurrence; when 0\D\1, the

effect decays exponentially; and when D ¼ 1, a constant

effect persists after its occurrence until the end of the study

period. 1 is an indicator taking value 1 for t� s and 0 for

t\s. When multiple interventions generate effects on kt for

0\D� 1, a linear superposition of r, such interventions

will form an additional component for the ACD model:

g ktð Þ ¼ b0 þ
Xp

i¼1

cih Yt�ið Þ þ
Xq

j¼1

djg kt�j

� �
þ g>Xt

þ
Xr

k¼1

fkD
t�sk1ðt� skÞ; ð5Þ

where fk is a set of parameters reflecting the power of

intervention at sk. Thus, F t�1 is a collection of {Yt�1, Yt�2,

…, Y1, kt�1, kt�2, …, k1, Xt, Xt�1, …, X1, Dt�sr , …, Dt�s1 }.

The parameters to be estimated will be h ¼ ðb0; c1;

. . .; cp; d1; . . .; dq; g1; . . .; gm; f1; . . .; frÞ>. Some of the ele-

ments in h will equal 0 if the corresponding factors are not

supposed to have an effect on kt. For the logarithm link g,

constraints b0j j; c1j j; . . .; cp
�� ��; d1j j; . . .; dq

�� ��\1 and
Pp

i¼1 ci
��

þ
Pq

j¼1 djj\1 are further introduced (Liboschik et al.

2017). The dispersion parameter / in Eq. (2) will be dis-

cussed and estimated separately in next section.

3.3 Quasi-likelihood and parameter estimation

It is not uncommon for count data to be overdispersed,

meaning that the variance can be larger than its mean

value. Investigation into the variance-mean relationship

can help with model selection (Ver Hoef and Boveng

2007). For a Poisson model, for example, it might be too

strict to have an identical mean and variance. One practical

way of modeling is to relax the assumption on the random

component to allow for the function mV ktð Þ ¼
Var YtjF t�1ð Þ to represent the randomness instead of

characterizing an exponential distribution, where m is the

dispersion parameter and V ktð Þ ¼ kt implies the Poisson

model. This relaxation leads to a more general expression

of the likelihood function, that is, a quasi-likelihood

(McCullagh 1983).

The construction of quasi-likelihood is based on a quasi-

score function SðkÞ that is analogous to the score function

of the ordinary likelihood. If we let

S kð Þ ¼ Y � k
mV kð Þ ; ð6Þ

it can be easily determined that E Sð Þ ¼ 0 and

Var Sð Þ ¼ 1
mVðkÞ ¼ �E S0ð Þ. Thus, the quasi-likelihood func-

tion QðY ; kÞ can be defined as (Wedderburn 1974):

Q Y ; kð Þ ¼
Z k

�1

Y � u

mV uð Þduþ f Yð Þ; ð7Þ

where f Yð Þ is a real-value function of Y . The dispersion

parameter m (/ for the negative binomial in this paper)

usually does not affect the estimation of h and can be

estimated in a separate step. For the negative binomial

distribution, one of the approaches is to approach is to

consider the moment estimation and solve Eq. (8) (Lawless

1987; Christou and Fokianos 2014):

Xn

t¼1

~Yt � bkt
� �2

bktð1 þ bkt=/Þ
¼ n� ðpþ qþ mþ r þ 1Þ; ð8Þ

where given the estimation of h, bkt ¼ ktðbhÞ is the fitted

value of kt and n is the sample size.

In GLM, a quasi-Poisson model represents a class of

distributions rather than a single quasi-Poisson distribution.

The negative binomial model, one of the most convenient

examples of the mixed Poisson process introduced in

Sect. 3.1, is usually employed to account for the extra

variations in the Poisson model (Lawless 1987). Despite

the fact that overdispersion is a more frequently observed

feature (Zhu 2012), quasi-Poisson can also be used for

modeling underdispersion. Thus, the conditional Poisson-

like quasi-log-likelihood, also shared by the negative
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binomial model, for the ACD model is specified by plug-

ging V uð Þ ¼ u and f Yð Þ ¼ 0 into Eq. (7):

l hð Þ ¼ Q yt; ktðhÞð Þ ¼
Xn

t¼1

ytln kt hð Þð Þ � ktðhÞð Þ: ð9Þ

It has been shown in Liboschik et al. (2017) that

okt hð Þ=oh can be obtained recursively and thus come to

form the differential calculations in the score function

ol hð Þ=oh. The quasi-likelihood estimator is thus expressed

as:

bh ¼ argmaxhl hð Þ: ð10Þ

To solve Eq. (10), the first step is to use an adaptive

barrier algorithm (Lange 2010) to enforce the constraints of

the non-intervention parameters. A quasi-Newton BFGS is

then applied for optimization without constraints (Broyden

1970; Goldfarb 1970; Shanno 1970; Fletcher 1970).

4 Data and workflow

In this paper we illustrate the relationship between mobility

and COVID-19 transmission by examining the case of

Sweden, a country with the fifth largest land area in Europe

and one characterized as having a low population density.

Low population density implies there is a relatively large

distance between people compared to other European

countries and that the extent of unobserved close contact is

also low.

4.1 Mobility data

Substantial efforts have been made to create data sets that

reflect mobility change since the outbreak of the COVID-

19 pandemic, where starting points between January 2020

and February 2020 have been selected to provide a baseline

(Hale et al. 2020; Aktay et al. 2020; Apple. 2021). The

baselines enable the user to compare the effect of policy

interventions or mobility changes during the COVID-19

period. The mobility data usually reflects where people

move from and to and how long they stay at their desti-

nations. Due to fact that many travelers in our study region

significantly changed their mobility patterns by abandoning

public transport after the pandemic broke out (Jenelius and

Cebecauer 2020), our assumption is that the highest risk of

COVID-19 transmission occurs, not when people travel by

public transport, but when they remain in a location for a

period of time. In this paper, the mobility data collected by

Google (Google 2021) will be divided into six different

types of locations that represent similar categories of

mobility behavior. These categories are retail and recre-

ation (e.g., restaurants, cafes, museums, libraries, and

movie theaters), groceries and pharmacies (e.g., food

warehouses, farmers markets, specialty food shops, and

pharmacies), parks (e.g., local parks, national parks, public

beaches), transit stations (e.g., subway, bus, and train

stations), workplaces, and residential locations.

The data presents the daily change of visits and length of

stay, tracked by mobile devices, for each location category

in Sweden from February 15, 2020 and compares it to the

baseline days. The relative change in percentage is reported

for Sweden as a whole as well as for each region and

municipality. For the smaller municipalities without suffi-

cient observations to aggregate, however, missing values

are reported thus making it pointless to interpolate syn-

thetic values. On the regional and national levels, the

proportion of missing values is marginal for most of the

categories. The baseline days are taken from five weeks at

the beginning of 2020, where seven median values for each

day of a typical week are selected as the baseline values.

4.2 Confirmed cases of COVID-19 in Sweden

There are 21 regions (administrative counties) in Sweden.

The majority of daily moving activity in Sweden occurs

within these regional borders because the places that most

people visit each day, such as schools and hospitals, are

regionally organized and tend to be located in the vicinity

of residential areas and workplaces. The data produced by

the Swedish Public Health Agency provides a daily report

of the total number of confirmed cases of COVID-19 for

each region (The Public Health Agency of Sweden 2021).

To control for the effect of regional population differences,

we also consider the relative number of confirmed cases

per hundred thousand inhabitants. A map of the 21 Swedish

regions showing both calculations is shown in Fig. 1.

In Fig. 1, regional population density is also shown

because it is an important local feature that may have a

latent impact on modeling performance. Figure 1 shows,

per region, the total number of confirmed COVID-19 cases

and cases per thousand inhabitants from the date the first

Swedish case was officially reported, February 4, 2020, to

the date of writing, December 7, 2021. It is no surprise that

the regions with the highest population density have the

most confirmed cases. Stockholm, Sweden’s capital city

and the region with the country’s highest population den-

sity, for example, has also recorded the highest number of

cases, over 295,000. For the relative figures in the right

panel of Fig. 1, population density does not seem to be an

obvious determinant of COVID-19 frequency.

4.3 Workflow

Based on the modeling framework and data described in

previous sections, the workflow of the paper is summarized
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in Fig. 2. The categories in the mobility data are covariates

that were fixed in both the modeling and prediction stages.

The COVID-19 data was fused with the administrative

division data and was treated as a random variable. In order

to evaluate the model’s performance, five factors that

might generate discrepancies in the modeling were con-

sidered. A holdout set was also selected to evaluate the

model’s performance. Point prediction was computed for

all possible scenarios and intervals from the best models

were taken to further examine the coverage. Finally, model

scrutinization was carried out to investigate the statistical

meaning of the models where intervention was included.

5 Results

In this section we present the five factors (and their values)

that allowed us to observe and summarize a wide range of

prediction results from multidimensional angles. Both

point predictions and interval coverages were used to

assess the performance of the models with different sce-

narios. After including interventions, the analytical results

provided a number of insights into the statistical features.

Fig. 1 Regions of Sweden and confirmed cases

Fig. 2 Modeling workflow
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5.1 Factors

The study period selected for modeling was January 1,

2021 to December 7, 2021, where the last two weeks in the

series were taken to form a holdout set for testing the

predictions from different models. The five factors that

were used to evaluate the model’s performance in Fig. 2

were lag, region, model, Yt�i and kt�i. The number of

elements and the specific values for each factor are pre-

sented in Table 1.

Lag refers to the number of days prior to the COVID-19

report date that will be selected for modeling the mobility

data. COVID-19 has a 4 to 9-day incubation period before

symptoms are perceived (Tindale et al. 2020). When

mobility is added to the mix, the lag for accurate prediction

can rise to 12 days. (Badr et al. 2020). It can also take

several days for test results to be reported. Due to these

delays, and so as not to miss any potential features, we

studied a range of 2–12 days. Region refers to the geo-

graphical division upon which the model is built, in this

case the Swedish administrative county. Of the 21 regions

included in our models, the region Gotland did not have

complete mobility data for the whole of the study period.

Thus, its data was disregarded and the models were built

around the 20 remaining regions. We also included whole

Sweden as an additional region for comparison.

The two types of autoregressive terms, Yt�i and kt�i,

were used to determine how the number of confirmed cased

for any given day were related to the previous observations

and their expected values or seasonal effects. Since the

number of possible combinations was too great to calcu-

late, we only considered three of them: the most recent

ones: 1) hYt�1; kt�1i, and one with weekly seasonality: 2)

hYt�1; kt�7i and 3) hYt�7; kt�1i. This was because the

baseline days were chosen from a period prior to the onset

of COVID-19 and represent a typical week. The variation

in models concerns the specification of different covariates,

how Yt is measured and what distribution is assumed. For

the covariates, missing values for the variable parks were

found for some of the regions and thus this variable could

not be included in our tests. The remaining five variables

were included as covariates, both individually and all

together, thus making six different models. For Yt, two

measurements—daily total confirmed cases and daily

confirmed cases per hundred thousand inhabitants—were

used for modeling. The latter measurement was given a

relative value to eliminate the influence of population size.

Thus, the Poisson model with six types of covariates to

model total cases were denoted as I, II, …, VI, respec-

tively. Those modeling relative values were denoted as VII,

VIII, …, XII, respectively. The settings were replicated for

negative binomial distribution. Since both distributions

share the same likelihood function, as shown in Eq. (9), the

point estimators of the parameters were the same. The

difference between them can be seen in the estimation of

standard errors and the intervals of predicted values. In

conclusion, while the factors considered here may not be

exhaustive, they are sufficient to provide an overview of a

general evaluation framework.

All of the factors taken together formed 11 � 21 � 3 �
24 ¼ 16632 models due to the large number of combina-

tions of regions and models. Although models including

entire study regions and all covariates were studied, it is

still appealing to compare models with every single region

and covariate. There are two main reasons for doing so.

First, there are significantly different features between the

regions, e.g., population density, mobility level, and social

structure. The selected model, which is tailored for a single

region and may not be appropriate to another region, will

facilitate local management of medical resource allocation

and policy making. Second, we use the open data collected

by Google to illustrate the model selection in this paper.

However, collecting all covariates may be infeasible or

expensive for regional studies. If a single covariate can

lead to accurate prediction models rather than using all

covariates, the modeling method can be efficiently con-

ducted thanks to the lowered burden in data collection.

5.2 Model evaluation

All models were evaluated on the holdout set, which

implies that each model could generate additional 14-day

Table 1 Factors considered in

modeling
Factors No. of elements Values

Lag (days) 11 2–12

Regiona 21 20 regions plus whole country

Yt�i 2 i ¼ 1 and i ¼ 7

kt�i 2 i ¼ 1 and i ¼ 7

Model 24 I, II , …, XII for both Poisson and neg. bin

a1-whole country, 2-Blekinge, 3-Dalarna, 4-Gävleborg, 5-Halland, 6-Jämtland, 7-Jönköping, 8-Kalmar,

9-Kronoberg, 10-Norrbotten, 11-Örebro, 12-Östergötland, 13-Skåne, 14-Södermanland, 15-Stockholm,

16-Uppsala, 17-Värmland, 18-Västerbotten, 19-Västernorrland, 20-Västmanland, 21-Västra Götaland
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predicted values. The accuracy was defined by the mean

absolute relative errors (MARE):

MARE ¼
X14

t¼1

bYt � Yt

���
���

Yt
ð11Þ

for each model. Since the case number 0 is not defined for

MARE, it was excluded in the evaluation. We will show

that this caused only negligible effects on the global

evaluation. For each lag number and combination of

autoregressive terms, the best MARE was selected to

indicate which model-region among all of them was the

most reliable. In Fig. 3a, for example, the MAREs of the

scenario hYt�1; kt�1i and a lag of 8 for all regions and

models were normalized and compared. The outcome

produced by region 15 and model XII gave the lowest

MARE. Similarly, the configuration for the scenario

hYt�1; kt�7i and lag 5 was presented in Fig. 3b and

hYt�7; kt�1i and lag 10 in Fig. 3c. From Fig. 3, it seems

that model performance tends to have less variance within

regions than between regions.

In order to investigate how the top-ranked model-region

combinations could be consistently obtained for each sce-

nario, an overall evaluation was conducted and is presented

in Table 2. It should be noted that Table 2 gives the results

of the top two model-region combinations as well as the

MAREs that applies to both distributions. In general, across

different scenarios, ten out of twelve models achieved the

lowest MAREs. For none of the scenarios did Model Ior

VII perform best, thus indicating that only measuring

mobility change in retail and recreation locations by

themselves does not provide reliable predictions. Model III

and IV showed good accuracies for most lags given

hYt�1; kt�1i. Nevertheless, XII (with a lag 8 and 2) ranked

in the top two for this setting. Similarly, model V (lag 5)

and II (lag 6) achieved the lowest errors given hYt�1; kt�7i
while model IV (lag 10 and 2) outperformed the other

models for hYt�7; kt�1i. With regard to the regions, almost

all of the scenarios for hYt�1; kt�1i and hYt�1; kt�7i ended

up with selecting the most populous region, 15-Stockholm.

Only two scenarios that ranked second (lag 7 and 9 for

hYt�1; kt�7i) ended up with selecting region 1-whole

country. For hYt�7; kt�1i, the best models for all 22 sce-

narios were emerged from the data from region 18-

Västerbotten, a region characterized by its low population

density. The following analysis, therefore, will focus on six

of the models, the top 2 for each autoregressive setting.

Fig. 3 Normalized MARE for three example scenarios where the best models were found: a hYt�1; kt�1i and lag 8; b hYt�1; kt�7i and lag 5; c
hYt�7; kt�1i and lag 10
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5.3 Intervals

In the 1-step-ahead prediction of bY tþ1, the expected value

ktþ1 was estimated, first of all, by the exponential operation

and plugging in of the covariates at time t þ 1 using bh:

bktþ1 ¼ exp ktþ1
bh

� �n o
: ð12Þ

To have a minimal mean square error, bY tþ1 took the

value bktþ1. Both of them, as well as the covariates at time

t þ 2, formed the conditional factor F tþ1 to get the 2-step-

ahead prediction of bktþ2 and bY tþ2. At this point, we did not

use any real observations to serve as past information for

the whole predictions so that the model uncertainty was

close to reality. The update continued until fourteen days

were obtained. Meanwhile, we estimated 95% confidence

intervals since they reflected the ability of a model to cover

real values. The variances were given in Sect. 3.1. Illus-

trative intervals for the six Poisson models are shown in

Fig. 4. Intervals for negative binomial models were also

computed, but they were less informative due to larger

variance.

In Fig. 4a, the intervals of the lag 8 model covered all

real fourteen day-ahead values in the holdout set and the

lag 2 model missed covering only one. This result accords

with those in Table 2. In Fig. 4b, since the intervals of the

globally best model could still fail to include some values,

the information provided was thus deemed to be unreliable.

Figure 4c resembles Fig. 4a because both lag 10 and lag 2

models were able to capture the variations. Model IV,

however, was the most suitable for modeling the total

number of confirmed cases. Notably, 0 cases were reported

on day 5 and day 12. Models for these two days were able

to cover or be very close to covering 0, implying that the

model performance is resistant to extreme values. Overall,

model XII at lag 8 and IV at lag 10 are trustable for

modeling densely and sparsely populated regions, respec-

tively. It is worth noting that the accuracy does not decline

as the number of predicted days increases. However, there

is no model that can better handle the autoregressive terms

hYt�1; kt�7i than another.

5.4 Model scrutinization

These two identified models—model XII at lag 8 given

hYt�1; kt�1i and model IV at lag 10 given hYt�7; kt�1i—
were further investigated by adding an intervention and

then comparing the two distributions. The intervention was

introduced on September 29, 2021 because in Sweden on

that date many of the pandemic-related restrictions, such as

the low maximum attendance numbers for private and

public gatherings and events, were removed. Increased

social activities could possibly change the mobility pattern.

The decay rate D was set as 0.5. The MAREs, however,

were found to be slightly smaller than those without

interventions (Table 3). The models with interventions,

therefore, are recommended for making inferences. Fitted

values against respective real values were plotted in Fig. 5,

where smoothed Loess intervals were also given. In both

Fig. 5a and Fig. 5b, the Loess intervals start to become

larger at about the 97% quantile. The fitted values tend to

underestimate the large real values. In addition, the fitted

values for model at lag 8 with intervention present a

quadratic trend while a linear trend is found for model IV at

lag 10 with intervention. From the perspective of modeling,

both types of trends can be characterized in GLM.

Significant parameters, as well as the estimation of 1=/
for both models, are also given at the 0.05 level in Table 3.

While all parameters under a Poisson assumption are sig-

nificant for model XII at lag 8, due to the larger variance,

Table 2 MARE for each lag

number and combination of

autoregressive terms

Lag No hYt�1; kt�1i hYt�1; kt�7i hYt�7; kt�1i

1st 2nd 1st 2nd 1st 2nd

2 XII (0.189) V (0.196) IX (0.197) III (0.202) IV (0.133) V (0.147)

3 III (0.195) V (0.196) XI (0.202) X (0.210) X (0.138) IV (0.138)

4 III (0.196) IV (0.200) X (0.197) V (0.206) X (0.160) IV (0.168)

5 III (0.202) IV (0.202) V (0.177) XI (0.187) V (0.158) XI (0.159)

6 III (0.204) IV (0.210) II (0.186) VIII (0.191) X (0.149) XI (0.152)

7 III (0.209) IV (0.210) VIII (0.205) IV (0.207)* VIII (0.157) II (0.160)

8 XII (0.175) VI (0.191) XI (0.188) XII (0.200) IV (0.136) V (0.138)

9 XII (0.203) III (0.211) IX (0.203) XII (0.232)* V (0.148) II (0.162)

10 III (0.208) IV (0.209) XI (0.199) X (0.206) IV (0.130) V (0.139)

11 IV (0.203) III (0.207) X (0.196) IV (0.203) X (0.150) IV (0.158)

12 IV (0.201) III (0.212) X (0.188) V (0.190) IV (0.136) X (0.141)

*The whole country as the best region
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only c1, gw:p: and gres: are significant for negative binomial

distribution. Therefore, we consider that the difference

between the two distributions might filter out the variables

that depend on others. For example, reduced mobility at

bus and train stations could increase the number of people

gathered at residential locations. Thus, a direct recom-

mendation to practitioners when making predictions for

dense population areas is to collect mobility data from

various types of locations. If difficulties restrict the full

collection of data, the mobility changes collected from

Fig. 4 95% intervals for top two models for selected scenarios: a hYt�1; kt�1i; b hYt�1; kt�7i; c hYt�7; kt�1i

Table 3 Model comparison with an intervention

Model XII, lag 8 IV, lag 10

Autoregressive

factors

hYt�1; kt�1i hYt�7; kt�1i

Sig. parameters

(a ¼ 0:05, Poisson)

c1 ¼ 0:595; d1 ¼ �0:209; gret: ¼ 5:226; gpha: ¼ �2:892; gtra: ¼ �4:702;

gw:p: ¼ 3:294;gres: ¼ 11:956

c7 ¼ 0:845;

gw:p: ¼ 0:228

Sig. parameters

(a ¼ 0:05, neg. bin.)

c1 ¼ 0:595; gw:p: ¼ 3:294;gres: ¼ 11:956 c7 ¼ 0:845

1=/ 1.333 4.282

Intervention date September 29, 2021 (56 days to Day 1)

D 0.5

MARE 0.174 0.128

Stochastic Environmental Research and Risk Assessment (2022) 36:4185–4200 4195

123



residential locations should be primarily used for modeling.

One of the reasons for this is that residential location, in

comparison to other location categories, is particularly

sensitive to the key transmission mechanism of the

COVID-19, that is, the personal contacts between family

members and neighbors.

For model IV at lag 10, recommended for modeling

regions with low density populations, the values reported

for one week before and mobility change at the workplace

were the most significant. When the negative binomial

distribution is used, the weekly correlation, which also

regulates working patterns, should be the one adopted for

inference.

Finally, we computed the difference between the aver-

age predictive cumulative distribution function (CDF),

G yð Þ¼: lim
T!1

1
T

PT
t¼1 GtðyÞ

	 

, and the true data-generating

CDF, F yð Þ¼: lim
T!1

1
T

PT
t¼1 FtðyÞ

	 

, of the threshold values y

to make a distributional comparison by the marginal cali-

bration (Christou and Fokianos 2015), where GtðyÞ and

FtðyÞ are CDFs of sequential time series variables. GtðyÞ is

said to be marginally calibrated relative to FtðyÞ if G yð Þ ¼
F yð Þ for all y 2 R (Gneiting et al. 2007). Thus, the dif-

ference between G yð Þ and F yð Þ reflects how close the

predicted CDF from the empirical model is to the theo-

retical one.

Figure 6 provides a comparison of the two selected

models. For both distributions in both models, the differ-

ences in CDFs are within 	0:3. For most threshold values,

the Poisson models have the difference in CFD less than

0.1 for model XII and less than 0.05 for model IV. How-

ever, the difference given by the negative binomial distri-

bution is relatively larger. For model IV, using Poisson

assumption to model a set of values over 100 will largely

satisfy the statistical assumptions. For the remaining sets of

values, for asserting distributional features, the choice

between the two distributions is inconclusive.

6 Discussions

One of the fundamental assumptions of our method is that

infected cases of COVID-19 in a region are not affected by

another region. Although intra-region movement is most

common way of individual mobility, inter-region move-

ment cannot be neglected, especially for people living

close to the border of a region. The lack of detailed indi-

vidual moving data at a national scale hinders the statistical

inference from including the cross-border effect. We

believe that the inclusion of measuring the magnitude of

cross-border movement will characterize the spatial inter-

actions between regions more realistically. The measure-

ments reflecting the proximity between regions can be

adopted to estimate a correlation/covariance matrix. The

matrix can be then decomposed to form random effects for

each region by extending our modeling framework to a

generalized linear mixed model with autoregressive count

variables. Although data availability is a big obstacle for

in-depth modeling, our proposed method can be quickly

implemented by utilizing the assumption. Based on it, a

pilot study with cross-border movement for a specific

region can be conducted as a supplementary analysis,

where, rather than national level, only regional or munic-

ipality level decision of data collection is required.

As for the modeling results, e.g., MARE and Fig. 5,

there is still room to improve the accuracy of point

Fig. 5 Fitted values against real values from models with interventions a model XII at lag 8 given hYt�1; kt�1i; b model IV at lag 10 given

hYt�7; kt�1i
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predictions and fitted values, although the prediction at the

14-day-ahead scale provides favorable results compared

the up-to-date studies. A direct strategy is to include more

data at granular level to capture additional features in the

modelling. However, acquiring such data, e.g., number of

contacts to infected persons or individual risk level of

infection, is not an easy task due to data privacy and its

inherent immeasurability. As such, this paper presents a

method by using a minimal cost in data collection to effi-

ciently identify a way of model selection where interval

coverages are acceptable.

7 Conclusions

Since its first discovery in China back in December 2019,

the COVID-19 pandemic has been responsible for at least

5.6 million deaths and has caused unfathomable adjust-

ments to the world’s social and economic systems. Every

country in the world has introduced some sort of policy to

cut off the channels of transmission by controlling human

mobility, through such measures as national lockdowns,

tight restrictions on public assemblies, self-monitored

quarantines and reductions and restrictions on international

travel. Despite these restrictions, some degree of mobility

is inevitable even just to ensure the meeting of daily needs.

Effective epidemic prevention and control, therefore, must

take mobility into account. This paper used an autore-

gressive count data model under the framework of a gen-

eralized linear model and with five categories of mobility

data collected by Google to explore the construction of a

model that could be adopted to predict reliable confirmed

cases in 14 days.

Empirical modeling and evaluation of long-term data

from Sweden shows that: (1) Mobility change in retail and

recreational locations, groceries and pharmacies, transit

stations, workplaces and residential locations is the better

way to predict confirmed cases in relative numbers for a

region with a high population density (367 inhabitants/km2

or higher, in this paper), where a lag of 8 days between the

date of the observed mobility change and the reported cases

is recommended in terms of interval coverage. Mobility in

residential locations should be firstly collected with low

availability of data. Past observations and conditional

means one-period back may be included to provide

autoregressive effects. (2) It can be concluded from Table 3

that, mobility change at workplaces as well as a lag of

weekly confirmed cases, are considered to be the most

relevant variables when predicting total confirmed cases in

sparsely populated regions (5 inhabitants/km2 or lower, in

this paper) for Poisson model. In the context of negative

binomial model, the mobility change at workplaces does

not seem to be influential. In this case, a lag of 10 days is

recommended, which is consistent with the results studied

in other countries. The model used in these cases is also

robust when the value zero is reported. (3) Policy inter-

ventions can be included when modeling long-term pan-

demics. In this paper, the effect of the lifting of the ban on

public gatherings was used as a national intervention in the

modeling with the result that the prediction accuracies were

slightly improved. Although both Poisson and negative

binomial distributions provided identical point predictions

to confirmed cases, the interval estimation of the Poisson

model was more compact. Underestimates in large mag-

nitude were only detected for a small proportion (3%) from

the fitted values. With regard to parameter estimation,

Fig. 6 Marginal calibration a model XII at lag 8 given hYt�1; kt�1i; b model IV at lag 10 given hYt�7; kt�1i
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negative binomial models tend to lead to fewer significant

parameters due to the introduction of additional variance.

This model may be used when the collection of mobility

data is too expensive. (4) A marginal calibration shows,

from the statistical perspective, that the choice of distri-

bution for count data is inconclusive except for the values

over 100, where both Poisson and negative binomial

models can be assumed when making the inference.

Addressing other limitations of this paper in future

research may yield additional insights in epidemic mod-

eling. First, as the development of communications tech-

nology and the internet of things continues apace, the

inclusion of GPS-tracked mobility data during travel will

add a new dimension to modeling, but will require more

free accesses to the relevant databases. Second, it is still

unknown how the models work in different environmental

settings. Modeling outcomes from other countries could

provide complementary information that would strengthen

decision support. Third, other types of data-driven methods

that can simultaneously handle time dependency, spatial

correlation and count data might be alternative ways of

modeling disease transmission.
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