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Abstract
Climatically-induced natural hazards are a threat to communities. They can cause life losses and heavy damage to

infrastructure, and due to climate change, they have become increasingly frequent. This is especially the case in tropical

regions, where major hurricanes have consistently appeared in recent history. Such events induce damage due to the high

wind speed they carry, and the high intensity/duration of rainfall they discharge can further induce a chain of hydro-

morphological hazards in the form of widespread debris slides/flows. The way the scientific community has developed

preparatory steps to mitigate the potential damage of these hydro-morphological threats includes assessing where they are

likely to manifest across a given landscape. This concept is referred to as susceptibility, and it is commonly achieved by

implementing binary classifiers to estimate probabilities of landslide occurrences. However, predicting where landslides

can occur may not be sufficient information, for it fails to convey how large landslides may be. This work proposes using a

flexible Bernoulli-log-Gaussian hurdle model to simultaneously model landslide occurrence and size per areal unit.

Covariate and spatial information are introduced using a generalised additive modelling framework. To cope with the high

spatial resolution of the data, our model uses a Markovian representation of the Matérn covariance function based on the

stochastic partial differential equation approach. Assuming Gaussian priors, our model can be integrated into the class of

latent Gaussian models, for which inference is conveniently performed based on the integrated nested Laplace approxi-

mation method. We use our modelling approach in Dominica, where hurricane Maria (September 2017) induced thousands

of shallow flow-like landslides passing over the island. Our results show that we can not only estimate where landslides

may occur and how large they may be, but we can also combine this information in a unified landslide hazard model, which

is the first of its kind.

Keywords Bayesian spatial modelling � Integrated nested Laplace approximation (INLA) � Landslide hazard �
Landslide area prediction � Slope unit � Stochastic partial differential equation (SPDE)

1 Introduction

Dominica is situated within the Atlantic hurricane belt and,

as such, is highly vulnerable to high-intensity weather

events, as evidenced by its long extreme-events history,

stretching as far back as the Great hurricane of 1780. In

addition, the island’s infrastructure and populations are

concentrated along the coastal areas, particularly in the

south and west, where their situation and building condi-

tions hardly help withstand one extreme natural hazard

after another. In this paper, we focus on the aftermath of

hurricane Maria, which originated from a wave leaving the

west coast of Africa on 12th September 2017. The wave

moved westward across the Atlantic, creating deep con-

vection, and consolidated into a tropical depression 580

nautical miles east of Barbados on the 16th Septem-

ber (Pasch et al. 2018; Fobert et al. 2021). By the evening

of the 18th, Maria had intensified and hit the Island of

Dominica twelve hours later as a category five hurri-

cane (Pasch et al. 2018), causing a total of 9960 landslides
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on the island, 8,576 of which were classified as debris

slides (Van Westen and Zhang 2018). The infrastructure

and transport sectors were the main avenues of the USD

930.9 million in damages incurred by Maria, with the

agriculture and tourism sectors not far behind (ACAPS

2018). This prompted a plea by Dominica’s prime minister

for the funds to make Dominica a fully climate-resilient

nation, determined to protect their island (Gibbens 2019).

The Government of the Commonwealth of Dominica, in

conjunction with the Caribbean Disaster Emergency

Management Agency and the Caribbean Development

Bank, commissioned a post-disaster needs assessment from

hurricane Maria in order to estimate the total damage, the

damages per sector, and to identify recovery needs (A-

CAPS 2018). The reconstruction of the destroyed infras-

tructure was funded by a loan from the World Bank and

was a part of the project ‘‘Enhancing Resilient Recon-

struction in Dominica’’. The project promoted the idea that

Dominica could limit the damage from natural hazards by

improving the uptake of resilient building practices, aiming

to accelerate short-term recovery and strengthen long-term

resilience to climate-related risks. Landslide hazard

assessment is critically valuable to this programme. It can

help define land-use capability, detect areas where inter-

vention is needed to stabilise slopes, and identify appro-

priate mitigation measures.

To help tackle the above challenges, this article builds a

joint probability model to map the Island of Dominica by

susceptibility and size of landslides. Our model is able to

detect unstable areas that could potentially host large

landslides, which is key to identifying regions in need of

hazard mitigation. The model belongs to the class of hurdle

models, i.e., it is a two-part model that specifies a Bernoulli

likelihood for landslide occurrence and a Gaussian likeli-

hood for landslide log-sizes given a positive occurrence.

The observations (presence/absence for the Bernoulli

likelihood and log-sizes for the Gaussian likelihood) are

assumed to be conditionally independent given a Gaussian

latent process that drives the trends, dependencies and non-

stationary patterns observed in the data. The latent process

is characterised by a linear predictor with a flexible addi-

tive structure allowing the incorporation of covariates and

spatial effects. Specifically, we rely on generalised additive

models (GAMs) to flexibly model the covariates’ influence

using fixed and random effects, which are also known as

linear and non-linear effects in terms of their influence.

Spatial dependence between locations is characterised

using a Gaussian Process with Matérn covariance structure.

The Matérn family of covariance functions is widely used

in spatial statistics due to its flexible local behaviour and

interesting theoretical properties (Guttorp and Gneiting

2006; Stein 2012). To allow for fast inference, we use the

stochastic partial differential equation (SPDE; Lindgren

et al. 2011) approach that provides accurate Markovian

representations of the Matérn covariance. Under a Baye-

sian framework, we assume relatively weak but highly

interpretable Gaussian priors for all the model components

and hyperparameters involved and fit our model using the

integrated nested Laplace approximation (INLA; Rue et al.

2009). INLA uses the Laplace approximation to compute

posterior distributions of interest. It is developed for the

vast class of latent Gaussian models and implemented in

the R-INLA library (Bivand et al. 2015). For related con-

tributions, see Opitz et al. (2018), Castro-Camilo et al.

(2019, 2021) and Lombardo et al. (2021).

Throughout this paper, we will interchangeably refer to

susceptibility or probability of occurrence (see Lombardo

et al. 2020; Titti et al. 2021). As for the notion of hazard,

this further extends the concept of susceptibility by looking

at measurable quantities of hazardous processes, such as

size and frequency (Guzzetti et al. 1999). However, the

literature on statistical applications in landslide science has

never presented a model where the susceptibility is com-

bined with the expected size of landslides, which we pro-

pose here for the first time.

The remainder of the paper is organised as follows.

Section 2 introduces the variables considered for mod-

elling. Section 3 outlines our methodology, describing the

latent Gaussian model framework and the two likelihoods

that constitute our hurdle model. We also provide details

on prior distributions and inference using INLA. In Sect. 4

we summarise our results. Conclusions and a critical dis-

cussion are provided in Sect. 5.

2 Data description

After hurricane Maria, the Global Facility for Disaster

Reduction and Recovery sponsored the CHARIM (Car-

ibbean Handbook on Risk Information Management; link

here) project, intending to build a comprehensive natural

hazard assessment. As part of this assessment, a team from

the University of Twente (NL) mapped a large-scale

landslide inventory for the whole island (see Fig. 1a),

primarily using five scenes of Pléiades satellite images with

a resolution of 0.5m, dated on the 23rd September and 5th

October 2017, made available through UNITAR-UNOSAT

(https://www.unitar.org/). Additionally, a series of Digital

Globe Images were used after they were gathered for the

Google Crisis Response. All the images were visually

inspected by image interpretation experts. As a result,

landslides were mapped as polygons, separating scarp,

transport and accumulation areas, and classifying the

landslides according to their types.
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The inventory features 9960 landslides, with a cumula-

tive planimetric area of 11.4 km2, covering 1.5 % of the

Island of Dominica. To aggregate the landslide information

over space, we opted for a Slope Unit partition of

Dominica (see Fig. 1b). A Slope Unit (SU, hereafter)

encompasses the geographic space between ridges and

streamlines. In other words, they are half-basins of a given

order (Amato et al. 2019) extracted by maximising areas

with homogeneous aspects and are particularly suited to

support landslide models for they approximate the morpho-

dynamic behaviour of landslides well (Carrara et al. 1991).

To partition the Island of Dominica into SUs, we initially

used r.slopeunits, an open-source software devel-

oped by Alvioli et al. (2016). We have later refined them

through manual editing in GIS, to obtain a total of 3335

SUs.

We use a two-step procedure to build our hurdle model

at the SU scale. First, we assign to each SU the sum of all

planimetric landslide areas intersecting the SU itself. Then,

to build a binary dataset, we assign a landslide presence to

SUs with positive landslide aggregated areas. Conversely,

we assign a landslide absence to SUs unaffected by slope

failures. Finally, to build a dataset of landslide sizes per

SU, we extract SUs with positive landslide aggregated

areas.

Covariates available for analysis are detailed in Table 1

(geographical) and Table 3 (geological) in the Appendix.

They are a mixture of geographical and geological char-

acteristics and constitute the morphology of Dominica’s

landscape. All the geographical variables are continuous,

while the geological and land-use types are represented as

proportions of each SU; for example, a SU could be 50%

forest, 20% bare and 30% quarry.

3 Methods

As mentioned in Sect. 1, we aim to build a hurdle model to

detect areas of higher landslide susceptibility and sizes.

Our approach models the probability of observing a land-

slide in a SU using a Bernoulli distribution. Given that a

landslide was observed, it also describes landslide log-sizes

using a Gaussian distribution. We stress again that we

assume that the observations (presence/absence for the

Bernoulli likelihood and log-sizes for the Gaussian likeli-

hood) are conditionally independent given a latent Gaus-

sian structure that drives the trends, dependencies and non-

stationary patterns observed in the data. Both parts of our

hurdle model belong to the class of latent Gaussian models.

This section describes the general framework of latent

Gaussian models and the two likelihood models. We also

provide details regarding prior specification and inference

based on INLA.

3.1 Latent Gaussian models

Gaussian Latent Models (GLMs) are a vast and flexible

class of models that are well suited for modelling spatial

data (Rue et al. 2017). They admit a hierarchical repre-

sentation, where observations are assumed to be condi-

tionally independent given a latent field and a set of

hyperparameters. Specifically, let y be the vector of

Fig. 1 Summary of the data used in this work. Panel a shows the

landslide inventory over the shaded terrain. Panel b shows the SU

delineation over the aspect map. The area marked as ‘‘Zoom’’ in panel

b highlights the consistency of SU boundaries with changes in aspect.

Panels c and d report the geological and land-use maps, respectively.

Acronyms definition for panels c and d can be found in Table 3
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observations with components yðsÞ, s 2 S, where S is the

study region, in our case the collection of all SUs. Let x

with components xðsÞ, s 2 S be a latent Gaussian random

field and let h1 be a set of hyperparameters. Then, the latent

Gaussian field can be hierarchically formulated as follows:

y j x; h1 �
Y

s2S
/ðyðsÞ j xðsÞ; h1Þ

x j h2 �N ðlxðh2Þ;Q�1
x ðh2ÞÞ

h ¼ ðh1; h2Þ> � pðhÞ:

ð3:1Þ

For our hurdle modelling approach, /ð�Þ is either the

Bernoulli probability mass function for landslide suscep-

tibility or the Gaussian density for landslide log-sizes. The

vector h1 contains hyperparameters associated with the

likelihood model. So, for instance, if /ð�Þ is the Gaussian

density, then h1 is equal to the Gaussian precision, which is

the inverse of the standard deviation; see Sect. 3.2 for more

details on the likelihood models. The latent Gaussian ran-

dom field x has the role of describing the trends and

underlying dependence in the data. It is assumed to have a

Gaussian distribution with mean vector lx ðh2Þ and preci-

sion matrix (the inverse of the covariance matrix) Qxðh2Þ,
both of which are controlled by the vector of hyperpa-

rameters h2, which account for variability and length or

strength of dependence.

The above hierarchical representation can be further

simplified by assuming that yðsÞ only depends on a linear

predictor gðsÞ. The linear predictor for our hurdle model

has an additive structure with respect to some fixed and

random effects and a term that accounts for the spatial

dependence between SUs. Specifically, our linear predictor

can be written as

gðsÞ ¼ aþ
XM

m¼1

bmwmðsÞ þ
XK

k¼1

fkðzkðsÞÞ þ uðsÞ; s 2 S;

ð3:2Þ

where a is an intercept and ðw1ðsÞ; . . .;wMðsÞÞ> are a

subset of the covariates detailed in Tables 1 and 3 with

fixed coefficients b ¼ ðb1; . . .; bMÞ>. The functions f ¼
ffkð�Þ; . . .; fKð�Þg are random (or non-linear) effects defined

in terms of a set of covariates ðz1ðsÞ; . . .; zKðsÞÞ>. For our
hurdle model, the specific form of the functions fkð�Þ is that
of a Gaussian random walk of order 1 (RW1), defined over

a binned version of our covariates. Specifically, for any

continuous covariate wk ¼ ðwkðs1Þ; . . .;wkðsjSjÞÞ>, let zk ¼
ðzk;1; . . .; zk;LkÞ

>
be a discretisation of wk into Lk equidistant

bins. Then, fkðzkÞ is a Gaussian RW1 with precision

parameter s0;k if

fkðzk;jÞ � fkðzk;j�1Þ�N ð0; s�1
0;kÞ; j ¼ 2; . . .; Lk: ð3:3Þ

The precision parameter s0;k controls the strength of

dependence among neighbouring covariate bins, or in other

words, the level of smoothness of the random walk.

Finally, the term uðsÞ in (3.2) is a zero-mean Gaussian field

with a stationary Matérn covariance function (Matérn

Table 1 Summary of the

Dominica dataset, including the

responses and initial covariates’

set

Variable Acronym Type Units

Landslide size ALðsÞ Continuous response m2

Landslide occurrence OLðsÞ Binary response 0 = No, 1 = Yes

SU area SUA Continuous explanatory m2

SU perimeter SUP Continuous explanatory m

SUP/SUA SUP=A Continuous explanatory 1/m

SUP/
ffiffiffiffiffiffiffiffiffi
SUA

p
SUP=

ffiffiffi
A

p Continuous explanatory Unit-less

SU maximum distance SUMD Continuous explanatory m

SU maximum distance to area ratio SUMD=A Continuous explanatory 1/m

SUMD/
ffiffiffiffiffiffiffiffiffi
SUA

p
SUMD=

ffiffiffi
A

p Continuous explanatory Unit-less

Distance to nearest stream mean and SD D2S l and r Continuous explanatory m

Eastness mean and SD EN l and r Continuous explanatory Unit-less

Elevation mean and SD EL l and r Continuous explanatory masl

Northness mean and SD NN l and r Continuous explanatory Unit-less

Planform curvature mean and SD PLC l and r Continuous explanatory 1/m

Profile curvature mean and SD PRC l and r Continuous explanatory 1/m

Relative slope position mean and SD RSP l and r Continuous explanatory Unit-less

Slope mean and SD SLO l and r Continuous explanatory Degrees

Topographic wetness index mean and SD TWI l and r Continuous explanatory Unit-less
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1986) with marginal variance r2 [ 0, range r[ 0 and

fixed smoothness parameter m. Following Vandeskog et al.

(2021), we set m ¼ 1 to reflect the rather rough nature of the

underlying physical process.

The link between the representations in (3.2) and (3.1)

is as follows: if g ¼ ðgðs1Þ; . . .; gðsjSjÞÞ> and we assume

that ða; b>Þ> has a Gaussian prior, then the joint distribu-

tion of x ¼ ðg>; a; b>; f>Þ> is Gaussian and yields the

latent field x in the hierarchical representation 3.1; see,

e.g., Rue et al. (2017) for more details.

3.2 The likelihood models

We model landslide susceptibility with a Bernoulli distri-

bution. Specifically, using the notation from Sect. 3.1, we

have that yðsÞ ¼ OLðsÞ 2 f0; 1g and /ðyðsÞ j gBernðsÞÞ �
BernðpðsÞÞ, where pðsÞ ¼ PrfOLðsÞ ¼ 1g; see Fig. 2a for

the spatial distribution of OLðsÞ. Note there are no hyper-

parameters for the Bernoulli likelihood, i.e., the vector h1 is

empty. The probability pðsÞ is related to the linear predictor
gðsÞ through the logit link, so pðsÞ ¼ expfgBernðsÞg=
ð1þ expfgBernðsÞgÞ.

Landslide size distribution is positively skewed, with

extremely large values elongating the right tail. In cases

like this, it is standard practice to use a monotonous

transformation such as the natural logarithm to obtain a

roughly symmetric, Gaussian-like distribution (see Lom-

bardo et al. 2021). Given that a landslide has occurred in

the SU s 2 S, we model its log-size using a Gaussian

distribution. Using the notation from Sect. 3.1, we have

that yðsÞ ¼ logfALðsÞg j OLðsÞ ¼ 1 and /ðyðsÞ j

gGaussðsÞ; h1Þ � N ðgGaussðsÞ; s�1Þ, where h1 ¼ s. Figure 2b

shows the spatial distribution of logfALðsÞg. The linear

predictor is linked to the Gaussian mean via the identity

link. The global precision hyperparameter s (reciprocal of

the standard deviation) determines the concentration of all

values yðsÞ around their mean gðsÞ, s 2 S.
The linear predictors gBernðsÞ and gGaussðsÞ follow the

general equation (3.2). Nonetheless, their specific form

depends on the influence of the covariates in Tables 1 and

3 over the landslide susceptibilities and sizes. Therefore,

we conduct variable selection using a stepwise forward

procedure for most of the covariates in both parts of our

hurdle model. This procedure was based on numerical

techniques such as the Deviance Information Criterion and

the Watanabe-Akaike information criterion (DIC and

WAIC, respectively; Meyer 2014; Gelman et al. 2014),

and graphical methods such as the probability integral

transform (PIT; Gneiting et al. 2007) and fitted versus

observed plots. Due to their definition or interpretability,

some covariates were not tested this way. Instead, they

were included or excluded based on expert opinion.

Specifically, expert advice was considered for land-use

types and lithology types (included linearly as they are

represented as a proportion of a SU and therefore, their sum

is constrained to 1); mean Eastness and mean Northness

(included linearly as they are complementary measure-

ments representing the sine and cosine of the aspect of a

SU); mean slope (included non-linearly based on previous

analysis, see, e.g., Tanyaş et al. 2022); and the standard

deviations of all covariates (included linearly since non-

linear standard deviations lack reasonable interpretation).

Fig. 2 a Observed landslide presence/absence data; b observed

landslide planimetric area, aggregated at the SU level as the sum of all

landslides; c Triangulation mesh (gray) with SU centroids (blue) used

to discretise Dominica Island and fit the spatial effect uðsÞ in (3.2).

The inner boundary (red) delimits the island, whereas the extension to

the outer boundary (black) avoids possible boundary effects
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All the covariates related to the perimeter were excluded

due to collinearity issues. The selected covariates and the

specific form they enter into the linear predictor equation

for each model are detailed in Table 2.

3.3 Prior specification

Here we describe the form of the third layer of the hier-

archical representation in (3.1), i.e., the prior distributions

for the likelihood hyperparameters h1 ¼ s (the Gaussian

precision) and the hyperparameters of the model compo-

nents in the linear predictor, h2 ¼ ða; b; s0; r2; rÞ>. Here, a
is a vector of length two that contains the intercept for both

likelihood models, b is a vector of length 48 that contains

the fixed effects for both likelihood models and s0 is a

vector of length ten that contains the RW1 precision

parameters for both likelihood models; see Table 2. The

vectors r2 and r have length 2 and contain, respectively,

the marginal variances and range parameters of the Matérn

covariance of uðsÞ in (3.2) for both likelihoods.

Non-informative priors are a common choice when little

expert knowledge is available. We use this approach to

define prior distributions over the fixed effects and the

intercepts. Specifically, we chose a zero-mean Gaussian

prior with a precision of 0.001 for all fixed effects and

intercepts. Prior information with different strengths can

also be defined using the penalised complexity (PC) prior

approach (Simpson et al. 2017). This procedure penalises

excessively complex models by placing an exponential

prior on a distance to a simpler base model, which helps to

stabilise the estimation. Priors then shrink model compo-

nents toward their base models, thus preventing over-fit-

ting. For the precision s of the log-size observations, we set
a weakly informative prior such that the probability of

observing a standard deviation (1=s) larger than the

empirical standard deviation for the response is 0.01. For

the precision parameters of the random walks of order 1,

we set weak prior distributions where the probability that

the standard deviations ð1=s0;kÞ corresponding to SUA,

SUMD and TWI are greater than 5, 0.5 and 0.1, respectively

is 0.01. For the precision parameters of the remaining

random walks of order 1, we set relatively weak prior

distributions where the probability that the standard devi-

ations of the random walks are greater than the empirical

standard deviation of the response is 0.01. Due to our lack

of prior knowledge, we argue that this choice made sense

since, a priori, the effects on the linear predictor can only

be interpreted relative to the likelihood and the implicit

scaling in the likelihood. For both Matérn range parame-

ters, we guided our selection using the empirical variogram

and set a prior distribution where the probability that the

range is smaller than 25km is 50%. Finally, for the Matérn

marginal variances, we set a prior distribution where the

probability that the variance is larger than 0.25 is 50%.

3.4 Inference with INLA

In a Bayesian framework, the interest lies in the joint

posterior distribution of unknown parameters and hyper-

parameters. In the context of GLMs (see (3.1)), this joint

posterior distribution can be written as

pðx; h j yÞ / pðhÞ/ðx j h2Þ
Y

s2S
/ðyðsÞ j xðsÞ; h1Þ

/ pðhÞ j Qxðh2Þ j
1
2

exp
�1

2
ðx� lxðh2ÞÞ

TQxðh2Þðx� lxðh2ÞÞ
�

þ
X

s2S
log/ðyðsÞ j xðsÞ; h1ÞÞ

)
:

ð3:4Þ

The main goals of the Bayesian inference are to obtain

from (3.4) the marginal posterior distribution for each

element of the linear predictor and the hyperparameters

vector, i.e.,

pðxðsÞ j yÞ ¼
Z

pðh j yÞpðxðsÞ j h; yÞ dh; pðhj j yÞ

¼
Z

pðh j yÞ dh�j;

ð3:5Þ

where y is the collection of response values across all the

SUs and hj is the j-th component of the hyperparameter

vector h.

Table 2 Summary of selected covariates for both likelihood models

Likelihood Fixed effects Random effects

Bernoulli SUMD, SUMD=A, SUMD=
ffiffiffi
A

p , D2Sl, D2Sr, ENl, ENr, NNl, NNr, ELr, PLCl, PLCr, PRCr, RSPl,

RSPr, SLOr, TWIl, TWIr, RGA, YPC, YPV, YPI, BAY, IGO, IPL, IGY, OPL, PBA, PPD.

SUA, ELl, SLOl, PRCl.

Gaussian SUMD=A, SUMD=
ffiffiffi
A

p , D2Sr, ENl, ENr, NNl, NNr, ELr, PLCl, PLCr, PRCl, PRCr, RSPl, RSPr,

SLOr, TWIr, YPV, BAY, OPL.

SUA, SUMD, D2Sl, ELl,
SLOl, TWIl.
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INLA uses numeric techniques to approximate the

integrals in (3.5), with an additional step to approximate

the marginal posterior distribution for the spatial effect uðsÞ
in (3.2). Recall that uðsÞ is a zero-mean Gaussian field with

a stationary Matérn covariance function. Therefore, com-

putation of the posterior marginal distribution requires the

inversion of an n� n matrix, which becomes computa-

tionally demanding for large n. To speed up this step and

make inference feasible, INLA uses the stochastic partial

differential equation (SPDE) approach of Simpson et al.

(2017) to approximate the Matérn covariance function with

numerically convenient sparse precision matrices. Specifi-

cally, the SPDE approach constructs an approximation to

the precision matrix (defined as the inverse of the covari-

ance matrix) and finds an SPDE whose solutions have

desired covariance and precision structures. Lindgren et al.

(2011) show how to find these solutions by discretising the

study region with a triangulation mesh and representing the

stochastic process as a sum of basis functions multiplied by

coefficients. They also show that these coefficients form a

Gaussian Markov random field, for which methods for fast

computation of precision matrices already exist (see,

e.g., Krainski et al. 2018 for more details on the SPDE

approach). The mesh construction is key to representing the

spatial process and can affect the accuracy and speed of the

estimation. This step is similar to the choice of integration

points on a numerical integration method (Krainski et al.

2018); therefore, we studied the sensitivity of our estimates

over changes in the triangulation mesh. We found that a

mesh with 4, 600 nodes is a good compromise between the

accuracy and speed of the algorithm (see Fig. 2c). INLA

and the SPDE approach are conveniently implemented in

the R-INLA software (Bivand et al. 2015), and we use

them to obtain fast and accurate approximations of the

posterior distributions of all the parameters and hyperpa-

rameters involved in our models.

4 Application to landslide hazard
assessment in the Island of Dominica

This section presents the results of our hurdle model in

terms of the statistical findings and the implications for

landslide hazard assessment.

4.1 Hurdle model: main results

Figure 3 shows the posterior means and corresponding 95%

credible intervals of the fixed effects for the Bernoulli and

Gaussian models. The selected covariates show relatively

moderate positive and negative influences on landslide log-

sizes and occurrences. The extent to which a covariate,

significant or not, contributes to the model can be

summarised by the size of the posterior mean regression

coefficient. For the Bernoulli model, out of the 29 covari-

ates used linearly, eight appeared to be significant;

SUMD=A, ENl, PLCl, PLCr, PRCr, RSPr, SLOr and IPL,

with mean regression coefficients of - 0.731, 0.228, -

0.190, 0.693, - 0.815, - 0.217, 0.521 and 0.793, respec-

tively. From here, the contribution becomes less

distinguishable.

For the Gaussian model, out of 19 covariates used lin-

early, eight appeared to be significant, which indicates that

the model is 95% certain of the role (either positive or

negative) of the given covariate with respect to the land-

slide log-size. We can see from the plot in Fig. 3 that the

significant covariates are SUMD=A, SUMD=
ffiffiffi
A

p , ELr, PLCl,

PRCr RSPl, SLOr and TWIr, with mean regression

coefficients of - 0.835, 0.165, 0.146, - 0.269, - 0.244, -

0.322, 0.439 and - 0.148, respectively. It is important to

notice that even if an effect is not significant, the effect size

of the corresponding covariate may be large. Therefore,

non-significant effects do not imply that the model is not

influenced by the corresponding covariates (Lombardo

et al. 2021).

Figure 4 displays the posterior means and corresponding

95% credible bands of the random effects for both models.

We can see the highly non-linear influence of most of these

covariates on landslide log-sizes and occurrences. For

example, looking at the plot for landslide susceptibility, we

can see that SUA has a moderate non-linear effect, with a

positive effect peaking at approximately 0:67 km2. ELl
displays a slight concave effect, with a positive effect on

landslide susceptibility between 0 and 0.4 m=1000. We can

also see that PRCl has a relatively linear and mild effect

over landslide occurrences, while SLOl is among the most

significant non-linear effects with very narrow credible

intervals. As expected, steeper slopes are more at risk.

For landslide sizes, we can see that SUA has a moderate

non-linear effect, with a negative effect for smaller areas

and an increasing and eventually positive effect for larger

areas. SUMD seems to have a mild concave and then con-

vex effect on landslide log-size before becoming relatively

linear. D2Sl is relatively linear when considering the

credible bands, with negative effects at small distances.

ELl has an overall negative effect on landslide size except

for the range 0–0.4 m=1000. SLOl steepness is again

among the most significant effects with very narrow

credible intervals. As expected, larger slopes—those above

30�—are more at risk. Finally, TWIl has a convex relation

with landslide log-size.

Figure 5 show the posterior mean estimates at the mesh

nodes of the spatial fields for both models. We can notice

that the spatial field covers almost the entirety of the island

for the Bernoulli model, except for the north-eastern
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coastlines. This is well in line with observations of Maria

passing over Dominica and discharging such an amount of

rainfall that most of the shallow material draping over the

island has become prone to fail. The same cannot be

observed in the case of the spatial field estimated for the

Gaussian model. In this case, large landslides appear to

share a high degree of spatial dependence in the centre of

the island.

To assess the ability of the Bernoulli model to classify

landslides correctly, the left panel of Fig. 6 shows the

receiver operating characteristic (ROC) curve. It is con-

structed by plotting the true positive rate (TPR, also called

sensitivity) versus the false positive rate (FPR, also cal-

culated as 1-specificity). The TPR boils down to the

number of unstable SUs that have been correctly classified

divided by the total number of unstable SUs. As for the

FPR, this measure is calculated as the number of mis-

classified stable SUs divided by the total number of

stable SUs. The input to the Bernoulli model has a

dichotomous nature, whereas the output is a probability.

Therefore, to match the output to the input, one needs to

use a probability threshold. The way a ROC curve is then

constructed is done by selecting a large number of these

thresholds and storing the TPR and FPR at each iteration.

The greater the area under the ROC curve (AUROC), the

better the model and its classification abilities (Zou et al.

2005). The Bernoulli model has an AUROC of 0.927, so

we can safely affirm that the model does an excellent job

distinguishing between both classes.

To assess the goodness of fit of the Gaussian model, the

middle and right panels of Fig. 6 show a histogram of the

probability integral transform (PIT) values and a plot of

observed versus predicted values, respectively. PITs are

commonly used to assess model calibration, i.e., the sta-

tistical consistency between the predictive distribution and

the observations (Gneiting et al. 2007). If a model is well-

calibrated, then the observations should be

indistinguishable from a random draw from the model. For

a large number of observations, the PITs histogram serves

as a tool to empirically check for uniformity. As expected,

large landslide sizes seem to be underestimated by the

Gaussian model.

Nonetheless, the PITs in Fig. 6 are not too far from the

way a histogram of uniform numbers might look, and it

seems fair to assume that our model is decently calibrated.

The observed versus predicted values plot shows a rela-

tively good performance for moderate landslide sizes,

although there seems to be a greater bias for landslide sizes

below the first quartile.

4.2 Interpretation of the covariates’ role

The advantage of a statistical model over other data-driven

approaches is that the association between dependent and

independent variables can be clearly interpreted. This is

particularly useful for examining the geomorphological

reasonability of a given model. Below, we will present a

few examples of our interpretation for those covariates that

behave close to our assumptions from the mechanical

perspective. In this case, the interpretation should cover a

dual aspect of our hurdle model, both from the landslide

occurrence and size perspectives. As previously mentioned,

Fig. 3 reports the posterior distribution of the regression

coefficients estimated for the Bernoulli and the Gaussian

models. There, among the lithological classes, ignimbrites

(IGO, IPL, IGY) positively contribute to increasing the

mean probability of landslide occurrence, with only IPL

being significant among the three. From an interpretative

standpoint, we recall that ignimbrite is a pyroclastic flow

deposit largely comprised of pumice with subordinated

ashes. Thus, a positive contribution to the landslide

occurrence is reasonable because its mineral structure is

prone to weathering, and it is well known to promote slope

instabilities (e.g., Chigira and Yokoyama 2005). An

Fixed effects −  Bernoulli model
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analogous situation can be seen in gravel and alluvium

materials (RGA). These are unconsolidated deposits,

inherently susceptible to slope instabilities anytime the

landscape evolution has set them to drape over steep

topographies.

Interestingly enough, most of the lithotypes selected for

the Bernoulli model do not appear in the Gaussian case.

There, Older Pleistocene volcanics are also reported with a

significant and negative contribution to the estimated

landslide sizes. Irrespective of the Bernoulli or Gaussian

framework, no land-use class plays a role in explaining the

landslide occurrence or size.

Another point in common between the Bernoulli and the

Gaussian models is the role of SUMD=A. This covariate

expresses how elongated a given SU is. The larger the

value, the more stretched the SU appears, whereas the

smaller the value, the more rounded the SU is. Thus, the

posterior mean negative value reported for both models

may indicate that narrow SUs are not only less prone to

fail, but also the lesser availability of material does not

allow for large landslides to be generated.

As for the non-linear effects shown in Fig. 4, there we

can observe two noteworthy behaviours. SUA appears to

influence both the Bernoulli and Gaussian models with a

negative effect for very small SUs, while the contribution

becomes increasingly positive for larger SUs. Similarly to

the elongation/roundness (SUMD=A) effect mentioned

above, this can be interpreted as if larger SUs can host
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more and larger landslides compared to very small SUs.

There, the conditions required for a failing mechanism to

occur are much more unlikely to manifest simply because

of the smaller extent. The other interesting effect corre-

sponds to SLOl. In both models, the slope steepness

behaves as a sigmoidal function. This is likely because no

shallow flow-like landslide can occur at low steepness

values. Conversely, at medium steepness values, we

experience a sudden increase in the effect of this covariate,

which is to be expected, up to the point where we reach an

asymptotic level or even a decrease. A decrease can be

interpreted as if very steep topographic conditions cannot

host soil, which is washed away by normal erosional pro-

cesses. Thus, the absence or near-absence of soil implies

that no landslide can manifest or that, at best, a small one

will mobilise the thin detrital layer draping over the

stable bedrock.

4.3 Landslide hazard components

Figure 7 presents our findings in terms of posterior means

and width of the 95% credible intervals (CI) for landslide

susceptibility and sizes (in log-scale) across the island.

There, large portions of the areas characterised by higher

landslide probability (central north and southern coastlines)

coincide with areas where larger landslide sizes are

expected. Conversely, the north-eastern coast seems con-

sistently small in landslide size and probability of

occurrence.

From the uncertainty plots, we can see that areas with

higher occurrence probability (0.86 to 1) have overall small

95 % CI width, implying that these areas are well estimated

with relatively small uncertainty. We can also see that

areas with moderate occurrence probability (0.47 to 0.86)

display higher uncertainty, while areas with the smallest
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occurrence probability (0 to 0.47) show a mixture of small

and moderate uncertainty. Large landslide sizes are esti-

mated with relatively small uncertainty, and the higher

uncertainties seem to occur where the landslides are small

to moderately sized.

4.4 Unified landslide hazard

The Bernoulli model addresses the island’s susceptibility

under extreme conditions, such as those induced by Maria.

It estimates how prone a given location is to host slope

failures, but it is blind to how large landslides may become

once they initiate and propagate downhill. To compensate

this limitation, the Gaussian model provides information on

the expected size of landslides per slope unit, again under

extreme meteorological stress. But once more, the model is

blind to which slope was effectively prone to fail. So far,

we have implemented and presented the results of the two

models independently from each other. This framework is

already more than enough to satisfy the requirements of the

most accepted landslide hazard definition (see Guzzetti

et al. 1999), taking aside the temporal dimension. Never-

theless, much more can be done to provide for the first time

a unified version of the landslide hazard for the purely

spatial context. Below we explain how we can provide a

new and unified (data-driven-specific) landslide hazard

assessment by combining the two elements of our proposed

hurdle model.

Our motivation to provide a unified framework stemmed

from the need to provide end-users with spatially dis-

tributed information regarding how likely each slope would

be to release specific landslide sizes if expected to be

unstable under analogous extreme conditions to those

brought by Maria. Small landslides should carry the least

hazard; thus, they should be of little interest. Conversely,

as the landslide size increases, the expected hazard should

proportionally follow. So, to quantify the hazard for

moderate and relatively large landslides within the range of

observed landslide sizes, we use the two parts of our hurdle

model to compute the probability of observing landslide

sizes above the empirical 50%, 75%, 90% and 95%

quantiles. Specifically, we compute:

PrðlogfALðsÞg[ uÞ ¼PrðlogfALðsÞg[ u j OLðsÞ ¼ 1Þ
PrðOLðsÞ ¼ 1Þ;

ð4:1Þ

for u ¼ F̂
�1

logðALÞð0:5Þ; F̂
�1

logðALÞð0:75Þ; F̂
�1

logðALÞð0:90Þ and

F̂
�1

logðALÞð0:95Þ, where F̂logðALÞ is the empirical cumulative

distribution function of landslide log-sizes. Note that this

procedure can be performed for any landslide size u of

interest. We here focus on the empirical 50%, 75%, 90%

and 95% quantiles to illustrate how our model can be

used to predict the probability of exceeding medium

to large landslides. The exceedance probabilities

PrðlogfALðsÞg[ uÞ in (4.1) and their uncertainties can be

easily computed using posterior samples from both the

Gaussian and Bernoulli models. Specifically, we follow a

Monte Carlo (MC) procedure and generate N ¼ 500 sam-

ples from the posterior predictive distributions (PPDs) of

the Gaussian and Bernoulli models. The PPDs account for

uncertainty in the data and the model fitting. We then

compute empirical estimates of the probabilities in the right

side of (4.1) to obtain one estimate of PrðlogfALðsÞg[ uÞ.

Fig. 7 Map of Dominica showing posterior mean and width of the 95% credible interval for landslide susceptibility (panels (a) and (b)) and
landslide log-size (panels (c) and (d))
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Finally, we replicate this procedure M ¼ 1000 times to

obtain MC mean estimates and confidence intervals for

PrðlogfALðsÞg[ uÞ, computed as the 2.5% and 97.5%

quantiles of the MC estimates. Figure 8 shows plots of the

exceedance probabilities and the width of the associated

95% confidence intervals for the four quantiles detailed

above. It is interesting to observe how the exceedance

probability of the landslide sizes changes from one hazard

map to the other. As one should expect, the slopes prone to

release median landslide sizes are quite numerous, and

their number decreases towards larger landslides. To

briefly touch on risk perspectives (although not explicitly

integrated into our hurdle model), landslides greater than

90% of the landslide area distribution are particularly likely

to occur in the southernmost sector of the island. There, the

village of Berekua appears to be potentially vulnerable.

The same situation can be seen slightly northwestward for

the much larger settlement of Roseau. We stress here that

this type of consideration would not be possible in the

simple binary case, where the corresponding susceptibility

map highlights most of the island as unstable (see Fig. 7a).

Note that the confidence intervals in Fig. 8 measure the

accuracy of the Monte Carlo approximation and should not

be interpreted as a measure of the dispersion in the pos-

terior predictive distribution of the exceedance

probabilities.

Fig. 8 Maps displaying exceedance probabilitiy estimates (top) and a

measure of their uncertainty (bottom) for landslide sizes above the

50%, 75%, 90% and 95% empirical quantiles. The computations were

based on N �M ¼ 5� 105 predictive posterior samples of the

Gaussian and Bernoulli models
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5 Discussion and conclusion

A complete landslide hazard assessment should address

three components: where, when (or how frequently) and

how large landslides may be. The three components men-

tioned above have always been addressed separately in the

scientific literature produced so far (for non-physically-

based models). In this work, we combined two of the three,

leaving the temporal characteristic out of the scope because

of the limited access to long time series of landslide

inventories triggered in response to hurricanes within the

Island of Dominica. Despite this limitation, the model we

propose represents a substantial improvement with respect

to traditional presence/absence susceptibility models

because those are blind to the actual threat that a landslide

may pose, depending on its size.

We consider this achievement a stepping stone for fur-

ther experimentation in the hope that one day this unified

hazard line of research may impact international guidelines

for disaster risk reduction. In this work, we focused on the

landslide inventory generated by Maria because of the

large sample size and the availability of data on a wide

variety of geographical and geological variables, with no

missing values. However, further effort can be made to

implement an extension in space-time of our hurdle

framework. In this line, we are already investigating the

combination of the hurricane Maria inventory with the

landslide inventory mapped after hurricane Erika in 2015.

Although the lack of more temporal replicates inhibits the

applicability of complex spatio-temporal models, the sta-

tistical characterisation of both processes could provide an

exciting perspective and additional means of validation on

landslide occurrence and size probabilities across the

island. Furthermore, studying the similarities and differ-

ences in the values for landslide size and landslide occur-

rence could be a promising start towards an even more

comprehensive hazard map of the island.

Another potential improvement would be carried out by

extending this hurdle model toward different modes of

slope failures and propagation. Currently, we only model

shallow flow-like landslides that either started as debris

slides or flows and that generally evolved into debris flows

due to the high water content of the moving mass. How-

ever, extensions of our model could be implemented to

distinguish various landslide classes, including deep-seated

ones, which have a completely different failure mecha-

nisms and propagation behaviour.

Ultimately, we also envision the integration of actual

rainfall data. Unfortunately, in the specific case of Maria,

no reliable rainfall data is available. However, other

inventories in data-rich conditions could help integrate

rainfall into the modelling strategy, which in turn could

enable testing for a near-real-time application of our hurdle

model.

To promote repeatability and reproducibility, the codes

and data to fit our hurdle model are freely available from

https://github.com/BryceErin/ULHAdominica. We hope

that this will help users utilise and extend the hurdle

modelling approach to other geographic contexts, landslide

types and triggers.

Appendix

Table 3 shows acronyms for thematic variables considered

in our hurdle model.

Table 3 Summary of the Dominica geological and land-use variables

Category Acronym Class

Geology BAP Block ash on Pliocene

BAY Block ash flow on young Pleistocene

CRL Conglomerate and raised limestone

IBP Ignimbrite block ash Pliocene

IGO Ignimbrite on Old Pleistocene

IGY Ignimbrite on young Pleistocene

IPL Ignimbrite on Pliocene volcanics

MIV Miocene volcanics

OPL Older Pleistocene volcanics

PBA Pleistocene apron of block and ash

PCR Pleistocene craters

PIC Pliocene craters

PLP Pliocene Pelean domes

PLV Pliocene volcanics

PPD Pleistocence Pelean domes

RGA Recent river gravel and alluvium

YPC Young Pleistocene craters

YPD Young Pleistocene Pelean domes

YPI Young Pleistocene ignimbrites

YPV Young Pleistocene volcanics

Land-use AGR Agriculture

AIR Airport

BAR Bare

FOR Forest

LAK Lake

QUA Quarry

ROA Roads

SWW Swamp and wetlands

URB Urban
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