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Abstract
The increasing carbon emissions have been a major concern for most countries around the world. And as a result, every

country is concerned about developing appropriate strategies to curtail it. As a major economy and the largest carbon

emitter in the world, China has pledged to reduce the carbon intensity by 60–65% by 2030, compared with 2005 levels, and

achieve carbon neutrality before 2060. Therefore, the analysis of the impact of China’s carbon intensity is becoming an

increasing important topic. Due to the spatial heterogeneity of carbon intensity, various spatial econometric models have

been applied in this field. However, the existing literatures failed to consider the cross-products of relevant factors. This

paper constructs our dynamic general nesting spatial panel model (GNS) with common factors to deal with the dilemma,

and examines the direct and spatial–temporal spillover effects of industrial structure, GDP per capita, investment in anti-

pollution projects as percentage of GDP and energy price on carbon intensity in China over the period 2003–2017. Our

analysis shows that: (1) China’s carbon intensity showed the spatial agglomeration and temporal ‘‘inertia’’ from 2003 to

2017. (2) From the time dimension, the long-term effect of industrial structure first increased and then gradually decreased.

(3) From the spatial dimension, industrial structure and investment in anti-pollution projects as percentage of GDP

accounted for the main spatial heterogeneity. Furthermore, this paper attempts to provide policy implications to help reduce

carbon intensity and achieve carbon neutrality in China.

Keywords Carbon intensity � Spatial dependence � Spillover effect � Industrial structure � Spatial heterogeneity �
Carbon emissions

1 Introduction

The Production Gap Report 2020 and Emission Gap

Report 2020 released by the United Nations Environment

Programme (UNEP) point out that, despite a brief dip in

carbon dioxide emissions caused by the COVID-19 pan-

demic, the world is still heading for a temperature rise in

excess of 3 �C this century—far beyond the Paris Agree-

ment goals of limiting global warming to well below 2 �C
and pursuing 1.5 �C. The increasing carbon emissions have

been a major concern for most countries around the world

(Shobande and Asongu 2021). And as a result, every

country is concerned about developing appropriate

strategies to curtail it (Chen et al. 2020; Yang et al. 2021).

As a major economy and the largest carbon emitter in the

world, China has pledged to reduce the carbon intensity

(carbon dioxide emissions divided by gross domestic pro-

duct (GDP)) by 60–65% by 2030, compared with 2005

levels, and achieve carbon neutrality before 2060 by

implementing a green pandemic recovery plan.

Therefore, investigating China’s carbon emissions has

been attracting more attention from numerous studies.

Energy consumption is the crucial impetus of the carbon

emissions, and the leading factors of carbon emissions have

been identified as follows: industrial structure, economic

growth and investment in treatment of environmental pol-

lution (Song et al. 2015; Xu et al. 2016; Ridzuan et al.

2020; Du and Li 2020; Xuan et al. 2020; Abbasi et al.

2021; Aluko et al. 2021; Aslam et al. 2021; Cheng et al.

2021; Hossain and Chen 2021; Shabani et al. 2021).
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Based on these factors, a large number of literatures

have discussed the contributors of carbon emissions

focusing on some industries or some regions in China by

using the classic methods. On the one hand, there are some

studies focusing on the carbon emissions of some industries

in China. Teng et al. (2017) measured the carbon produc-

tivity of Chinese service industry by SBM directional

distance function and GML index. Tian and Ma (2020)

established the Kaya decomposition model of China’s

industrial carbon intensity and used LMDI method to

analyse the contribution of different factors to the industrial

carbon intensity. Sun et al. (2020) constructed a Stackel-

berg differential game model to analyse the factors that

influence China’s manufacturing industrial carbon emis-

sions. Using the input–output analysis and the three-stage

data envelopment analysis (DEA) model, Wang et al.

(2020a) proposed an improved method for estimation of

China’s embodied carbon emissions efficiency in the ser-

vice sector. On the other hand, some studies are focusing

on carbon emissions of some regions in China. Chang et al.

(2020) evaluated the impact of energy consumption struc-

ture on carbon emission performance in the Bohai Rim

Economic Circle (BREC) and allocated the carbon emis-

sion quotas in 2030. Wang et al. (2020b) evaluated the

spatial correlation and relevant factors of carbon emissions

in Chengdu-Chongqing urban agglomeration based on

SNA and QAP. Jiang et al. (2020) constructed a three-stage

DEA model to evaluate and compare the transportation

carbon emission efficiency of the provinces in Yangtze

River Economic Belt. Huang et al. (2019) applied the life

cycle assessment approach to quantify the efforts of

Shenzhen’s public building practices and evaluated its real

‘achievement’ by quantifying the carbon emissions reduc-

tion in the past decade. Taking energy intensity as the

threshold variable, Wang et al. (2019) established the

Threshold-STIRPAT model and determined the contribu-

tors of carbon emissions in 6 megacities.

But the above literatures have rarely taken spatial

heterogeneity into consideration when analysing the rele-

vant factors of carbon emissions. Anselin (1988) proposed

spatial econometrics, which provided a basic model to

contain spatial heterogeneity in classic econometric mod-

els. Pan and Zhao (2018) built a Spatial Autoregressive

Model (SAR) to simulate the spatial–temporal distribution

of carbon emissions in China. Cheng et al. (2018) used

dynamic spatial panel models to analyse the effects of

industrial structure and technical progress on carbon

intensity, and explored those factors that may lead to a

reduction in carbon intensity in China. Lu et al. (2019)

applied Spatial Durbin Model (SDM) to analyse the direct

and spillover effects of low-carbon technological innova-

tion on carbon emissions in China. Liu and Zhang (2021)

Investigated the relationship between heterogeneous

industrial agglomeration, technological innovation and

carbon productivity using SDM in china. Guo et al. (2021)

investigated the spatial aggregation and determinants of

Guangdong’s energy intensity using SDM.

However, the above spatial econometric models may

have some limitations: firstly, they failed to consider the

cross-products of relevant factors, which may play an

important role on the analysis of carbon intensity (Shi and

Lee 2017). Secondly, they did not consider heterogeneity

of the direct and spillover effects across space and over

time (Li et al. 2019). Furthermore, they did not take into

account that energy price may have a determined negative

effect on energy consumption (Ren et al. 2009; Du 2019;

Ashraf et al. 2020; Wang et al. 2020c; Neya et al. 2020).

In fact, Elhorst et al. (2019) proposed a dynamic general

nesting spatial panel model (GNS) with common factors,

which introduced cross-products and showed the direct and

spillover effects of relevant factors across space and over

time in their problem. In order to achieve short-term and

long-term control of carbon intensity of different regions in

China, this study tries to explore the spatial–temporal

effects of relevant factors on carbon intensity in China. The

contributions of this paper are presented as follows: (1)

following the method of Elhorst et al. (2019), this paper

constructs our GNS with common factors and analyses all

industries of 30 provinces in China from 2003 to 2017. (2)

Based on the leading factors in previous studies, this study

examines the direct and spatial–temporal spillover effects

of industrial structure (IS), GDP per capita (PGDP),

investment in anti-pollution projects as percentage of GDP

(EI) and energy price (PE) on carbon intensity. (3) This

paper is a first attempt to explore the spatial–temporal

effects of relevant factors on carbon intensity by intro-

ducing the cross-products in the basic models. (4) It is the

inclusion of cross-products in our model that makes it

possible to provide effective economic explanations and

reasonable policy implications of IS, PGDP, EI and PE for

the observed heterogeneity from spatial and time dimen-

sions, respectively.

The remainder of this paper is organized as follows.

Section 2 describes the research methodology, variables,

data description and constructs our model. Section 3

reports and discusses the spatial aggregation of carbon

intensity and the empirical results of the models. Section 4

gives the conclusions and proposes several policy

implications.

3786 Stochastic Environmental Research and Risk Assessment (2022) 36:3785–3802

123



2 Materials and methods

2.1 Carbon intensity estimates

According to the report of the United Nation’s Intergov-

ernmental Panel on Climate Change (IPCC), the use of

fossil energy is the main source of the increase in carbon

emissions. For convenient analysis, this study calculates

carbon intensity from fossil energy including coal, coke,

crude oil, gasoline, kerosene, diesel, fuel oil and natural

gas. Specifically, in order to obtain carbon intensity, we

need firstly evaluate the carbon emissions, which can be

calculated as follows:

Cit ¼
Xk

j¼1

ðEijt � aj � bjÞ �
44

12
ð1Þ

where Cit represents the carbon emissions of province i in

period t;Eijt stands for the total consumption of energy j by

province i in period t;aj is the standard coal-equivalent

coefficient of energy j, which is from China Energy Sta-

tistical Yearbook; bj represents the carbon-emission coef-

ficient of energy j, which is from IPCC Report. And aj and

bj are shown in ‘‘Table 7 in Appendix’’.

Based on this formular, we can denote the carbon

intensity as:

CIit ¼
Cit

GDPit
ð2Þ

where CIit and GDPit stand for the carbon intensity and the

regional gross domestic product of province i in period t,

respectively.

2.2 Testing for cross-sectional dependence

Based on the Cross-Sectional Dependence (CD) test

developed in Pesaran (2015) and the a-exponent estimator

developed in Bailey et al. (2016a), Bailey et al. (2016b)

presented a two-step procedure to distinguish between

weak and strong cross-sectional dependence. Under the

null hypothesis 0\ a\ 1/2, the CD-test statistic is defined

as the Eq. (3), and the average correlation coefficient has

the order property of Eq. (4):

CD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T=N N � 1ð Þ

p XN�1

i¼1

XN

j¼iþ1

q̂ij ð3Þ

qN ¼ 2

N N � 1ð Þ
XN

i¼1

XN

j¼iþ1

qij ¼ O N2a�2
� �

ð4Þ

where N represents the number of provinces (N = 30) and

T stands for the time periods (T = 15); q̂ij denotes the

sample correlation coefficient between CIit and CIjt of two

provinces i and j in period t; qN is the average correlation

coefficient; And CD �a N 0; 1ð Þ; a is a parameter that can

take values on the interval (0,1) (Bailey et al. 2016b), for

0\ a\ 1/2, qN convergenes to zero very fast, pointing to

weak dependence. The range 1/2 B a\ 3/4 is considered

to represent moderate dependence and 3/4 B a\ 1 quite-

strong cross-sectional dependence.

2.3 Testing for spatially stratified heterogeneity

The spatially stratified heterogeneity (SSH) refers to

ubiquitous phenomena (those within strata are more similar

than those between strata), implies potential distinct

mechanisms by stratum, and enforces the applicability of

statistical inferences (Wang et al. 2016). Confounding

arises if a global model was applied to a SSH population,

leading to statistical insignificance. The problem can be

simply avoided if SSH is identified by geographical

detector (GeoDetector) q-statistic then modelling in the

strata, separately. The GeoDetector q-statistic is generally

applied to quantitatively evaluate the SSH of an explained

variable (Wang et al. 2010, 2016) and assess the determi-

nant power of explanatory variables and their interactions

without linear assumptions (Yin et al. 2019). The funda-

mental formula of the q-statistic is given by:

q ¼ 1 �
PL

h¼1 Nhr2
h

Nr2
ð5Þ

where q, with a value ranging from 0 to 1, is the SSH

measure of an explained variable or the determinant power

of a factor to the objective, and the larger the q-statistic, the

more pronounced SSH of Y is; N is the number of

explained variable observations, and r2 indicates the

variance of all the observations; The explained variable is

stratified into L strata, denoted by h = 1, 2,..., L, which are

determined by prior knowledge, the determinant factor, or

a classification algorithm; Nh is the number of observa-

tions, and r2
h is the corresponding variance within stratum

h.

2.4 Spatial econometric model

This paper adopts a dynamic general nesting spatial panel

model (GNS) with common factors, which can be written

as:
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lnCIit ¼ slnCIit�1 þ d
XN

j¼1

wijlnCIjt þ g
XN

j¼1

wijlnCIjt�1 þ
XL

l¼1

bllnxilt

þ
XL

l¼1

hl
XN

j¼1

wijlnxjlt þ
1

2

XL

l¼1

XL

m¼1

blmlnxiltlnximt þ qlnzit

þ
XR

r¼1

sirfrt þ vit

ð6Þ

where

vit ¼ k
XN

j¼1

wijvjt þ eit ð7Þ

where lnCIit�1 and
PN

j¼1

wijlnCIjt represent, respectively, the

temporal and spatial lag, and
PN

j¼1

wijlnCIjt�1 represents

spatial–temporal lag of lnCIit; s; d and g are the corre-

sponding response parameters of these variables, respec-

tively, the serial, spatial and spatial–temporal

autoregressive coefficients; wij is the element of an N � N

non-negative matrix W of known constants describing the

spatial arrangement of the provinces in the sample;

L = 3,xi1t, xi2t and xi3t represent IS, PGDP, EI of the pro-

vince i in period t, respectively; And so in terms of these

three explanatory variables, the number of cross-products

amounts to six; bl,hl and blm are the coefficients of the

exogenous explanatory variables, the exogenous spatial lag

explanatory variables and the cross-products of the

exogenous variables, respectively; zit stands for PE, with

coefficient q, the first three single explanatory variables are

dominated by variation in the cross-sectional domain,

while PE is dominated by variation in the time domain;

The common factors, which cover potential global cross-

sectional dependence, can be subdivided into observable

and non-observable factors. In our model, PE is an

observable common factor. The hypothesis is that if PE in

China increases (resp. decrease), the CI will diminish (resp.

increase) in all of its provinces. In addition, the CI may

increase or decrease due to R non-observable common

factors; sir is the i th column of sr, which is a vector of

length N representing the factor loadings of common factor

r. ft is of order R� T such that its transpose consists of R

columns of length T . The proposed model encompasses

many models of empirical interest, among which the

popular dynamic spatial panel model with additive spatial

and time period fixed effects. Shi and Lee (2017) demon-

strated that this model can be obtained by imposing the

restrictions R = 2,s1 = l1. . .lNð Þ, s2 = 1. . .1ð Þ and

ft = 1ntð Þ
0
, where li and nt represent spatial and time

period fixed effects, respectively; Finally, the error term vit
is assumed to follow a local spatial autoregressive process,

where eit reflects an i.i.d disturbance term with zero mean

and finite variance r2. The coefficients of the model

specified can be estimated by the quasi-maximum likeli-

hood (QML) estimator developed by Shi and Lee (2017).

2.5 Direct effect and spillover effect (indirect
effect)

The matrix of the long-term direct and indirect effects of

the expected value of the CI with respect to the lnxilt can be

expressed as follows (Elhorst 2014; Elhorst et al. 2018):

oE lnCI1tð Þ
olnx1lt

� � � oE lnCI1tð Þ
olnxNlt

..

. . .
. ..

.

oE lnCINtð Þ
olnx1lt

� � � oE lnCINtð Þ
olnxNlt

0
BBBB@

1
CCCCA

¼ 1 � sð ÞIN � dþ gð ÞWð Þ�1

�

bl þ
PL

m¼1

blmlnx1mt hlw12 � � � hlw1N

hlw21 bl þ
PL

m¼1

blmlnx2mt � � � hlw2N

..

. ..
. . .

. ..
.

hlwN1 hlwN2 � � � bl þ
PL

m¼1

blmlnxNmt

0
BBBBBBBBB@

1
CCCCCCCCCA

ð8Þ

where every diagonal element of this matrix represents the

direct effect of one unit change in one of the factors on CI

of the province i. Due to the inclusion of lnxilt, the diagonal

elements of the second matrix on the right-hand side will

vary across space and over time, so will these direct

effects; Every column sum of off-diagonal elements rep-

resents the spillover effect of one unit change in one of the

factors on CI in all provinces other than the province

instigating this change. Their short-term counterparts can

be obtained by setting s ¼ g ¼ 0.

2.6 Spatial weight matrix

W1 represents a binary contiguity matrix, when the pro-

vince i and province j are adjacent, wij ¼ 1, otherwise

wij ¼ 0. Based on the inverse of the average distance (K)

between the capitals of adjacent provinces, the element of

W2 takes 0 if K[ 450 km or 1 otherwise. At the same

time, W1 and W2 are standardized.

2.7 Data description

The energy consumption data, IS (the proportion of the

output value of the secondary industry in GDP), PGDP and

EI in each province and PE were obtained from the Sta-

tistical Yearbooks of each province, China Energy Statis-

tical Yearbook and China Environmental Statistical
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Yearbook. Due to the complexity of PE, a general method

is to find a good proxy index for PE. This study chose the

purchasing prices for raw materials, fuels and power, which

has been chosen for the good proxy index for PE (for

example Du 2019). PGDP and PE were converted into

standard prices using a price index (2003 was the base

year). In order to compare the regional differences of the

effects of relevant factors on CI, this paper introduced the

regional division of China (see Table 1). The distance data

came from Google Maps. Following the general treatment

in the studies of CI in China, this study did not collect data

from Hong Kong, Macao, Taiwan and Tibet.

3 Results and discussion

In this section, this paper firstly gives a graphical analysis

of spatial aggregation of CI by the software of ArcGIS.

Furthermore, we show a detailed spatial econometrics

analysis of CI based on our GNS model.

3.1 The spatial aggregation of CI and the three
rates of change of relevant factors

ArcGIS software can depict the spatial distribution of

research objects directly and vividly through a graphical

display. In this paper, the degree of spatial aggregation

among 30 provinces in China by dividing CI into four

regions from low level to high level was measured by

ArcGIS. For the succinctness and representative of analy-

sis, we used the data of 2003, 2008, 2013 and 2017. The

results are shown in Fig. 1. Totally, China’s CI showed

obvious spatial agglomeration. Specially, North China,

Northeast China and Northwest China belonged to ‘‘high-

high’’ agglomeration regions, while some coastal provinces

in Central China and East China belonged to ‘‘low-low’’

agglomeration regions. In addition, China’s CI has been

declining from 2003 to 2017.

Furthermore, this paper calculated the three rates of

change of relevant factors during the period 2003–2008,

2008–2013 and 2013–2017, respectively (the rate of

change = ((current value)/(previous value)-1)�100), which

are shown in Figs. 2, 3 and 4. Firstly, the PGDP of all

provinces continued to grow during the period 2003–2017,

especially the provinces in North China and East China.

Secondly, during different periods, IS and EI of different

provinces in China had different trends. From 2003 to

2008, except for a few provinces and cities such as Beijing

and Shanghai, the IS of most provinces and cities was

increasing. From 2008 to 2013, the IS of almost half of the

provinces, such as Henan Province and Zhejiang Province,

was decreasing, while EI of most provinces and cities was

increasing sharply during this period. From 2013 to 2017,

in the ‘‘12th Five-Year Plan’’(2011–2015) and early stage

of the ‘‘13th Five-Year Plan’’(2016–2020), the industrial

structure has been adjusted, the IS of all provinces were

declining, while most provinces had a slight decrease in EI.

3.2 Empirical results of models

Cross-sectional dependence is prerequisite of using the

spatial econometric analysis. In order to test the cross-

sectional dependence of CI in China, we will apply CD-test

statistic (Bailey et al. 2016b; Pesaran 2021; Elhorst et al.

2021) and global Moran’s I (Zhou et al. 2019) (see

‘‘Table 8 in Appendix’’). The results indicated a strong

spatial dependence of CI in China. This result is consistent

with the previous graphical analysis. Therefore, the influ-

ence of spatial effects should be taken into account in the

study of CI in China.

Furthermore, in order to test whether there is the SSH of

the huge country and confounding of a global modelling,

the SSH and the degree of influence of different factors on

CI were investigated through the GeoDetector q-statistic

(Wang et al. 2010, 2016) of CI for different regions of

China over the period 2003–2017 (see ‘‘Tables 9, 10 in

Appendix’’). The results indicated that although the cross-

products detectors may reduce the validity of applying the

global models (i.e. SAR models, SDM models and GNS

models), the q-statistics imply that from the view of control

functions, the primary variables such as IS, PGDP and EI

are not affected by the spatial stratified heterogeneity,

which implies the global model is a reliable spatial

econometric model applied to analyze the effects of these

Table 1 Regional division of

China
Region Provinces and cities

North China Beijing, Tianjin, Hebei, Shanxi, Shandong, Inner Mongolia

Northeast China Liaoning, Jilin, Heilongjiang

East China Shanghai, Jiangsu, Zhejiang, Anhui, Fujian

Central China Jiangxi, Henan, Hubei, Hunan, Chongqing, Sichuan

Northwest China Shanxi, Gansu, Qinghai, Ningxia, Xinjiang

South China Guangdong, Guangxi, Guizhou, Yunnan, Hainan
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primary variables on CI in China. Therefore, the global

models are reliable spatial econometric models applied to

focus on the effects of primary variables on the dependent

variable for all regions, and this paper constructs the global

models for the analysis of effects of these factors on CI in

China, respectively.1

Fig. 1 China’s agglomeration map of carbon intensity (t/10,000 yuan) in 2003, 2008, 2013 and 2017

Fig. 2 The rate of change in IS (2003–2008, 2008–2013 and 2013–2017)

1 We thank the associate editor and the reviewers for testing the

necessity of spatially stratified heterogeneity and their helpful
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Specifying spatial weight matrix is the first step of

constructing the spatial econometric model. In this paper,

two spatial weight matrices, W1 and W2, which are intro-

duced in Sect. 2, will be used (characteristics of two spatial

weight matrices see ‘‘Table 11 in Appendix’’).

In terms of cross-sectional dependence above, spatial

econometric models should be applied to analyze the

effects of various relevant factors on CI in China. In this

paper, based on two spatial weight matrices above, the

classic SAR models (fixed effects in time and space), SDM

models (fixed effects in time and space) and a kind of new

model, GNS models will be applied to our analysis. Table 2

reports the estimation results of six models.

From Table 2, we can find that: firstly, the LR-test (- 2

* (460.7400–524.4776) = 127.4752) implies that the

coefficients of the cross-products and spatial lags are

jointly significant and that introducing the cross-products

and spatial lags in the model is reasonable. Secondly, the

elasticities of PE in three models SAR(W1), SAR(W2) and

SDM(W1) are all greater than 1, which are not consistent

with the actual situation in China (Zhang 2008; Du 2019).

Thirdly, the higher values of adjusted R-squared and log-

likelihood show that the GNS is more fitting to Chinese

data. Finally, the sum of absolute value of the coefficients,

s; d and g in GNS(W2) is greater than 1, which fails to

satisfy the stability condition, and in addition, the proba-

bility of the empirical regularity (Parent and Lesage

2011, 2012) in GNS(W2) is lower than that in GNS(W1).

Therefore, GNS (W1) is a reliable spatial econometric

model applied to the analysis of CI in China, and so we

will focus on GNS(W1).

The estimation results of GNS (W1) imply that: (1) s is

greater than 0 and significant at 1% level, indicating that

China’s CI showed temporal ‘‘inertia’’ from 2003 to 2017,

that is, for province i, the CI of the previous period was

Fig. 3 The rate of change in PGDP (2003–2008, 2008–2013 and 2013–2017)

Fig. 4 The rate of change in EI (2003–2008, 2008–2013 and 2013–2017)

Footnote 1 continued

comments and suggestions, which make our study more compre-

hensive and make the applicability of the proposed model clearer.
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significantly and positively correlated with that of the next

period. This ‘‘snowball effect’’ illustrates that adjusting

some policies such as optimizing industrial structure, reg-

ulating energy price and increasing or decreasing invest-

ment in treatment of environmental pollution, which

usually had a habit persistence in China (Lu et al. 2019). In

addition, d and g are close to 0 and insignificant, which

means the existence of local spillovers of CI and there were

not global spillovers of CI. (2) The coefficient of IS is

positive and significant, which implies that the higher IS,

the larger the CI in China was. This might be attributed to

the unreasonable IS of most provinces in China. This is

because relative unreasonable IS will lead to a high level of

industrial activities, which inevitably leads to a high level

of CI (Cheng et al. 2018; Lu et al. 2019; Yang et al. 2021).

In fact, about 70% of China’s primary energy came from

industrial energy consumption, and around 69% of that

came from high energy consuming industries, such as steel,

Table 2 The estimation results of models

Variable SAR (W1) SAR (W2) SDM (W1) SDM (W2) GNS (W1) GNS (W2)

lnCIit�1 sð Þ 0.7111***

(0.0445)

0.7934***

(0.0292)

0.5142***

(0.0406)

0.6783***

(0.0297)

0.6627***

(0.0249)

0.6489***

(0.0257)

PN

j¼1

wijlnCIjt dð Þ
0.0248 (0.1464) - 0.0008

(0.1290)

0.0589 (0.1303) 0.0046 (0.1159) - 0.0047

(0.1492)

0.0067 (0.1706)

PN

j¼1

wijlnCIjt�1ðgÞ
- 0.1814

(0.0664)

0.0462 (0.1437) - 0.2358***

(0.0186)

- 0.0519

(0.1419)

- 0.1298

(0.1357)

- 0.4161***

(0.1456)

lnIS 0.2417***

(0.0788)

0.1307**

(0.0513)

8.7510***

(0.9696)

4.0325***

(0.6525)

1.2391**

(0.5505)

0.6872 (0.51918)

lnPGDP - 0.2973***

(0.0472)

- 0.2720***

(0.0593)

0.5156 (0.3163) 0.5353***

(0.1934)

0.5420***

(0.1811)

0.5631***

(0.1888)

lnPE - 1.0297

(0.1414)

- 1.3484***

(0.3755)

2.8134 (2.1884) - 0.8645***

(0.1005)

- 0.1258

(0.0791)

- 0.5702

(1.1059)

lnEI 0.3380 (0.3498) 0.1975***

(0.0274)

- 1.8079***

(0.4782)

- 0.3585**

(0.1670)

- 0.4044***

(0.1432)

- 0.2898**

(0.1428)

1=2 � lnIS � lnIS - 2.1264***

(0.3708)

- 1.0003***

(0.1922)

- 0.3966**

(0.1627)

- 0.2531

(0.1680)

lnIS � lnPGDP - 0.1496

(0.1086)

- 0.1698***

(0.0449)

- 0.0204

(0.0386)

- 0.0435

(0.0404)

1=2 � lnPGDP � lnPGDP - 0.0125

(0.0452)

- 0.0001

(0.0270)

- 0.0404**

(0.0163)

- 0.0266*

(0.0149)

lnIS � lnEI - 0.0775

(0.1885)

0.0047 (0.0710) 0.0528 (0.0514) 0.0615 (0.0513)

1=2 � lnEI � lnEI 0.6333***

(0.1253)

0.1785***

(0.1459)

- 0.0838***

(0.0218)

- 0.0814***

(0.0194)

lnPGDP � lnEI - 0.0258

(0.0051)

- 0.0293

(0.0068)

0.1102***

(0.0315)

0.0860***

(0.0309)

W � lnIS 0.1174 (0.1782) 0.1150 (0.0976) - 0.0266

(0.0685)

0.2308***

(0.0857)

W � lnPGDP - 0.0960**

(0.0462)

- 0.0199

(0.0300)

- 0.1333***

(0.0416)

- 0.2689***

(0.0622)

W � lnEI - 0.1079

(0.1376)

0.0193 (0.0575) 0.0467 (0.0566) 0.1495***

(0.0549)

PN

j¼1

wijvjt kð Þ
0.1250 (0.1714) 0.2698 (0.1750)

Observations 450 450 450 450 450 450

R-squared 0.6833 0.8204 0.8066 0.8540 0.9968 0.9968

Log-likelihood 460.7400 730.4147 524.4776 771.9075 934.9276 934.4682

sj j þ dj j þ gj j � 1 - 0.0827 - 0.1596 - 0.1911 - 0.2652 - 0.2028 0.0717

Probability g ¼ �s � d 0.2305 0.5639 0.1303 0.6398 0.0506 0.0000

(1) *, ** and *** represent significance at 10%, 5% and 1% levels, respectively. (2) The values in brackets are standard errors
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building materials, chemical industry, coking and petro-

leum processing (Ren and Xia 2017). (3) The coefficient of

PGDP is positive and significant at 1% level, however a

high level of PGDP led to not only a high level of indus-

trial activities but also frequent activities of daily living,

such as burning gasoline when we drive, burning oil or gas

for home heating and so on, which might increase CI in

China. (4) The coefficient of PE is negative. On the one

hand, the increasing PE would decrease energy consump-

tion, which would lead to the lower CI. On the other hand,

the rising price encouraged enterprises not only to use

energy-saving products but also to improve energy effi-

ciency, which can also decrease CI in China (Du 2019;

Wang et al. 2020c). (5) The coefficient of EI is negative

and significant at 1% level. Central government and local

governments continued to pay more attention to the

reduction of carbon emissions and pollution. In fact, Chi-

na’s investment in treatment of environmental pollution

increased from162.77 billion yuan in 2003 to 953.895

billion yuan in 2017, accounting for around 1.5% of GDP

(Du and Li 2020; Wu et al. 2021). (6) The coefficient of the

cross-products between PGDP and EI is positive, sug-

gesting that the mere pursue GDP by local governments

would weaken the restrictive effect of investment in

treatment of environmental pollution on CI (Xuan et al.

2020; Yang et al. 2021). (7) The coefficients of W � lnIS
and W � lnPGDP are both negative, which indicates that

industrial development and economic growth had a nega-

tive effect on CI of adjacent provinces (Lu et al. 2019; Liu

and Zhang 2021).

Table 3 The short-term and long-term total effects of relevant factors on carbon intensity from 2003 to 2017

lnIS lnPGDP lnPE lnEI

ST LT ST LT ST LT ST LT

2003 0.7783

(0.6295)

1.7953***

(0.6935)

0.5343***

(0.0687)

1.2222**

(0.6723)

- 0.1258

(0.0791)

- 0.3730***

(0.0783)

- 0.4726***

(0.1182)

- 1.0743***

(0.2854)

2004 0.7612

(0.6143)

1.7636**

(0.7009)

0.5303***

(0.0645)

1.2188**

(0.7083)

- 0.1258

(0.0791)

- 0.3730***

(0.0783)

- 0.4688***

(0.1110)

- 1.0701***

(0.2703)

2005 0.7643

(0.5920)

1.7816**

(0.7222)

0.5285***

(0.0666)

1.2232**

(0.6837)

- 0.1258

(0.0791)

- 0.3730***

(0.0783)

- 0.4685***

(0.1172)

- 1.0769***

(0.2857)

2006 0.8046

(0.6160)

1.8863***

(0.6771)

0.5436***

(0.0687)

1.2565**

(0.6493)

- 0.1258

(0.0791)

- 0.3730***

(0.0783)

- 0.4779***

(0.1176)

- 1.0957***

(0.2911)

2007 0.7799

(0.5974)

1.7912**

(0.7335)

0.5311***

(0.0652)

1.2139**

(0.6907)

- 0.1258

(0.0791)

- 0.3730***

(0.0783)

- 0.4713***

(0.1142)

- 1.0692***

(0.2839)

2008 0.8365

(0.6059)

1.9543***

(0.6907)

0.5411***

(0.0649)

1.2454**

(0.6884)

- 0.1258

(0.0791)

- 0.3730***

(0.0783)

- 0.4733***

(0.1126)

- 1.0813***

(0.2807)

2009 0.7976

(0.6022)

1.8588***

(0.7032)

0.5427***

(0.0655)

1.2507**

(0.6886)

- 0.1258

(0.0791)

- 0.3730***

(0.0783)

- 0.4781***

(0.1125)

- 1.0923***

(0.2874)

2010 0.7930

(0.6077)

1.8509***

(0.7132)

0.5414***

(0.0662)

1.2553**

(0.6683)

- 0.1258

(0.0791)

- 0.3730***

(0.0783)

- 0.4768***

(0.1145)

- 1.0961***

(0.2903)

2011 0.7885

(0.6073)

1.8279**

(0.7119)

0.5343***

(0.0677)

1.2286**

(0.6749)

- 0.1258

(0.0791)

- 0.3730***

(0.0783)

- 0.4739***

(0.1197)

- 1.0821***

(0.2901)

2012 0.8076

(0.6038)

1.8612***

(0.7168)

0.5407***

(0.0655)

1.2376**

(0.7004)

- 0.1258

(0.0791)

- 0.3730***

(0.0783)

- 0.4764***

(0.1123)

- 1.0836***

(0.2738)

2013 0.7839

(0.5996)

1.8088**

(0.7190)

0.5406***

(0.0642)

1.2412**

(0.6884)

- 0.1258

(0.0791)

- 0.3730***

(0.0783)

- 0.4772***

(0.1112)

- 1.0876***

(0.2872)

2014 0.7969

(0.6248)

1.8372**

(0.7161)

0.5452***

(0.0672)

1.2203**

(0.6847)

- 0.1258

(0.0791)

- 0.3730***

(0.0783)

- 0.4782***

(0.1179)

- 1.0915***

(0.2878)

2015 0.7804

(0.5922)

1.8144**

(0.7135)

0.5305***

(0.0660)

1.2224**

(0.6838)

- 0.1258

(0.0791)

- 0.3730***

(0.0783)

- 0.4693***

(0.1152)

- 1.0738***

(0.2827)

2016 0.7640

(0.5899)

1.7793**

(0.7209)

0.5199***

(0.0630)

1.2011**

(0.6873)

- 0.1258

(0.0791)

- 0.3730***

(0.0783)

- 0.4626***

(0.1100)

- 1.0603***

(0.2908)

2017 0.6999

(0.5625)

1.6345**

(0.7468)

0.5083***

(0.0623)

1.1804**

(0.6836)

- 0.1258

(0.0791)

- 0.3730***

(0.0783)

- 0.4596***

(0.1101)

- 1.0580***

(0.2922)

(1)** and *** represent significance at 5% and 1% levels, respectively. (2) The values in brackets are standard errors
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3.3 The short-term and long-term effects
of relevant factors on carbon intensity

Table 3 shows how the short-term (ST) and long-term (LT)

effects of the relevant factors evolve over time, using

cross-sectional averages of the variables over 30 provinces

for each year (It should point out that ST effect and LT

effect in Table 3 stand for total effect, which is sum of

direct effect and indirect effect). Tables 4, 5 and 6 show

how the short-term and long-term effects of three relevant

factors vary across province, respectively, using time-

average of the variables over the whole time span of the

sample for each province.

3.3.1 Evolution of ST and LT of relevant factors

Table 3 shows that: (1) from 2003 to 2017, the absolute

values of the coefficients of long-term effects are all larger

than those of short-term effects, indicating that all relevant

factors had a strong lasting impact on CI. (2) Specifically,

the long-term effect of IS first increased and then gradually

decreased. This result is consistent with the findings of

Zhang (2015) and China Petroleum and Chemical Industry

Table 4 The short-term and long-term effects of IS on carbon intensity in 30 provinces

District Direct effect Indirect effect Total effect

ST LT ST LT ST LT

Beijing 0.3611 (0.5367) 0.7625 (0.6784) - 0.0285 (0.1088) 0.1752* (0.1051) 0.3326* (0.2004) 0.9377 (0.7637)

Tianjin 0.7330 (0.5791) 1.6137* (0.8631) - 0.0382 (0.1545) 0.4681*** (0.1143) 0.6948 (0.5457) 2.0818** (0.9342)

Hebei 0.7417 (0.5727) 1.6333* (0.8514) - 0.0287 (0.1414) 0.4857*** (0.1153) 0.7130 (0.5462) 2.1190** (0.9195)

Shanxi 0.8035 (0.5732) 1.7688** (0.8570) - 0.0394 (0.1463) 0.5162*** (0.1169) 0.7641 (0.5372) 2.2850*** (0.4867)

Shandong 0.7820 (0.5865) 1.7257** (0.8782) - 0.0395 (0.1503) 0.5162*** (0.1208) 0.7425 (0.5521) 2.2419** (0.9382)

Inner Mongolia 0.7534 (0.5852) 1.6641* (0.8705) - 0.0368 (0.1423) 0.4876*** (0.1212) 0.7166 (0.5530) 2.1517** (0.9295)

Liaoning 0.7184 (0.5767) 1.5921* (0.8655) - 0.0332 (0.1418) 0.4642*** (0.1163) 0.6852 (0.5449) 2.0563** (0.9245)

Jilin 0.7371 (0.5988) 1.6239 (0.8923) - 0.0382 (0.1357) 0.4696*** (0.1218) 0.6989 (0.5546) 2.0935** (0.9498)

Heilongjiang 0.6743 (0.5908) 1.4941* (0.8865) - 0.0377 (0.1382) 0.4367*** (0.1198) 0.6366 (0.5451) 1.9308** (0.9353)

Shanghai 0.6069 (0.5783) 1.3411 (0.8604) - 0.0356 (0.1338) 0.3809*** (0.1167) 0.5713 (0.5232) 1.7220* (0.8855)

Jiangsu 0.7209 (0.5879) 1.5896* (0.8774) - 0.0269 (0.1387) 0.4669*** (0.1197) 0.6940 (0.5526) 2.0565** (0.9310)

Zhejiang 0.6966 (0.5911) 1.5353* (0.8785) - 0.0336 (0.1422) 0.4490*** (0.1223) 0.6630 (0.5554) 1.9843** (0.9341)

Anhui 0.7073 (0.5935) 1.5630* (0.8833) - 0.0294 (0.1416) 0.4635*** (0.1180) 0.6779 (0.5679) 2.0265** (0.9487)

Fujian 0.6878 (0.6190) 1.5249* (0.9260) - 0.0351 (0.1480) 0.4658*** (0.1195) 0.6527 (0.5767) 1.9907** (1.0003)

Jiangxi 0.7184 (0.5998) 1.5898* (0.8990) - 0.0305 (0.1424) 0.4812*** (0.1222) 0.6879 (0.5685) 2.0710** (0.9611)

Henan 0.7543 (0.5893) 1.6591* (0.8768) - 0.0452 (0.1523) 0.4710*** (0.1196) 0.7091 (0.5531) 2.1301** (0.9303)

Hubei 0.6659 (0.5782) 1.4780* (0.8686) - 0.0345 (0.1364) 0.4323*** (0.1206) 0.6314 (0.5428) 1.9103** (0.9315)

Hunan 0.5926 (0.5799) 1.3018 (0.8571) - 0.0353 (0.1250) 0.3663*** (0.1123) 0.5573 (0.5298) 1.6681* (0.8876)

Chongqing 0.6660 (0.5647) 1.4676* (0.8381) - 0.0365 (0.1320) 0.4430*** (0.1160) 0.6295 (0.5159) 1.9106** (0.8773)

Sichuan 0.6493 (0.6033) 1.4399 (0.9066) - 0.0329 (0.1429) 0.4369** (0.1264) 0.6164 (0.5608) 1.8768** (0.9566)

Guangdong 0.6312 (0.6013) 1.3946 (0.8914) - 0.0369 (0.1444) 0.3920*** (0.1184) 0.5943 (0.5588) 1.7866* (0.9422)

Guangxi 0.6343 (0.5978) 1.3972 (0.8883) - 0.0251 (0.1381) 0.4149*** (0.1174) 0.6092 (0.5641) 1.8121* (0.9461)

Guizhou 0.6402 (0.5784) 1.4108* (0.8572) - 0.0371 (0.1411) 0.4084*** (0.1124) 0.6031 (0.5406) 1.8192** (0.9082)

Yunnan 0.6173 (0.5847) 1.3639 (0.8657) - 0.0348 (0.1292) 0.3871*** (0.1105) 0.5825 (0.5344) 1.7510* (0.9077)

Hainan 0.4027 (0.5486) 0.8933 (0.8148) - 0.0237 (0.1113) 0.2432** (0.1036) 0.3790 (0.4983) 1.1365 (0.8166)

Shanxi 0.7670 (0.5924) 1.6918* (0.8854) - 0.0393 (0.1468) 0.4882*** (0.1238) 0.7277 (0.5519) 2.1800** (0.9388)

Gansu 0.6305 (0.6157) 1.3912 (0.9104) - 0.0404 (0.1425) 0.4058*** (0.1178) 0.5901 (0.5694) 1.7970* (0.9589)

Qinghai 0.6693 (0.6072) 1.4776 (0.9019) - 0.0381 (0.1414) 0.4149*** (0.1201) 0.6312 (0.5578) 1.8925** (0.9319)

Ningxia 0.7041 (0.5950) 1.5394* (0.8716) - 0.0393 (0.1391) 0.4403*** (0.1143) 0.6648 (0.5495) 1.9797** (0.9242)

Xinjiang 0.6054 (0.5818) 1.3415 (0.8732) - 0.0320 (0.1326) 0.3912*** (0.1215) 0.5734 (0.5365) 1.7327* (0.8978)

(1) *, ** and *** represent significance at 10%, 5% and 1% levels, respectively. (2) The values in brackets are standard errors
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Table 5 The short-term and long-term effects of PGDP on carbon intensity in 30 provinces

District Direct effect Indirect effect Total effect

ST LT ST LT ST LT

Beijing 0.5325**

(0.2519)

0.8681**

(0.4295)

- 0.1203*** (0.0410) 0.0692* (0.0371) 0.4122** (0.1881) 0.9372**

(0.4501)

Tianjin 0.7119**

(0.2992)

1.1668**

(0.5024)

- 0.1229** (0.0537) 0.1117**

(0.0463)

0.5890** (0.2409) 1.2785**

(0.5647)

Hebei 0.7210**

(0.2909)

1.1819**

(0.4865)

- 0.1207** (0.0511) 0.1126**

(0.0465)

0.6003** (0.2370) 1.2945**

(0.5548)

Shanxi 0.7508**

(0.2917)

1.2313**

(0.4963)

- 0.1284** (0.0525) 0.1165**

(0.0460)

0.6224***

(0.1774)

1.3478**

(0.9780)

Shandong 0.7313**

(0.2953)

1.1982**

(0.4992)

- 0.1320** (0.0530) 0.1143**

(0.0467)

0.5993** (0.2397) 1.3125**

(0.5562)

Inner

Mongolia

0.7236**

(0.2926)

1.1892**

(0.4951)

- 0.1340** (0.0536) 0.1117**

(0.0475)

0.5896** (0.2393) 1.3009**

(0.5589)

Liaoning 0.7182**

(0.3066)

1.1816**

(0.5214)

- 0.1233** (0.0540) 0.1110**

(0.0473)

0.5949** (0.2482) 1.2926**

(0.5808)

Jilin 0.7162**

(0.2840)

1.1756**

(0.4790)

- 0.1276*** (

0.0480)

0.1095**

(0.0462)

0.5886** (0.2295) 1.2852**

(0.5422)

Heilongjiang 0.6958**

(0.2964)

1.1459**

(0.5020)

- 0.1294** (0.0533) 0.1095**

(0.0467)

0.5664** (0.2377) 1.2554**

(0.5546)

Shanghai 0.6557**

(0.2790)

1.0759**

(0.4720)

- 0.1187** (0.0480) 0.0992**

(0.0433)

0.5370** (0.2213) 1.1750**

(0.5201)

Jiangsu 0.7220**

(0.2937)

1.1828**

(0.4945)

- 0.1245** (0.0538) 0.1109**

(0.0470)

0.5975** (0.2441) 1.2936*8

(0.5544)

Zhejiang 0.7007**

(0.2969)

1.1511**

(0.4954)

- 0.1187** (0.0504) 0.1125**

(0.0474)

0.5820** (0.2441) 1.2636**

(0.5510)

Anhui 0.7123**

(0.2850)

1.1696**

(0.4792)

- 0.1208** (0.0498) 0.1067**

(0.0463)

0.5915** (0.2324) 1.2764**

(0.5331)

Fujian 0.6845**

(0.2974)

1.1258**

(0.4983)

- 0.1250** (0.0527) 0.1104**

(0.0439)

0.5595** (0.2369) 1.2362**

(0.5542)

Jiangxi 0.6986**

(0.2929)

1.1477**

(0.4979)

- 0.1263** (0.0520) 0.1077**

(0.0469)

0.5723** (0.2332) 1.2554**

(0.5485)

Henan 0.7190**

(0.3181)

1.1748**

(0.5260)

- 0.1273** (0.0555) 0.1071**

(0.0470)

0.5917** (0.2597) 1.2819**

(0.5249)

Hubei 0.6844**

(0.2919)

1.1266**

(0.4937)

- 0.1217** (0.0509) 0.1059**

(0.0477)

0.5627** (0.2344) 1.2325**

(0.5591)

Hunan 0.6671**

(0.2883)

1.0895**

(0.4763)

- 0.1281*** (0.0477) 0.1006**

(0.0431)

0.5390** (0.2268) 1.1901**

(0.5399)

Chongqing 0.6869**

(0.2875)

1.1265**

(0.4852)

- 0.1253** (0.0503) 0.1094**

(0.0455)

0.5616** (0.2334) 1.2360**

(0.5344)

Sichuan 0.6639**

(0.2919)

1.0924**

(0.4959)

- 0.1257** (0.0490) 0.1046**

(0.0462)

0.5382** (0.2270) 1.1970**

(0.5428)

Guangdong 0.6729**

(0.2945)

1.1039**

(0.4967)

- 0.1322** (0.0532) 0.0994**

(0.0471)

0.5407** (0.2363) 1.2033**

(0.5508)

Guangxi 0.6579**

(0.2749)

1.0773**

(0.4605)

- 0.1163** (0.0463) 0.1010**

(0.0426)

0.5416** (0.2158) 1.1783**

(0.5043)

Guizhou 0.6589**

(0.2826)

1.0777**

(0.4685)

- 0.1319*** (0.0502) 0.0988**

(0.0425)

0.5270** (0.2235) 1.1764**

(0.5133)

Yunnan 0.6580**

(0.2788)

1.0805**

(0.4646)

- 0.1336*** (0.0497) 0.0992**

(0.0401)

0.5244** (0.2209) 1.1797**

(0.5240)

Hainan 0.5611**

(0.2508)

0.9235**

(0.4262)

- 0.1157*** (0.0412) 0.0813**

(0.0386)

0.4454** (0.1862) 1.0048**

(0.4549)

Shanxi 0.7313**

(0.2953)

1.1993**

(0.5032)

- 0.1278** (0.0512) 0.1125**

(0.0489)

0.6035** (0.2365) 1.3117**

(0.5614)

Gansu - 0.1300*** (0.0477) 0.5209** (0.2314)
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Progress Report. The report finds that, during the ‘‘12th

Five-Year Plan’’, China’s energy consumption per unit of

industrial-added value continued to decline, and achieved

the energy-saving targets by optimizing industrial structure

and reducing the proportion of energy consuming indus-

tries. (3) Similarly, the long-term effect of PGDP increased

initially and then continued to decline. This evolution is

compatible with the fact that from 2003 to the early period

of the ‘‘12th Five-Year Plan’’, China has been in the rapid

economic development, which led to a high level of

industrial activities and frequent activities of daily living

and then resulted in large CI, however from the late period

of the ‘‘12th Five-Year Plan’’ to the early period of the

‘‘13th Five-Year Plan’’, China speeded up green and low-

carbon economic development, which led to slow down the

trends of CI (Yang et al. 2021). (4) Moreover, the long-

term effect of PE was negative and significant at 1% level,

which might be attributed to the substitution effect of PE in

China (Ren et al. 2009; Du 2019). For example, if the

increase in the price of fossil fuels will encourage people to

switch to renewable energy sources, such as solar and

wind, which can offer the benefits of lower carbon emis-

sions and other types of pollution. (5) Obviously, in the

short and long term, the total effects of EI were both

negative and significant, and the trends remained stable,

which indicates that more and more financial resources

have been committed to protection of the environment.

Furthermore, according to China’s Government Work

Reports, the government expenditure on environmental

protection constantly increased in the past decade. From

2003 to 2017, the Chinese government’s investment in

environmental protection is mainly used for nine key pro-

jects, including the capacity building of environmental

supervision, the proper disposal of hazardous waste items

(HHW), urban wastewater treatment, urban waste man-

agement, flue gas desulfurization (FGD), the management

of important ecological function areas, the capacity build-

ing of national-level nature reserves, the nuclear safety and

radiation protection, which has effectively contributed to

the reduction of carbon intensity (Wu et al. 2021).

3.3.2 Spatial variation of ST and LT of relevant factors

Table 4 shows that: the short-term indirect effect of IS in

each province on CI is negative and insignificant, while the

long-term indirect effect is positive and significant, indi-

cating that in the long term, the spillover effect of IS was

evident and a rise in the proportion of heavy industry in a

province would drive up the CI in adjacent provinces. This

may be attributed to the fact that the carbon emission is a

non-localized environmental challenge with significant

spatial spillover characteristics, which could dissuade local

governments from implementing carbon emission control

(Du et al.2020; Yang et al. 2021). Table 5 shows that: the

short-term indirect effect of PGDP is negative, while the

long-term indirect effect is positive and significant, which

might because that in the long term, one government’s

pursuit of economic growth without environmental costs

has aggravated the environmental pollution, due to the

adjacent provinces’ pressure of competition responsibility

(Lu and Yang 2019; Li and Zhang 2019). Table 6 shows

that: in the short and long term, the direct and total effects

of EI are negative, which is similar to the finding of 3.3.1

and shows that investment on environmental protection

from local governments constantly decreased the CI.

Furthermore, based on the regional division of China,

we also find that: (1) in the short and long term, the direct

and total effects of IS and PGDP on CI in North China and

Northeast China are larger than those in other regions. In

fact, North China contains abundant petroleum and coal

resources, for example, Shanxi has been the core territory

for coal production in China, the coal resources account for

40.4% of the province’s land area. According to

Announcement on the Production Capacity of the Pro-

vince’s Production Coal Mines released by the Shanxi

Provincial Energy Bureau points out that, by the end of

Table 5 (continued)

District Direct effect Indirect effect Total effect

ST LT ST LT ST LT

0.6509**

(0.2980)

1.0696**

(0.4987)

0.1000**

(0.0449)

1.1696**

(0.5433)

Qinghai 0.6747**

(0.2984)

1.1093**

(0.5028)

- 0.1306** (0.0520) 0.1019**

(0.0452)

0.5441** (0.2365) 1.2113**

(0.5505)

Ningxia 0.7159**

(0.2857)

1.1693**

(0.4768)

- 0.1308** (0.0518) 0.1100**

(0.0453)

0.5851** (0.2296) 1.2793**

(0.5349)

Xinjiang 0.6674**

(0.2876)

1.0963**

(0.4909)

- 0.1236*** (0.0478) 0.1025**

(0.0483)

0.5438** (0.2253) 1.1988**

(0.5272)

(1) *, ** and *** represent significance at 10%, 5% and 1% levels, respectively. (2) The values in brackets are standard errors
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Table 6 The short-term and long-term effects of EI on carbon intensity in 30 provinces

District Direct effect Indirect effect Total effect

ST LT ST LT ST LT

Beijing - 0.3468***

(0.0867)

- 1.0594***

(0.2740)

0.0167

(0.2577)

0.1579*

(0.0951)

- 0.3301***

(0.0952)

- 0.9015***

(0.2841)

Tianjin - 0.4200***

(0.1103)

- 1.2843***

(0.3500)

0.0255

(0.3061)

0.1987 (0.1146) - 0.3945***

(0.1184)

- 1.0856***

(0.3588)

Hebei - 0.4222***

(0.1058)

- 1.2914***

(0.3317)

0.0227

(0.2948)

0.1971*

(0.1134)

- 0.3995***

(0.1153)

- 1.0943***

(0.3552)

Shanxi - 0.4342***

(0.1064)

- 1.3268***

(0.3449)

0.0122

(0.2990)

0.1986*

(0.1114)

- 0.4220**

(0.1750)

- 1.1282***

(0.3563)

Shandong - 0.4251***

(0.1079)

- 1.2993***

(0.3416)

0.0089

(0.3048)

0.1977*

(0.1121)

- 0.4162***

(0.1226)

- 1.1016***

(0.3547)

Inner

Mongolia

- 0.4255***

(0.1056)

- 1.3046***

(0.3363)

0.0104

(0.3104)

0.1978*

(0.1164)

- 0.4151***

(0.1237)

- 1.1068***

(0.3578)

Liaoning - 0.4224***

(0.1100)

- 1.2955***

(0.3573)

0.0191

(0.3046)

0.1961*

(0.1140)

- 0.4033***

(0.1200)

- 1.0994***

(0.3670)

Jilin - 0.4198***

(0.1038)

- 1.2850***

(0.3319)

0.0147

(0.2732)

0.1931*

(0.1129)

- 0.4051***

(0.1156)

- 1.0919***

(0.3513)

Heilongjiang - 0.4141***

(0.1060)

- 1.2727***

(0.3391)

0.0145

(0.3066)

0.1969*

(0.1116)

- 0.3996***

(0.1199)

- 1.0758***

(0.3450)

Shanghai - 0.3957***

(0.1012)

- 1.2123***

(0.3244)

0.0303

(0.2816)

0.1876*

(0.1068)

- 0.3654***

(0.1065)

- 1.0247***

(0.3326)

Jiangsu - 0.4234***

(0.1069)

- 1.2943***

(0.3403)

0.0187

(0.3046)

0.1960*

(0.1132)

- 0.4047***

(0.1181)

- 1.0983***

(0.3536)

Zhejiang - 0.4162***

(0.1064)

- 1.2779***

(0.3345)

0.0354

(0.2918)

0.2020*

(0.1151)

- 0.3808***

(0.1145)

- 1.0760***

(0.1974)

Anhui - 0.4176***

(0.1017)

- 1.2790***

(0.3218)

0.0225

(0.2930)

0.1897*

(0.1128)

- 0.3951***

(0.1136)

- 1.0894***

(0.3447)

Fujian - 0.4097***

(0.1052)

- 1.2578***

(0.3348)

0.0239

(0.3014)

0.1999*

(0.1082)

- 0.3858***

(0.1154)

- 1.0579***

(0.3392)

Jiangxi - 0.4124***

(0.1063)

- 1.2640***

(0.3416)

0.0121

(0.3025)

0.1915*

(0.1135)

- 0.4003***

(0.1185)

- 1.0724***

(0.3481)

Henan - 0.4224***

(0.1140)

- 1.2890***

(0.3513)

0.0183

(0.3096)

0.1923*

(0.1139)

- 0.4041***

(0.1272)

- 1.0967***

(0.3295)

Hubei - 0.4075***

(0.1032)

- 1.2511***

(0.3302)

0.0266

(0.2930)

0.1932*

(0.1145)

- 0.3809***

(0.1130)

- 1.0579***

(0.3544)

Hunan - 0.4038***

(0.1036)

- 1.2318***

(0.3205)

0.0143

(0.2832)

0.1883*

(0.1050)

- 0.3895***

(0.1158)

- 1.0435***

(0.3496)

Chongqing - 0.4102***

(0.1029)

- 1.2558***

(0.3322)

0.0225

(0.2926)

0.1968*

(0.1114)

- 0.3877***

(0.1156)

- 1.0589***

(0.3356)

Sichuan - 0.3995***

(0.1032)

- 1.2267***

(0.3332)

0.0173

(0.2883)

0.1919*

(0.1098)

- 0.3822***

(0.1123)

- 1.0348***

(0.3365)

Guangdong - 0.4025***

(0.1049)

- 1.2327***

(0.3354)

0.0078

(0.3071)

0.1845*

(0.1149)

- 0.3947***

(0.1224)

- 1.0483***

(0.3518)

Guangxi - 0.3962***

(0.0982)

- 1.2110***

(0.3086)

0.0312

(0.2734)

0.1877*

(0.1021)

- 0.3650***

(0.1046)

- 1.0234***

(0.3207)

Guizhou - 0.3988***

(0.1002)

- 1.2180***

(0.3119)

0.0117

(0.0391)

0.1861*

(0.1033)

- 0.3871***

(0.1156)

- 1.0319***

(0.3243)

Yunnan - 0.3978***

(0.0987)

- 1.2202***

(0.3119)

0.0093

(0.2810)

0.1870*

(0.1024)

- 0.3885***

(0.1145)

- 1.0332***

(0.3282)

Hainan - 0.3576***

(0.0875)

- 1.0996***

(0.2844)

0.0289

(0.2564)

0.1720*

(0.0975)

- 0.3287***

(0.0929)

- 0.9276***

(0.2933)

Shanxi - 0.4254***

(0.1062)

- 1.3004***

(0.3438)

0.0140

(0.2979)

0.1958*

(0.1168)

- 0.4114***

(0.1185)

- 1.1046***

(0.3558)

Gansu
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2017, there are 613 producing coal mines in Shanxi with a

production capacity of 909.8 million tons per year, and the

value added of coal industry leads to more carbon emis-

sions. Meanwhile, Northeast China is the largest old

industrial base of China, the enterprises of high energy

consumption and high pollution industries accounted for a

large proportion in secondary industries, which were the

largest source of carbon emissions (Li et al. 2016). (2) In

contrast to North China and Northeast China, the short-

term and long-term direct effects of IS in East China and

some provinces and cities in Central China are relatively

low, while the direct effects of EI are relatively large.

Actually, East China and some provinces and cities in

Central China took the lead in transformation of industry-

oriented structure into service-oriented industrial structure,

and the local governments placed a priority on investing in

treatment of environmental pollution in the past decade (Li

et al. 2016; Huang et al. 2019; Wang et al. 2019; Guo et al.

2021). (3) In Northwest China, the direct and total effects

of IS and the total effects of PGDP are low in the short and

long term, which might because that this region had slow

economic development and its primary industry had a high

share compared to other regions (Fan et al. 2019), such as

agriculture and animal husbandry, which has long played a

major role in regional gross domestic product, and its

heavy industry grew slowly.

4 Conclusion and policy implications

Based on panel data from 30 provinces in China between

2003 and 2017, this paper constructs our GNS with com-

mon factors to examine the direct and spatial–temporal

spillover effects of IS, PGDP, EI and PE on CI. Further-

more, we provide effective economic explanations for the

observed heterogeneity from spatial and time dimensions,

respectively. Perhaps the cross-products reduce the validity

of applying the global models, while from the results of the

q-statistic of the factors and the view of control functions,

these factors are not affected by the SSH. The main find-

ings are as follows: (1) China’s carbon intensity has been

declining from 2003 to 2017 and showed obvious spatial

agglomeration through a graphical display. (2) The esti-

mation results of our GNS model further verified the spatial

agglomeration and temporal ‘‘inertia’’ of CI in China. (3)

From the time dimension, all relevant factors had a strong

lasting impact on CI. The long-term total effects of IS and

PGDP first increased and then gradually decreased. Due to

the substitution effect of PE in China, the long-term effect

of PE was negative and significant. Furthermore, the short-

term and long-term total effects of EI were both negative

and significant, and the trends remained stable. (4) From

the spatial dimension, there were regional differences in

the short-term and long-term effects of the relevant factors

on CI. In North China and Northeast China, the enterprises

of high energy consumption accounted for a large pro-

portion in secondary industries. In East China and some

provinces and cities in Central China, the tertiary industry

remained the leading sector and the local governments

placed a priority on investing in treatment of environmental

pollution in the past decade. Northwest China had slow

economic development and its primary industry has long

played a major role in regional gross domestic product.

Based on the above conclusions, this study puts forward

the following policy implications: firstly, since the indus-

trial activities and economic growth are the main factors

that increase carbon intensity in China, the government

should transform the mode of economic development by

optimizing industrial structure, and guide and encourage

individual low-carbon lifestyles, such as driving less,

installing a low-flow showerhead, bringing reusable bags

when shopping and so on.

Secondly, due to the spatial heterogeneity of carbon

intensity, different low-carbon development strategies

should be applied in different regions. North China and

Northeast China should optimize secondary industry, limit

industrial development with high energy consumption and

high carbon emissions to some extent and encourage the

Table 6 (continued)

District Direct effect Indirect effect Total effect

ST LT ST LT ST LT

- 0.3974***

(0.1020)

- 1.2214***

(0.3276)

0.0145

(0.2827)

0.1905*

(0.1086)

- 0.3829***

(0.1138)

- 1.0309***

(0.3307)

Qinghai - 0.4051***

(0.155)

- 1.2424***

(0.3374)

0.0077

(0.2962)

0.1873*

(0.1099)

- 0.3974**

(0.1727)

- 1.0551***

(0.3461)

Ningxia - 0.4204***

(0.1008)

- 1.2829***

(0.3185)

0.0142

(0.3021)

0.1960*

(0.1139)

- 0.4062***

(0.1149)

- 1.0869***

(0.3381)

Xinjiang - 0.4056***

(0.1020)

- 1.2421***

(0.3336)

0.0161

(0.2865)

0.1904*

(0.1183)

- 0.3895***

(0.1118)

- 1.0517***

(0.3315)

(1) *, ** and *** represent significance at 10%, 5% and 1% levels, respectively. (2) The values in brackets are standard errors
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utilization of clean and renewable energy. East China and

Central China should continue to encourage the develop-

ment of tertiary industry, further optimize the energy

structure and promote the application of advanced energy

technologies. Northwest China should speed up its eco-

nomic development by accelerating the transformation of

industrial structure and improving energy utilization

efficiency.

Thirdly, China should continue to promote the market-

oriented reform of energy price and gradually improve the

carbon emission trading mechanism, which will encourage

individuals and enterprises to use low-carbon technologies.

If emitting carbon becomes more expensive, consumers

and enterprises may seek technologies and products to

reduce their costs. As an efficient means, the market

mechanism will help promote a shift to a clean energy

economy and innovation in low-carbon technologies.

Finally, since the environmental expenditure is an

important factor on the path towards a low-carbon econ-

omy, all provinces and cities should increase the environ-

mental expenditure, and ensure the efficient use of funds to

protect the environment.

Appendix

See Tables 7, 8, 9, 10 and 11.

Table 7 The standard coal-

equivalent coefficients and

carbon-emission coefficients

Energy Standard coal-equivalent coefficient (kgce/kg) Carbon-emission coefficient (kg/kgce)

Coal 0.7143 0.7559

Coke 0.9714 0.8550

Crude oil 1.4286 0.5857

Gasoline 1.4714 0.5538

Kerosene 1.4714 0.5714

Diesel 1.4571 0.5921

Fuel oil 1.4286 0.6185

Natural gas 1.2150 0.4483

Table 8 Results of spatial

correlation test
Spatial weight matrix Average correlation coefficient Pesaran’s CD-test a Global Moran’s I

W1 0.7140 57.6470*** 0.9896 0.4071***

W2 0.7140 57.6470*** 0.9896 0. 3483*

* and *** represent significance at 10% and 1% levels, respectively

Table 9 Driving factor detec-

tion of CI
Factor q-statistic p-value

IS 0.4346 0.0925

PGDP 0.1572 0.8311

EI 0.3836 0.4157

Table 10 Interactive factor detection of CI

Interactive factor q-statistic Interaction

IS \ PGDP 0.6714 Enhance, nonlinear

PGDP \ EI 0.5310 Enhance, bivariate

IS \ EI 0.5825 Enhance, bivariate
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