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Abstract
This paper aims to find probabilities of extreme values of the air temperature for the Cerrado, Pantanal and Atlantic Forest

biomes in Mato Grosso do Sul in Brazil. In this case a maximum likelihood estimation was employed for the probability

distributions fitting the extreme monthly air temperatures for 2007–2018. Using the Extreme Value Theory approach this

work estimates three probability distributions: the Generalized Distribution of Extreme Values (GEV), the Gumbel (GUM)

and the Log-Normal (LN). The Kolmogorov–Smirnov test, the corrected Akaike criterion AICc, the Bayesian information

criterion BIC, the root of the mean square error RMSE and the determination coefficient R2 were applied to measure the

goodness-of-fit. The estimated distributions were used to calculate the probabilities of occurrence of maximum monthly air

temperatures over 28–32 �C. Temperature predictions were done for the 2-, 5-, 10-, 30-, 50- and 100-year return periods.

The GEV and GUM distributions are recommended to be used in the warmer months. In the coldest months, the LN

distribution gave a better fit to a series of extreme air temperatures. Deforestation, combustion and extensive fires, and the

related aerosol emissions contribute, alongside climate change, to the generation of extreme air temperatures in the studied

biomes.
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1 Introduction

The analysis of extreme values in climatological time

series is an area of intense scientific activity (Trenberth

et al. 2015; Easterling et al. 2016). Extreme events related

to the weather and climate, and maximum temperatures or

maximum rainfall series are examples of this type of data

(Mueller and Seneviratne 2012; Alexander 2016). High

temperatures are among the most frequently investigated

extreme events (heat waves, thermal stress, atmospheric,

hydrological, soil and agricultural drought), which affect

human society, agriculture, water resources, energy

demand and human mortality (Allen et al. 2010; Christidis

et al. 2011). This phenomenon has also an impact on the

environment, for example, some animal species lose their

natural habitats and the diversity of ecosystems is reduced,

especially that of tropical biomes (Bailey and Van de Pol

2016).

The Extreme Value Theory (EVT) provides a firm the-

oretical foundation for statistical models describing

extreme events. The traditional approach consists in using

probability distributions of variables over the entire range

of their values. In the process of estimating the distribution

parameters, a better fit is obtained in the data range in

which there are most of such observations (Guedes-Soares

and Scotto 2004). Therefore, this approach is not very

appropriate in the extreme observations analyzed. In the

case of methods of the Generalized Extreme Values

(GEV), the observations close to the central value are

omitted and only extreme values are used to estimate the

parameters of theoretical distributions (Gençay and Selçuk

2004). The GEV distribution is widely used to model

extreme data in environmental sciences and in many other

fields (Reiss and Thomas 2007).

Modeling of extreme air temperatures using the EVT

and GEV distributionss was successfully performed for

different world regions. The GEV distribution was applied

to develop models of extreme air temperatures for Penang

(Hasan et al. 2012), Cameroon (Ayuketang and Joseph

2014), Ghana (Sampson and Kwadwo 2019) and Kenya

(Wambua et al. 2020), among others. For example, Meehl

and Tebaldi (2004) presented heat wave modeling results

for Chicago and Paris, which confirmed that there is a

distinct geographic pattern of future changes in heat waves.

Lyon (2009) applied the EVT methods and GEV distri-

bution to assess the Southern Africa summer drought and

heat waves, Nemukula and Sigauke (2018) modeled the

average maximum daily temperature using ‘‘r’’ largest

order statistics for South African data, and Wang et al.

(2013) investigated historical changes in Australian tem-

perature extremes by analyzing extreme value distribution.

Climate has a strong influence on triggering extreme

events such as high air temperature and severe droughts,

which aggravates biomes degradation (Hatfield and Prue-

ger 2015; Panisset et al. 2018). It is emphasized that, the

evolution of biomes goes through the relationship between

phyto-physiognomy and climate variables (Coutinho 2006;

Smith 2011). In many parts of the world the boundaries of

tropical biomes—forests and savannas—are changing as a

result of climate change and degradation caused by man

(Woodward et al. 2004).

Climate and land-use changes (mainly deforestation),

which synergistically increase the frequency and intensity

of drought-related fires in tropical regions, lead to the

dominance of grass at forest edges, which is savannization.

An additional factor is ozone (O3), produced by the activity

of the sun in atmospheric pollution, which, being phyto-

toxic, is well-known for its damaging effect on vegetation

(Cirino et al., 2013; Souza et al. 2020a,b). Bioaerosols

(enzymes, viruses or debris) also play a significant role in

air pollution because they can be pathogenic. The toxicity

of bioaerosols has a negative impact on human life, causing

acute adverse reactions and various types of diseases,

hence a challenge to health and the geo-environment

(Gollakota et al, 2021). Although such aspects of bioaer-

osols as identification and quantification have been studied,

research is still at an incipient stage, mainly in terms of

understanding their behavior under the conditions of global

warming and anthropogenic activity. Ambade et al.

(2021a, b), on the basis of studies of air pollutants (i.e.

PM2.5, Black Carbon- BC) and Polycyclic Aromatic

Hydrocarbons (PAH) in India as well as Souza et al. (2021)

by analyzing the tropospheric concentration of NO2 in

Brazil, observed a significant reduction in the concentration

levels of pollutants and their source distribution. They

pointed out that the lower concentrations of BC, PAHs,

PM2.5 and NO2 recently result from a series of blockades

implemented by national governments to contain COVID-

19 (Chelani and Gautam 2021). However, during normal

days, the source profile of PAHs and NO2 was dedicated to

biomass, coal burning and vehicle emission as primary

sources, with very strong correlations between the vari-

ables and impacts on global warming (Ambade et al.

2021c; Maharjan et al. 2021). Ambade et al. (2021d), using

PAH diagnostic rates and principal component analysis

(PCA), showed that its main sources were attributed to coal

and wood combustion, as well as vehicular emission of

diesel and gasoline at all sampling sites. What can be

observed for the composition of PAHs is significant sea-

sonal variability, which is mainly attributed to the change

in emission sources.

The degradation or reduction of natural vegetation in

biomes due to climate change is likely to have serious

consequences for the natural environment and inhabitants
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of the region (Silva Dias et al. 2002; Lyra et al. 2017),

which include loss of biodiversity, an impact on the rainfall

regulation and water balance, carbon balance, and it will

limit all the ecosystem services that vegetation offers

potentially (Agostinho et al. 2005; Salazar et al. 2007). A

major danger to the condition of the natural environment,

water quality and human health may be PAHs, which were

also detected in the surface water and groundwater, as well

as estuary sediments (Ambade et al. 2021e).

Despite the importance of this topic in the subtropical

region, not many studies can be found in the literature, the

majority being on the Amazon rainforest and temperate

regions, where forest-monitoring studies are already con-

solidated. In the Midwest and North regions of Brazil, an

increase in the intensity of forest fires is largely attributed

to an increase in the air temperature and a decline in

rainfall as well as an increase in the intensity of land use

(Teodoro et al. 2016). Although there are studies in the

literature on modeling extreme air temperature values for

Brazil, it has been observed that there is little or no pub-

lished research related to the modeling of maximum tem-

perature series using the GEV distribution in the Midwest

region of Brazil, especially in the state of Mato Grosso do

Sul. When it comes to the Atlantic Forest, the Pantanal and

the Cerrado biomes (Mato Grosso do Sul) the information

is restricted to simplified studies (such as the use of inde-

pendent variables) and a relatively short data series. Owing

to the lack of spatial information compatible with the

scales of the biomes, the performed analyzes are concen-

trated in the regions where information on each biome is

available. While this type of limitation prevents us from

making a generalization for a particular biome, it also

serves as a warning about the lack of this information at

scales compatible with the large areas of our biomes. There

is a noticeable lack of information for the biome in the

Pantanal, contrasting with the greater body of information

observed for the Amazon and, secondarily, the Cerrado.

Studies on the Atlantic Forest developed only recently, but

they still tend to focus on a few areas.

In order to contribute to the understanding of the

microclimate behavior of the biomes, our study is modeling

the historical air temperature series through probability

distribution functions and comparing their patterns among

biomes. The general purpose of this article is to identify

maximum extreme air temperatures in the state of Mato

Grosso do Sul in Brazil based on the assumptions of the

Extreme Value Theory. To the best of the authors’

knowledge, there is a lack of research related to this issue.

The specific purposes include: 1) goodness-of-fit of the

estimated Generalized Distribution of Extreme Values

(GEV), Gumbel (GUM) and Log-Normal (LN) distribu-

tions to monthly historical series of maximum temperatures

of the Cerrado, Pantanal and Atlantic Forest biomes, 2)

identification of the distribution that provides the best

results based on different criteria, such as the corrected

Akaike information criterion (AICc), the Bayesian infor-

mation criterion (BIC), the root of the mean square error

(RMSE) and the coefficient of determination (R2) for each

month and each biome, 3) calculation of maximum tem-

peratures expected in biomes in the return time of 10, 20,

30, 40, 50 and 100 years.

Integrated studies that make it possible to understand the

connections between the biological functioning of vegeta-

tion and the climate are essential in a scenario where cli-

mate change is already altering the basic processes of

functioning of the ecosystem of biomes.

2 Materials and Methods

2.1 Area of study

The state of Mato Grosso do Sul is located in the Midwest

region of Brazil and covers approximately 358.16 km2

(Fig. 1). Agriculture, specifically the production of soy and

livestock, is the main economic activity in the state. Its

topography has elevations that vary from 24 to 1.100 m

(Teodoro et al. 2016). The average annual temperatures

range from 20 to 26 �C and the average annual precipita-

tion fluctuates between 1.000 and 1.900 mm.

The Köppen climate classification shows a diversity of

climate types: ‘‘Aw’’ (in the southeast and north of the

state), ‘‘Am’’ (central region), ‘‘Af’’ (southwest) and ‘‘Cfa’’

(south of the state). The climate in the southwest of Mato

Grosso do Sul, the south of the Pantanal (between latitudes

of 21 and 228S), is tropical forest (‘‘Af’’), with rains dis-

tributed evenly throughout the year. The central part of the

state has a predominantly monsoon climate (‘‘Am’’), with a

small dry season in winter. In the North, in a small part of

the central region and in the southeast of the state, the

climate is savanna (‘‘Aw’’), being predominantly dry in the

winter and rainy in the summer. Only in the south of the

state is the climate humid in all seasons, with a hot summer

(‘‘Cfa’’) and temperatures above 228C.
The diversity of the biome of the State of Mato Grosso

do Sul includes areas of the Atlantic Forest (14% of the

state area), the Cerrado (61% of the state area) and the

Pantanal (25% of the state area)—(Fig. 1). Located in

humid tropical areas and in an immense network of rivers

and streams, they are closely linked to atmospheric con-

ditions and poor soils. The vegetation in the biomes occurs

in areas permanently affected by water (humid areas –

groundwater on the surface or very close), seasonally

flooded areas (lowland and igapó, riparian vegetation), or

areas not affected by flooding (upland). The Atlantic Forest

is an important biome due to its abundant biological
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diversity and is of great importance for the conservation

area, since the area of this biome has been considerably

reduced. The Cerrado of Mato Grosso do Sul is located in

two hydrographic regions of Brazil, Paraná and Paraguay,

and is characterized by a savanna biome, but also by sea-

sonal forest and countryside. The Pantanal is the largest

humid area in the world and needs to be preserved because

of environmental degradation (Teodoro et al. 2016).

2.2 Data

The historical time series used in this work refers to the

average maximum monthly air temperature of the meteo-

rological stations in the Cerrado, Pantanal and Atlantic

Forest biomes: (Fig. 1). All of them are located in the

hydrographic basin of the Paraguay and Paraná rivers, on

the territory of the state of Mato Grosso do Sul in Brazil.

The data on the maximum temperatures of the biomes were

obtained from historical records of the meteorological

database of the National Institute of Meteorology (INMET

2020). The historical records cover the period from 2007 to

2018, i.e. 12 years of observations. Only consistent data,

covering at least a period of 10 years, were adopted for this

research. Observations with a percentage of annual failure

higher than 10% were not admitted.

2.3 Methods

In this study the LN, GUM and GEV probability distri-

butions were applied to model the maximum monthly

Fig. 1 Left-upper: The location of the state of Mato Grosso do Sul in

Brazil; right-upper: separation between biomes (Cerrado, Atlantic

Forest and Pantanal), the map of altitude (left-bottom) and the map of

climatic classification (right-bottom) with the location of meteoro-

logical stations (both bottom maps)
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temperature in the Cerrado, Pantanal and Atlantic Forest

biomes. The probability density functions (pdfs) and their

corresponding cumulative distribution functions (cdfs) are

presented in Table 1.

The parameter l 2 R is a position parameter, r[ 0 is a

scale and n[ 0 is a shape parameter. The parameter n is

related to the tail weight of the GEV distribution, and for

this reason, it is also called the tail index. The GUM dis-

tribution appears as a particular case of the GEV distri-

bution, when the shape parameter tends to zero n ! 0ð Þ.
The estimates of the parameters for each distribution

were obtained using the maximum likelihood method

(ML). The log-likelihood functions of the LN, GUM and

GEV distributions are given, respectively, by formulas:

ln L l; rð Þ ¼ �
Xn

i¼1

lnxi �
n

2
lnr2 � n

2
ln2p

�
Xn

i¼1

lnxi � lð Þ2

2r2
; ð1Þ

ln L l; rð Þ ¼ �nlnr�
Xn

i¼1

xi � l
r

�
Xn

i¼1

e�
xi�l
r ; ð2Þ

lnL l; r; nð Þ ¼ � nlnr�
Xn

i¼1

1þ n
n

� �
ln 1þ n

xi � l
r

� �h i�

þ 1þ n
xi � l
r

� �h i�1
ng:

ð3Þ

Estimates of the distribution parameters are calculated

by maximizing the log-likelihood function in relation to the

parameters. Taking the partial derivatives of the lnL

function with respect to each of the parameters and making

these derivatives equal to zero, the likelihood equations are

obtained. The solutions to these equations are called

maximum likelihood estimates of the parameters.

For further consideration let us assume that F(x) is an

estimated distribution in the procedure described above.

In this study, we used the Kolmogorov–Smirnov (KS)

test to assess whether the maximum extreme temperature

comes from a hypothetical continuous distribution. Let us

assume that we have a random sample of x1; x2; . . .; xk from

a theoretical distribution of cdf F xð Þ. The empirical cdf is

given by:

Fn xð Þ ¼ 1

n

Xn

i¼1

I xi � xf g ð4Þ

where I xi � xf g is the number of observations smaller or

equal to x.

The Kolmogorov–Smirnov (D) statistic is based on the

largest difference between the theoretical and empirical

cdf:

D ¼ max
1� i� n

bF xðiÞ
� �

� i� 1

n

				

				;
i

n
� bF xðiÞ

� �				

				

 �

ð5Þ

where bF xð Þ is an estimate of the cdf and

xð1Þ; xð2Þ; . . .; xðkÞ are the observations in an ascending order.

The null hypothesis that the empirical distribution is

equal to one of the estimated distributions is rejected (i.e.

data does not follow the specified distribution), at the

chosen level of significance a, if the test statistic D[D að Þ,
where D að Þ is a critical value of the KS test. The signifi-

cance level for this study is generally set at a = 0.05.

Then, the corrected AICc and BIC criteria were calcu-

lated for all models being under the estimation procedures.

The model that has the lowest value of these two criteria

was selected (Burnham and Anderson 2004). The AIC and

BIC criteria were obtained using the following equations,

respectively,

AIC ¼ �2 ln Lþ 2k; ð6Þ
BIC ¼ �2 ln Lþ k ln n: ð7Þ

The lnL is the natural logarithm of the likelihood

function and k is the number of parameters in the model.

Table 1 List of the probability density function (pdfs), cumulative distribution function (cdfs) and supports of the LN, GUM and GEV

distributions

Distribution pdf cdf Support

LN
f xð Þ ¼ 1

xr
ffiffiffiffi
2p

p e�
1
2

lnx�l
rð Þ2 F xð Þ ¼ U lnx�l

r

� �
x[ 0

GUM f xð Þ ¼ 1
r e

� x�l
rð Þ�e

x�l
r F xð Þ ¼ e�e�

x�l
r �lð Þ=r x 2 R

GEV
f xð Þ ¼ 1

r 1þ n x�l
r

� �� ��1þn
n e� 1þn x�l

rð Þð Þ�
1
n

F xð Þ ¼ e� 1þn x�l
rð Þð Þ�

1
n x\l� r

n
for n\0

l� r
n
\x for n[ 0

where, U is the standard normal distribution cdf
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When the ratio between the sample size (n) and the

number of model parameters (k) is less than 40, the use of

the corrected AICc is recommended, as was suggested by

Burnham and Anderson (2004), and Fabozzi et al. (2014).

As the number of observations in the present work is n ¼
12 the corrected AIC was adopted. The corrected AIC is

given by:

AICc ¼ �2lnLþ 2k þ 2k k þ 1ð Þ
n� k � 1

: ð8Þ

The coefficient of determination R2 and the root of the

mean square error (RMSE) were also used to measure a

goodness-of-fit of the examined pdfs to model the tem-

perature data. The R2 and RMSE statistics are provided,

respectively, by:

R2 ¼
Pn

i¼1 F̂ xið Þ � F
� �2

Pn
i¼1 F̂ xið Þ � F

� �2þ
Pn

i¼1 Fn xið Þ � F̂ xið Þ
� �2 ; ð9Þ

where bF xð Þ is the estimated cdf and F ¼ 1
n

Pn

i¼1

F̂ xið Þ.
RMSE statistic is given by the formula:

RMSE ¼ 1

n

Xn

i¼1
Fn xið Þ � bF xið Þ

� �2

 �1

2

: ð10Þ

The distribution with the lowest AICc, BIC and RMSE

and the largest R2 has the best fit to the original data.

The return time (return levels) represents the inverse of

the probability that a given event has occurred. Given the

occurrence of an event, the turnaround time is the average

time required (in years) for that event to recur in any given

year. In practical terms, its meaning is: if an intensity event

occurs, what is the average time (T) expected for the

intensity event to occur again? By definition, it follows that

the turnaround time associated with the event is expressed

by:

T ¼ 1

P Eð Þ ¼
1

p
: ð11Þ

In this paper, the event E is the maximum temperature

that exceeds a certain temperature value xp and the prob-

ability p exceeding E is obtained by 1� F xp
� �

. Therefore:

T ¼ 1

p
¼ 1

1� F xp
� � : ð12Þ

As F xð Þ ¼ 1� p, the level of temperature return xp,

which is expected to be exceeded by the maximum

monthly temperature in an average time every year T, is

obtained as the solution of the equation:

F xp
� �

¼ 1� p ) xp ¼ F�1 1� pð Þ: ð13Þ

From the relation p ¼ 1
T and using (13) with the cdfs of

the LN, GUM and GEV distributions, the quantile func-

tions of these distributions are provided, respectively, by:

xp Tð Þ ¼ elþrU�1 1�1
Tð Þ; ð14Þ

xp Tð Þ ¼ l� rln �ln 1� 1

T

� �
 �
; ð15Þ

xp Tð Þ ¼ l� r
n

1� ln 1� 1

T

� �n
" #

: ð16Þ

The estimated return levels x
_

p, which are the maximum

temperature expected for return times T, are obtained by

replacing the maximum likelihood estimates of the

parameters in (14), (15) and (16).

All statistical analysis were performed using the R (R

Core Team 2020) software. The evd (Stephenson 2002),

EnvStats (Millard 2013) and fBasics (Wuertz et al. 2014)

packages from the R library were used to study the data. In

particular, the evd package was used for data analysis, as it

has specific functions in the analysis of extreme values.

3 Results

In this section, we present only general results and the

results for the Cerrado, while for the remaining biomes

detailed results are shown in the tables and figures deliv-

ered in the Supplementary Material (SM).

The spatial distribution of the maximum values of the

average annual air temperature in the areas of the Cerrado,

Pantanal and Atlantic Forest is represented in Fig. 2. When

analyzing this distribution, a relative increase in tempera-

ture is observed in the northeast-west direction of the

biomes (Cerrado and Pantanal), with the highest annual

averages in the western parts of the state in the city of

Corumbá (Pantanal) with 35 �C. The lowest temperatures

can be found in the northeast region in the city of Costa

Rica and Figueirão with the average maximum temperature

of 28 �C.
The variation of the monthly averages of the maximum

air temperature for biomes in Mato Grosso do Sul can be

seen in Fig. 3. In general, the same trend of the relative

increase already highlighted in the analysis of the annual

average temperature has been observed. The average

maximum temperature in the Cerrado is 28 �C with the

range between a minimum of 24 �C and a maximum of

33 �C. The highest temperature occurs in the spring season

with 30 �C, and the lowest in autumn–winter (24 �C),
while in the Pantanal biome the maximum occurs in the

spring with 32 �C and the minimum in the autumn with

27 �C.
The month with the highest temperature is October,

when 75% of the region has an average maximum tem-

perature of above 30.5 �C. This month presented higher

temperature values with an average maximum temperature
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of 31 �C varying between 27 �C in the region and 33 �C in

the Pantanal biome. The months of May, June and July had

the lowest temperatures, when their average maximum

reached values below 28 �C.
Tables 2, A.1, A.6 (SM) show the descriptive statistics

of the monthly maximum temperature data for the Cerrado,

Pantanal and Atlantic Forest biomes. On average, the

months from August to December had the highest maxi-

mum temperature in the biomes in the period from 2007 to

2018, with maximums that varied from 28.78C (August) to

30.38C (September) in the Cerrado, from 30.98C to 32.48C
(in the same months) in the Pantanal, and from 26.98C to

28.68C in the Atlantic Forest. In the Pantanal, the relatively

high monthly maximum temperature also occurred in the

months of January–March (between 31.0–31.6 8C).

The coefficient of variation (CV%) shows that the dis-

persion of the maximum average temperature data is dif-

ferent between stations. The greatest variability in relation

to the average values of the maximum monthly temperature

and the highest values of the coefficient variation (4.3 to

6.5%) occurred in the Cerrado in the months of May and

October–December (Table 2), in the Pantanal (Table A.1,

SM) in January, September and November (CV 5,3 to

6,1%) and in the Atlantic Forest (Table A.6, SM) in April,

July and October (CV 5.4 to 6.1%).

The results show that all the stations have different

values of asymmetry. The negative asymmetry coefficients

(CS) were in the Cerrado in February, March, May and

June, and in the Pantanal in February, June, August and

October. In the Atlantic Forest, a biome CS indicator is

Fig. 2 Spatial distribution of the maximum values of the average annual air temperature for the biomes of Mato Grosso do Sul (2007–2018)
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predominantly negative (for eight months). The analysis of

the asymmetry of the empirical distributions in each of the

evaluated months can also be done based on Figs. 4, A.1,

A.3 (SM). Additionally, the figures show the distribution of

the maximum temperature data (black line) of the biomes

during the study period, with the estimated densities of the

GEV, GUM and LN distributions (SM). The analysis

allows a preliminary verification of whether the estimated

densities of the GEV, GUM and LN distributions are close

to the empirical distribution.

In all months, the kurtosis coefficients (CK) were less

than 3, showing that the empirical distributions are

platykurtic. Variables with a more flattened distribution

(lower concentration) compared to the normal distribution,

have the negative kurtosis value (Tables 2, A.1 and A.6,

SM). Greater differences in the CK values are visible for

the Cerrado and Pantanal biomes. Positive values of the

indicator corresponding to the biomes were obtained in

August and November–December and in January,

September and November–December (Tables 2 and A.1 in

SM). In May, for example (Table 2), it can be seen that the

distribution of the maximum temperature data for the

Cerrado in this month has a slight asymmetry to the left

(CS = - 0.72) and that the empirical distribution is flat

(CK = 0.15). For the Atlantic Forest only negative kurtosis

was obtained (Table A.6, SM).

Tables 3, A.2 and A.7 (SM) show the maximum like-

lihood estimates for the parameters of the GEV, GUM and

LN distributions. The maximum likelihood is a conditional

density function that expresses the relationship of the value

of a random variable X with the obtained information on

the distribution. In the GEV distribution for the Cerrado

(Table 3), the case of n\ 0 (n shape parameter) was

obtained for most months, which basically means a dis-

tribution with the vanishing right tail. Positive n was

obtained only for April and November–December, which

means an increased probability of the occurrence of

extreme air temperature values. For the Pantanal, n\ 0

was obtained for 6 months and n[ 0 for the remaining

period, with the highest positive value occurred in May and

the lowest in June (Table A.2, SM). In the Atlantic Forest,

negative values of n were found in all months (Table A.7,

SM).

Tables 4, A.3 and A.8 (SM) show the results of the KS

test and the model selection criteria for each month.

According to the results of the KS test, one can observe

that there are three distributions close to the maximum

temperature data for DM biomes in the evaluated period (p-

value[ 0.05).

Tables 5, A.4 and A.9 (SM) present a summary of which

model provided the best fit in each month, according to the

results of the model selection criteria shown in Tables 4,

A.3 and A.8 (SM). In the months that presented, on aver-

age, the highest maximum temperature from 2007 to 2018

(August to December), the GUM and GEV extreme value

distributions showed the best performances. On the other

hand, in the coldest months of the year (May to July) this

performance was achieved by the LN distribution. The

GUM and GEV distributions also showed good results in

March and April, while the LN distribution was more

adequate to model the maximum temperature data in

February. The only month in which it was not possible to

indicate a distribution with a better performance, to the

detriment of the other distributions under analysis, was the

month of January.

bFig. 3 Monthly averages of maximum air temperatures for the biomes

of Mato Grosso do Sul (2007–2018)

Table 2 Descriptive statistics

for the monthly maximum air

temperature data in the Cerrado

(2007–2018)

Months Mean

(oC)

SD CV

(%)

Min

(oC)

Max

(oC)

Median

(oC)

CS CK

January 28.24 0.84 2.97 26.99 29.60 28.28 0.03 -1.49

February 28.39 0.76 2.69 26.87 29.48 28.39 - 0.33 - 1.02

March 28.24 0.90 3.19 26.68 29.38 28.43 - 0.58 - 1.18

April 27.46 0.80 2.91 26.44 29.12 27.42 0.54 - 0.88

May 25.82 1.24 4.79 22.93 27.72 25.79 - 0.72 0.15

June 24.80 0.58 2.35 23.51 25.58 24.89 - 0.70 - 0.46

July 26.13 0.72 2.74 25.00 27.53 26.26 0.08 - 0.89

August 28.66 0.89 3.12 27.53 30.01 28.46 0.24 - 1.46

September 30.45 0.88 2.90 29.24 31.84 30.15 0.19 - 1.73

October 30.34 1.28 4.23 28.60 32.95 30.43 0.36 - 0.86

November 29.50 1.26 4.26 27.78 32.91 29.42 1.36 1.85

December 29.32 1.92 6.56 26.79 34.73 29.19 1.61 2.51

n = 12
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Tables 6, A.5 and A.10 (SM) show the probabilities of

the occurrence of maximum temperatures higher than 28,

29, 30, 31 and 32 �C, for all months of the year (SM).

Again, the period of the occurrence of higher maximum

temperatures of the biomes is evidenced. The highest

probabilities of the occurrence of maximum temperatures

are observed between August and December, in compar-

ison with the other months of the year, already considering

the occurrence of maximum temperatures of above 28 �C.
Figures 5, A.2 and A.4 (SM) show the maximum tem-

perature expected for MS biomes, considering the return

times of 10 to 100 years. The largest expected maximum

temperature can be observed from August to December.

According to the results for January, obtained using the

GEV distribution, it is expected that in an average time of

100 years, a maximum temperature greater than or equal to

29.788C will occur at least on one day a month, and

according to GUM it will be the temperature greater than or

equal to 31.158C. For the GUM distribution, what can be

expected in each month is the highest temperature for the

return time of 100 years.

The results of the GUM and GEV distributions show

that the variation in the maximum temperature between the

return times of 10 and 100 years suggests an increase in

maximum temperature levels, varying from 0.898C in

September (GEV) to 3.568C in December (GEV). In

August, October and November an increase in the

maximum temperature between these values is expected

(Fig. 5).

The GUM distribution is a model that generally provides

the highest levels of return (Fig. 5). In January–March,

May, and June–October, the highest temperature levels

were predicted by this distribution. In April, November and

December this performance was achieved by the GEV

distribution. Regarding the lowest maximum temperature

levels expected, the GEV distribution showed this result in

7 months and the LN distribution in 5 months of the study.

The LN distribution proved to be a more conservative

model in relation to the lowest expected maximum tem-

perature levels, compared to the GUM distribution. The LN

distribution showed the best performance in February.

4 Discussion

Many studies suggest that it is virtually impossible to

effectively forecast record high, extreme air temperatures.

It is only possible to analyze the probability and frequency

of such events, which was confirmed in our studies.

According to Hyndman and Fan (2010), the frequency of

the occurrence of the hottest temperature is an extreme

event, and the best way of modeling is by making use of

EVT. In the case of GEV methods, the observations close

to the central value are omitted and only extreme values are

used to estimate the parameters of theoretical distributions

(Gençay and Selçuk 2004), which increases the efficiency

of the method.

In the biomes of Mato Grosso do Sul, we can observe

the effects of the seasonality of the air temperature cycle,

which manifest themselves in the occurrence of phases of

extremely high values. A measurable index of seasonality

indicates changes in the thermal conditions of the biomes,

which may be due to various reasons (Ummenhofer and

Meehl 2017). Usually, together with climatic factors,

anthropogenic factors connected with the transformation

and improper utilization of the natural environment have an

incidental impact. The effects of the seasonal occurrence of

droughts and fire foci constitute a potential threat for the

thermal stability of ecosystems (Marengo et al. 2016).

In the case of the biomes in Mato Grosso do Sul, the

changes in the distribution of extreme temperatures can

occur due to a shift in the mean, shifts in the variability of

the distribution, as well as changes in its symmetry or

skewness (toward the hotter part of the distribution).

Increased kurtosis (compared to the normal distribution)

results in a greater probability of extreme observations, and

thus it could be causing new temperature extremes. This

situation mainly concerns the Pantanal biome, which is

very vulnerable to temperature changes. The Pantanal is

characterized by frequent periods of drought, enhanced by

bFig. 4 The empirical distribution of maximum air temperature data

(�C) and the density estimate of the GEV, GUM and LN distributions

(Cerrado)

Table 3 Estimates of the parameters of pdfs for monthly data

(Cerrado)

Months GEV GUM LN

l̂ r̂ n̂ l̂ r̂ l̂ r̂

January 27.99 0.824 - 0.384 27.84 0.718 3.34 0.028

February 28.24 0.820 - 0.608 28.01 0.749 3.34 0.026

March 28.16 1.004 - 0.804 27.78 0.897 3.34 0.031

April 27.07 0.582 0.073 27.10 0.602 3.31 0.028

May 25.54 1.295 - 0.527 25.18 1.368 3.25 0.047

June 24.72 0.629 - 0.696 24.50 0.625 3.21 0.023

July 25.88 0.672 - 0.257 25.79 0.630 3.26 0.026

August 28.31 0.771 - 0.168 28.24 0.719 3.35 0.030

September 30.12 0.780 - 0.215 30.03 0.702 3.41 0.028

October 29.83 1.094 - 0.131 29.75 1.044 3.41 0.040

November 28.97 0.875 0.029 28.99 0.881 3.38 0.040

December 28.53 1.248 0.057 28.57 1.266 3.37 0.060
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fires (Silvério et al. 2013). The increase in extremely high

temperatures can contribute to the degradation of one of the

largest wetland ecosystems in the world.

The probability of exceeding the temperature of 28 �C is

0.5–0.6 for the beginning months of the year, while the

probability of 0.9 is for the September–November period

(Cerrado). For these months, a high probability of the

occurrence and exceedance of subsequent temperature

records was obtained, including the temperature[ 32 �C.
In September and October, the probability of exceeding

31 �C is almost 0.22–0.29, and the 32 �C is reduced, but is

still high in October for the GUM distribution, where it is

0.09–0.1. For the first half of the year, there is practically

no risk (or it is literally minimal) of exceeding the highest

temperature level, i.e. 32 �C, but there is a little risk of

exceeding the 30 �C and 31 �C thresholds. To determine

the average number of years after which the level of the

current record is exceeded, use was made of the concept of

the extreme return level. In the time series analyzed, the

development of new records (for both 10-year and 100-year

periods) may be slow; however, it cannot be ruled out that

a new record will appear soon. Moreover, in such ranges

new records may show a tendency to group together, i.e.

appear in series (Shrivastava et al., 2011).

Table 4 Results of the

goodness-of-fit tests and

information criteria for the

estimated distributions

(Cerrado)

Month Distributions KS AICC BIC RMSE R2

January GEV 0.130 (0.971) 37.30 35.75 0.070 0.952

GUM 0.187 (0.726) 34.72 34.35 0.066 0.954

LN 0.153 (0.901) 34.13 33.77 0.069 0.953

February GEV 0.149 (0.952) 34.00 32.45 0.070 0.948

GUM 0.131 (0.986) 34.48 34.12 0.059 0.952

LN 0.146 (0.958) 31.98 31.62 0.054 0.967

March GEV 0.134 (0.961) 35.99 34.45 0.071 0.943

GUM 0.286 (0.230) 38.94 38.58 0.108 0.870

LN 0.241 (0.420) 36.12 35.75 0.086 0.921

April GEV 0.172 (0.809) 35.02 33.47 0.075 0.944

GUM 0.180 (0.766) 31.39 31.03 0.075 0.944

LN 0.192 (0.700) 32.75 32.38 0.082 0.929

May GEV 0.168 (0.831) 45.80 44.25 0.075 0.928

GUM 0.267 (0.301) 48.02 47.65 0.102 0.834

LN 0.214 (0.564) 43.96 43.60 0.067 0.939

June GEV 0.089 (0.999) 26.26 44.25 0.075 0.964

GUM 0.202 (0.636) 29.52 29.16 0.082 0.900

LN 0.168 (0.829) 25.64 25.28 0.053 0.966

July GEV 0.191 (0.704) 33.86 32.32 0.080 0.929

GUM 0.239 (0.429) 31.22 30.86 0.088 0.915

LN 0.188 (0.721) 30.32 29.96 0.080 0.930

August GEV 0.155 (0.933) 38.69 37.15 0.080 0.941

GUM 0.164 (0.902) 35.20 34.84 0.071 0.948

LN 0.147 (0.957) 35.52 35.16 0.084 0.930

September GEV 0.223 (0.513) 38.44 36.89 0.103 0.906

GUM 0.216 (0.557) 34.86 34.49 0.094 0.920

LN 0.231 (0.470) 35.29 34.93 0.107 0.901

October GEV 0.140 (0.944) 47.39 36.89 0.058 0.963

GUM 0.159 (0.872) 43.93 43.56 0.058 0.962

LN 0.112 (0.993) 44.15 43.79 0.063 0.9566

November GEV 0.177 (0.781) 43.89 45.84 0.058 0.906

GUM 0.181 (0.763) 40.26 39.89 0.084 0.905

LN 0.245 (0.398) 43.14 42.78 0.114 0.816

December GEV 0.190 (0.779) 52.76 51.21 0.099 0.864

GUM 0.193 (0.758) 49.23 48.86 0.101 0.861

LN 0.260 (0.389) 52.78 52.41 0.133 0.748
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The studies have shown so far that the climate in the

biomes is not isolated and is subject to global climate

changes. What is important here is the occurrence of the El

Niño – South Oscillation climate variability model (ENSO)

(Souza and Cavalcanti 2009; Rodrigues et al. 2011;

Kayano et al. 2013). The climatic component influences the

interannual variability of the air temperature and rainfall in

the various states in Brazil (Almeida et al. 2016; Silva

Junior et al. 2018; Filho et al. 2019). The regional study in

the Midwest of the country showed that ENSO had a

noticeable influence on dynamics of the meteorological

systems (de Oliveira-Júnior et al. 2020). According to

Santos (2014) and Viganó et al. (2018), the meteorological

factors, such as solar radiation, the relative humidity of the

air and the air temperature, have developed an important

relationship in the impact zones of the biomes.

The results of the models associated with temperature

extremes and severe heat waves showed that future heat

waves in many regions of the world, also in Brazil (Vincent

et al. 2005; Marengo et al. 2016), would become more

intense, more frequent, and lasting longer in the second

half of the twenty-first century. In the southern Amazon

basin, it is predicted that the forest will recede due to cli-

mate change (Hutyra et al. 2005) and land use practices

(Nepstad et al. 2008). The biomes are undergoing a

deforestation and urbanization process (Barros et al. 2019),

and deforested regions (that include cities) have an even

higher temperature, being able to register up to 5 �C more

than nearby regions with forests. Some recent studies

(Roesch et al. 2009; Scarano and Ceotto 2015) have con-

cluded that in a rainy season there is little difference in the

temperature between deforested regions and forests, but in

the dry season the difference can reach several degrees

Celsius. Our research confirmed that the Generalized

Distribution of Extreme Values (GEV) and Gumbel

(GUM) distributions are recommended to be used in the

warmer months, whereas in the coldest months the Log-

Normal (LN) distribution gave a better fit to a series of

extreme air temperatures.

In ‘‘normal’’ years, without extreme or prolonged

drought, the vegetation of the biomes works as a small sink

for carbon dioxide (CO2), and compensates for CO2

emissions from deforestation and burning in the region

(Malhi 2012). The largest stocks of carbon and nitrogen in

the soil were found in the Atlantic Forest, followed by the

Amazon and the Cerrado. As for above-ground carbon and

nitrogen stocks, the Atlantic Forest and, especially, the

Amazon stand out as the biomes with the largest stocks.

Interestingly, only in the Amazon and the Pantanal are

carbon and nitrogen stocks higher in above-ground biomass

than in soil stocks, diverging from other biomes in which

the largest stocks are effectively concentrated in soils.

Nitrogen transfer is significantly higher in the Amazon and

Atlantic Forest systems compared to herbaceous-shrubby

systems such as the Cerrado. Despite large differences in

soil carbon stocks, variations in CO2 fluxes to the atmo-

sphere were not high between biomes. In the case of bio-

logical nitrogen fixation (FBN), the largest inputs are

associated with the Atlantic Forest forest systems, followed

by the Cerrado and finally the Pantanal. As for the atmo-

spheric nitrogen deposition, the values were similar

between the biomes. However, when major droughts occur,

the biomes can temporarily become a source of CO2

emissions into the atmosphere. In addition, by producing

and accumulating a lot of combustible material, droughts

contribute to forest fires in areas previously not subject to

this phenomenon, emitting more CO2 and will contribute to

other fires in the years to come (Malhi 2012).

The combination of global climate changes and dra-

matic changes in land cover, with large-scale deforestation,

can determine changes in the local climate regime and,

consequently, in the structure and composition of native

vegetation. The ‘‘savannization’’ process emerged as an

important warning to a possible structural change in the

region’s vegetation cover. According to Silvério et al.

(2013), after episodes of intense and frequent fires that

exceed forest resilience, restoration may be a long-term

process. Therefore, the knowledge about extreme thermal

conditions is essential to understand the relationship of

climate change (warming) and human activities (defor-

estation, fire) with the environment of the Cerrado, Pan-

tanal and Atlantic Forest biomes. The biomes, largely

functioning as wetlands, are particularly sensitive ecosys-

tems, dependent primarily on water conditions and the air

temperature. Although there are differences in the

responses of different types of wetlands to climate change,

Table 5 The selection of probability distributions according to

goodness-of-fit tests and information criteria (Cerrado)

Month AICC BIC RMSE R2

January LN LN GUM GUM

February LN LN LN LN

March GEV GEV GEV GEV

April GUM GUM GUM GUM

May LN LN LN LN

June LN LN LN LN

July LN LN LN LN

August GUM GUM GUM GUM

September GUM GUM GUM GUM

October GEV GEV GEV GEV

November GUM GUM GUM GUM

December GUM GUM GUM GUM
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the overall trend is clear. Global warming causes an

increase in temperature and increases evaporation, and

finally leads to the drainage of wetlands.

However, it should be noted that a profound change in

the structure and functioning of ecosystems would lead to

significant losses in carbon stocks in both soil and vege-

tation. In addition to carbon losses, there would be other

physiological and phenological changes in the Cerrado.

Such changes would be reflected not only in the carbon

cycle, but also in the nitrogen cycle. The Atlantic Forest

stores appreciable amounts of carbon and nitrogen in its

soils, mainly at higher altitudes. Predicted increases in air

temperature in central-western Brazil would lead to an

increase in respiration and decomposition processes, gen-

erating an increase in carbon and nitrogen losses to the

atmosphere.

In areas where the duration of the drought was longer,

there could, in theory, be an increase in the incidence of

fire, which in turn would favor the appearance of herba-

ceous vegetation, implying important changes in the

functioning of the biomes (especially Cerrado), related to a

Table 6 Probabilities of

occurrence of maximum

monthly air temperature of over

28, 29, 30, 31 and 32 �C in the

Cerrado

Months Distributions Maximum temperature (8C)

[ 28 [ 29 [ 30 [ 31 [ 32

January GEV 0.631 0.177 0.001 &0 &0

GUM 0.553 0.181 0.048 0.012 0.003

LN 0.614 0.172 0.001 0.001 &0

February GEV 0.733 0.231 &0 &0 &0

GUM 0.637 0.234 0.067 0.018 0.004

LN 0.697 0.201 0.001 0.0003 &0

March GEV 0.688 0.223 &0 &0 &0

GUM 0.545 0.227 0.081 0.027 0.009

LN 0.603 0.191 0.002 0.001 &0

April GEV 0.200 0.050 0.013 0.004 0.001

GUM 0.201 0.041 0.008 0.001 0.000

LN 0.235 0.232 0.001 &0 &0

May GEV &0 &0 &0 &0 &0

GUM 0.119 0.059 0.029 0.014 0.006

LN 0.400 0.006 0.000 &0 &0

June GEV &0 &0 &0 &0 &0

GUM 0.003 0.001 0.0002 &0 &0

LN &0 &0 &0 &0 &0

July GEV 0.001 &0 &0 &0 &0

GUM 0.029 0.006 0.001 0.0003 &0

LN 0.408 &0 &0 &0 &0

August GEV 0.772 0.316 0.063 0.005 0.0001

GUM 0.755 0.295 0.083 0.021 0.005

LN 0.778 0.339 0.060 0.003 &0

September GEV 0.999 0.969 0.688 0.241 0.033

GUM 0.999 0.987 0.652 0.224 0.059

LN 0.998 0.959 0.699 0.254 0.035

October GEV 0.989 0.872 0.574 0.270 0.095

GUM 0.995 0.872 0.546 0.261 0.109

LN 0.976 0.865 0.603 0.290 0.090

November GEV 0.955 0.622 0.271 0.101 0.036

GUM 0.953 0.628 0.272 0.097 0.032

LN 0.902 0.660 0.329 0.102 0.019

December GEV 0.785 0.498 0.273 0.142 0.072

GUM 0.791 0.509 0.276 0.136 0.064

LN 0.770 0.561 0.339 0.167 0.067
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Fig. 5 The maximum air temperature (�C) expected in the Cerrado, for the return times of 10, 20, 30, 40, 50 and 100 years
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potential decline in productivity in the face of projected

climate changes (IPCC 2012).

5 Conclusions

The statistical distribution properties of the air temperature

are of particular importance for assessing the structure and

durability of the biomes. They provide information con-

cerning the maintenance or disruption of an ecosystem’s

thermal stability.

1. We estimated the parameters of GEV, GUM and LN

distributions for extreme air temperatures in the Cerrado,

Pantanal and Atlantic Forest biomes of the state of Mato

Grosso do Sul in Brazil. The distributions have been sat-

isfactorily matched with monthly data and can be used to

provide extreme levels of maximum temperatures.Next, we

calculated the probabilities of occurrence of maximum

monthly temperatures of the year for those over 28, 29, 30,

31 and 32 �C. Temperature estimates for each month and

for the 2-, 5-, 10-, 30-, 50- and 100-year return periods

showed that temperatures are increasing over time. The

factors that modify the air temperature distribution and

generate extreme values within the range of biomes include

the type and resistance of the biomes to climatic factors, as

well as an increase in deforestation and burning and the

related extensive fires and aerosol emissions. Significant

and permanent changes in the biomes are also caused by

various forms of anthropogenic activity.

2. The AICc, BIC, RMSE and the coefficient R2 were

used to identify the distribution that gave the best results

for each month and each biome. The GUM distribution is

the one with the highest return values and it is recom-

mended to use the GUM and GEV distributions in the

warmer months for the biomes in the state of Mato Grosso

do Sul, with the exception of February, when the LN dis-

tribution showed the best performance. On the other hand,

to model the maximum temperature data in the coldest

months of the year in biomes (May to July), we recommend

using the LN distribution.

3. Our results can be used in the interpretation of the

influence of the air temperature on the formation of fires

and in the interpretation of biological and biogeochemical

processes taking place in biomes in warm months. The

statistical methods we applied may be useful for deter-

mining thermal tolerance thresholds and assessing the risk

of exceeding maximum values critical for the existence of

ecosystems. Understanding the characteristics of climate

extremes at regional and local levels is critical not only for

the development of preparedness and early warning sys-

tems. This issue is also fundamental for the development of

a strategy for the adaptation to climate change together

with measures alleviating the effects of extreme air

temperatures.
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