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Abstract
This study aimed at creating a sustainable and inexpensive Landsat-based electrical conductivity model that can easily

notify fisheries managers of changes in electrical conductivity and hence the potential fish yield of Lake Qaroun in Egypt.

The study integrated geospatial technology, field measurements, mathematical computations, and fish yield empirical

model into the adopted methodology. Seventeen sampling sites covering the entire study area were selected to measure the

electrical conductivity (EC; mS/cm) and water depths (D; m) of Lake Qaroun, Egypt, during November 2018. Spatial

analysis tools within ArcGIS were used to extract EC data from non-surveyed sites. A high-resolution Sentinel-2B MSI and

a cloud-free medium-resolution Landsat-8 OLI scenes for Lake Qaroun were used for morphometric and regression

analyses, respectively. For regression, 75% of the dataset was used to build up the regression model, while the remaining

25% was used for validation. The study selected Landsat band ratios that correlated with the highest certainty (R[ 0.80)

with the examined EC. Stepwise regression model was then developed to predict EC from Landsat-8 data. In choosing the

best regression model, the study selected the significant model (P\ 0.05) with the highest coefficient of determination (R2)

and the least error metrics. Finally, the developed model was applied in calculating the potential yield of Lake Qaroun. The

innovative EC model derived in the current study using Landsat-8 OLI for Lake Qaroun showed a very good performance

in estimating 95% of EC values significantly with high acceptable accuracy. In closure, the model can be used very

efficiently as a decision support tool in assisting managers not only in monitoring the lake’s electrical conductivity

regularly, during the month of November, but also in making preliminary estimates of the lake’s potential yield.

Keywords Landsat-8 OLI � Electrical conductivity (EC) � Regression modelling � Model validation � Spatial distribution �
Morphoedaphic Index (MEI) � Potential fish yield

1 Introduction

FAO (2014) termed harvesting aquatic fauna from inland

waters as ‘‘Inland fisheries’’. Inland fisheries provide an

important source of livelihoods and food security, espe-

cially in the low and lower middle-income African devel-

oping countries. In 2018, the global inland fisheries

harvested 12.02 million tonnes, of which 3 million tonnes

(equivalent to 25%) were from Africa (FAO 2020).

Accordingly, continuous monitoring of inland fisheries is

an urgent need. Yet data collection is one of the interna-

tional challenges facing these countries in achieving the

United Nations’ 2030 Agenda for Sustainable Develop-

ment (FAO 2020). Data scarcity hinders the accurate

quantification of the share of inland fisheries (Lorenzen
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et al. 2016) and limits the ability to indicate the effect of

fishing activity and anthropogenic drivers (FAO 2020).

Although no single method provides an accurate descrip-

tion of inland fisheries (Funge-Smith and Bennett 2019),

results pooled from multiple approaches can significantly

aid in improving the data supply chain to meet the 2030

Agenda (FAO 2020).

Determining fish production for large water bodies is

expensive, time-consuming, and involves intensive field-

work that can result in the unintentional mortality of fish

(Milligan 2018). As an alternative, fisheries managers rely

on habitat characteristics (Milligan 2018), simple catch

statistics, and empirical models to estimate the lake’s

potential fish yield (Abobi and Wolff 2020). Fish yield is

influenced by the lake’s morphological (as depth, volume,

area, and shoreline development), edaphic (as total dis-

solved solids (TDS) and electrical conductivity (EC)), and

climatic parameters (Ryder 1965). Ryder excluded the

climatic variables and combined both the morphological

and edaphic variables into one index called ‘‘morpho-

edaphic index (MEI) or Ryder’s index’’—defined as the

ratio of TDS to mean depth—to estimate the potential

productivity of 34 north-temperate lakes using regression

analysis. In Africa, Henderson and Welcome (1974) sub-

stituted EC for TDS in Ryder’s index and related it to

yields from 17 tropical inland lakes to develop an empirical

yield model. Afterward, Khalil (1997) developed an

empirical yield model to predict the potential fish yield of

Lake Borollus in Egypt. He related Ryder’s index to yields

from 6 Egyptian and 16 African lakes and reservoirs.

Traditional techniques used to measure lake’s edaphic

variables require intensive collection of primary data as

well as performing expensive laboratory tests (Shahzad

et al. 2018). Moreover, in comparison with satellite images,

in situ measurements can’t offer instantaneous spatial dis-

tribution over the entire water body (Emam et al. 2021). To

make the monitoring process more convenient, regular, and

successful, remote sensing technique could be an effective

alternative tool (Emam et al. 2019; Emam and Soliman

2020, 2021). During the last decade, especially after which

Landsat and Google Earth data became freely available,

remote sensing technology has been extensively used in

monitoring the water quality of inland waters (Topp et al.

2020), as it has proved its efficiency as a powerful ana-

lytical method in integrating in situ water quality data with

spectral reflectance measured by satellite sensors (Bugnot

et al. 2018). Spectral reflectance is correlated with water

quality parameters that affect the lake’s optical properties

(Nas et al. 2010). The optical characteristics of water rely

on different parameters, such as the concentration and

characteristics of suspended solids, dissolved solids, and

other organic matters (González-Márquez et al. 2018a).

Consequently, Landsat has been widely used in developing

an efficient monitoring method depending on the correla-

tion between Landsat band values and the optical charac-

teristics of different water quality variables (Mushtaq and

Lala 2016; Khalil et al. 2016; González-Márquez et al.

2018a; Ferdous et al. 2019). In Kashmir, Mushtaq and Lala

(2016) derived an exponential regression model for EC

retrieval from Landsat 8 for the Wular Lake (wetland)

during October 2013. In Egypt, Khalil et al. (2016)

developed multiple linear regression model for salinity

retrieval of Bardawil Lagoon (Ramsar site) efficiently from

Landsat 8 during December 2014. In Mexico, González-

Márquez et al. (2018a) generated linear regression model to

estimate EC from Landsat 8 for Playa Colorada Bay

(Ramsar site) during spring 2016.

Although Egypt is one of the lower middle-income

developing countries, it is one of the top 25 major inland

fish-producing countries worldwide (FAO 2020). During

2018, Egypt harvested 2.3% (equivalent to 0.28 million

tonnes) of the global inland catch, of which lakes recorded

the highest percentage (69.49%), followed by Nile River

(26.29%) and rice fields (4.20%) (CAMPAS 2020a).

According to FAO (2020), the overall Egyptian natural fish

production (from inland waters, Mediterranean Sea, and

the Red Sea) is projected to witness an overall increase of

34.9 percent over 2018 in 2030. To this end, continuous

monitoring of the Egyptian inland fisheries, especially the

threatened ones, becomes a prerequisite.

Lake Qaroun, the third-largest lake in Egypt, is one of

the most threatened Egyptian lakes due to water pollution

and agrochemical contamination. The lake is the remnant

of the first large freshwater reservoir (Lake Moeris; &
1700 km2) formed more than 4000 years ago in the Fayum

depression to accommodate 50 billion m3 from the water

Nile flood (Chanson 2004). Bahr Yussef canal (16 km

long) was dug to connect the Fayum depression with the

River Nile (Abulnaga 2018). However, due to the lack of

maintenance, rain scarcity for 7-years, and the high evap-

oration rate, about 1200 km2 of the reservoir’s fertile area

dried up and exploited afterward in intensive farming

(Abulnaga 2018). Nowadays, 3,822,836 people inhabit the

Fayum depression (CAMPAS 2020b). Owing to the steep

downward slope of Fayum land towards Lake Qaroun

(Donia 2013), the lake annually receives 470*106 kg dis-

solved salts from the agricultural drainage (Rasmy and

Estefan 1983). Since the lake is regarded as an endorheic

lake without outlets (Williams and Mann 2014), the con-

tinuous increase of agricultural discharge and evaporation

rate had raised the lake’s salinity. In 1906, the lake’s

salinity was 10.95% (Anon 1997), yet regrettably, during

the early 1990s, the salinity increased 219.6% to reach

35% in 1999 (Sami 2000) turning the lake into a ‘‘per-

manent saline inland lake’’. Consequently, its catch com-

position changed greatly (El-Serafy et al. 2014) affecting
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the livelihood of the people inhabiting the area. Moreover,

although the lake was declared as a protected area in 1989,

both natural (climatic conditions and geological aspects)

and anthropogenic (amount of discharged wastewater and

seepage from the surrounding cultivated lands, lack of

sustainable wastewater management, agrochemical con-

tamination, eutrophication, heavy metals) factors continued

to adversely affect the water quality and the lake’s

ecosystem (Abdel-Satar et al. 2003). In 2014, the lake’s

contribution to the country’s total fish yield from inland

lakes was about 12.62% (4518 tons) (CAMPAS 2016) yet

decreased to 2.10% reaching 832 tons in 2018 (CAMPAS

2020a).

Considering the UN 2030 Agenda, ensuring a continu-

ously up-to-date database for inland fisheries, especially in

low and lower middle-income African developing coun-

tries, becomes essential for proper management. To this

end, this study aimed at creating a sustainable and inex-

pensive Landsat-based EC model that can easily notify

fisheries managers of changes in the potential fish yield of

Lake Qaroun in Egypt (pilot case study). Lake Qaroun was

comprehensively studied regarding its water quality

(Abdel-Satar et al. 2010; Abou El-Gheit et al. 2012; El-

Sayed and Mosad 2017; Al-Afify et al. 2019) and fisheries

(El-Serafy et al. 2014; Shalloof 2020). However, to the best

of our knowledge, attempts to integrate geospatial tech-

nology, field measurements, mathematical computations,

and fish yield empirical model in estimating the lake’s

potential fish yield are missing. The study set the following

objectives; (1) measuring the water electrical conductivity

(EC; mS/cm) and water depth (Z; m) along Lake Qaroun

during November 2018, (2) analyzing and updating the

lake’s morphometrics for the year 2018, (3) deriving an

empirical retrieval EC model from Landsat-8 for the month

of November, (4) investigating the feasibility of applying

the retrieved EC model in estimating the potential fish

yield of Lake Qaroun during the month of November.

2 Materials and methods

2.1 Study area

Lake Qaroun is one of the largest inland saline closed lakes

in the North African Great Sahara and is the third-largest

lake in Egypt. In 1989, Lake Qaroun was declared as a

protected area and has been designated as an Important

Bird Area (code: EG009 in 2001) as well as a Ramsar

wetland (site # 2040 in 2012). The lake lies in the northern

part of El-Fayoum depression between longitudes of 30�
240 0800 * 30�4905700 E and latitudes of 29� 240 2600 * 29�
320 04.7400 N (Fig. 1). The lake is about 89 km south-west

of Cairo. To the north, the area is completely covered by

sand without vegetation and has been designated as an

‘‘eco-tourism development area’’. To the south, the lake is

surrounded by cultivated lands, fish farms, touristic resorts,

as well as four salt extraction ponds operated by the

‘‘Egyptian Salts and Minerals Company’’ (EMISAL). The

lake has an irregular shape with two main basins. The

western basin is deeper than the eastern one (Flower et al.

2006). In the middle of the lake, there is a small island (1.5

km2) known as ‘‘Gezert El Qarn El Zahbi = Qarn Island’’

which is an important site for nesting birds.

Water enters the lake via two main drains: El Bats and

El Wadi drains. The former flows into the lake’s eastern

end whereas the latter discharges into the mid-southern

shore of the western basin (Fig. 1). Besides, there are fish

farms and other minor drains that pour their drainage water

into the lake (Authman and Abbas 2007). The lake has no

outlets. Its subtropical climate is generally warm and dry

(Baioumy et al. 2010), characterized by high temperature

(Anwar et al. 2001), low seasonal rainfall (\ 10 mm/year)

(Flower et al. 2006), and a high evaporation rate.

2.2 Data assemblage

2.2.1 Field sampling

Seventeen sampling sites covering the entire study area

with its different characteristics (Fig. 1) were selected to

measure the electrical conductivity (EC; mS/cm) and water

depth (Z; m) in Lake Qaroun during 28 November 2018.

Global positioning system (Garmin GPS) was used to

detect the coordinates of each site in the field. GPS data

were georeferenced to the ‘‘Universal Transverse Merca-

tor’’ system (UTM/zone 35-N using spheroid/datum WGS-

84) to make them compatible with the satellite data.

Field Hydrolab (Hanna HI 9829) was used to measure

the EC directly in the field. To measure water depths,

portable echo sounder was used.

2.2.2 Satellite data

For morphometric analysis, a high-resolution Sentinel-2B

MSI scene, dated 30 November 2018 and acquired at

8:33:09 am for Lake Qaroun (Tile number 36) with pixel

size 10 m, was downloaded from the Copernicus Open

Access Hub website (https://scihub.copernicus.eu/). The

image was processed to Level-1C product.

For regression analysis, a cloud-free medium-resolution

Landsat-8 OLI_TIRS scene, dated 28 November 2018 for

Lake Qaroun (Path/Row = 177/40) with pixel size 30 m,

was downloaded from the United States Geological Survey

(USGS) (https://earthexplorer.usgs.gov/). The image was

processed to a standard level-1 precision terrain corrected

(L1T) product. Landsat 8 carries two sensors on board

Stochastic Environmental Research and Risk Assessment (2022) 36:3221–3238 3223
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namely, ‘‘Operational Land Imager’’ (OLI) and a ‘‘Thermal

Infrared Sensor’’ (TIRS). The OLI instrument images the

earth in nine spectral bands, whereas the TIRS collects data

in two thermal infrared bands. The current study used only

8 bands (B) of OLI sensor; B1 (Coastal aerosol;

0.43–0.45 lm), B2 (Blue; 0.45–0.51 lm), B3 (Green;

0.53–0.59 lm), B4 (Red; 0.64–0.67 lm), B5 (Near Infra-

red; 0.85–0.88 lm), B6 (Shortwave Infrared-1;

1.57–1.65 lm), B7 (Shortwave Infrared-2; 2.11–2.29 lm),

and B8 (Panchromatic band; 0.50–0.68 lm). The down-

loaded scene folder contained a metadata file (_MTL.txt)

and a GeoTIFF image of the scene for each band. These

GeoTIFF images were in gray scale and were read into

ArcGIS software as an unsigned 16-bit integer of Digital

Numbers (DNs). The study converted the raw DNs of the

OLI band data (bands 1 through 8) to reflectance using

raster calculator in ArcMap 10.1.

2.3 Geospatial interpolation

The study used ArcGIS 10.1 software in digitizing the

boundary of Lake Qaroun at 1:10,000 scale from Sentinel-

2B MSI scene (2018). The lake’s boundary was stored in a

polygon shapefile. Afterwards, ‘‘Topo to Raster’’ kriging

interpolation method was used to map the spatial distri-

bution of EC and depth readings measured along Lake

Qaroun.

To increase and double the sample size required for

regression analysis, the current study used the interpolated

EC raster layer to extract the EC readings for an additional

19 points within the lake using the ‘‘Extract multi values to

points’’ tool within ArcGIS software (Fig. 2).

2.4 Analysis

2.4.1 Morphometric analysis

For morphometric analysis, the study used the associated

attribute table in the lake’s boundary shapefile to estimate

the lake’s size metrics as surface area (A; km2), volume (V;

108m3), shoreline length (SL; km), maximum length (Lmax;

km), effective maximum length (Le; km), maximum width

(Wmax; km), and effective maximum width (We; km)

(Fig. 2). The average width (Wa; km) and lake’s elongation

(k) were calculated according to Wetzel and Likens (2000)

and Wirth (2004), respectively. Ecosounder was used to

record the average depth (Ź; m) and maximum depth

(Zmax; m) whose ratio was used in calculating the depth

ratio (Rz) (Kalff 2002) to indicate the shape of the lake’s

basin. Moreover, shoreline development index (DL) was

calculated according to Mortimer (1959).

Fig. 1 Location map of study area
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2.4.2 Regression analysis

Microsoft Excel 2013 software was utilized to perform the

statistical analysis. The study divided the sampling dataset

into training (75%) and validation (25%) sets (Fig. 2). The

training dataset (n = 27) was used to develop and calibrate

the model, while the validation dataset (n = 9) was used to

validate and compare the performance of the model

developed in the training phase.

The study tested at first the correlation of the reflectance

data of Landsat-8 bands and band ratios (independent

variables) with the measured EC readings (dependent

variables). For model calibration, the study selected only

the variables that showed very strong correlation

(R[ 0.80) with EC values. Stepwise polynomial and

multiple linear regression models (MLR) were then used to

predict the EC from the reflectance data of the selected

Landsat variables using the following general formula

Y ¼ aþ b1Xþ b2X
2 þ � � � þ bnX

n

Y ¼ aþ b1X1 þ b2X2 þ � � � þ e

where (Y): predicted EC; (X’s): reflectance data of Landsat

8 bands; (a): intercept; (b1, b2, b3): regression coefficients

estimated through statistical techniques; (n): degree of

polynomial model; (e): Model error. Coefficient of deter-

mination (R2), adjusted R2, standard error (± SE), and

significance F-ratio values were considered in the regres-

sion equations. In choosing the best regression model, the

study selected the model with the highest R2, lowest error

metrics (Table 1), and whose independent variables and

coefficients (a, b1, b2) were highly significant (P\ 0.05).

To assess the performance as well as the accuracy of the

developed EC model, in both the training and validation

phases, the study used both graphical and statistical met-

rics. Scatter graphical plots were used to display the

matching between the measured and the estimated EC

readings. Moreover, the study used the developed model in

generating a spatial map to ensure that the noncalibrated

sites throughout the lake provided reasonable EC values.

Regarding the statistical metrics, the current study used the

eight metrics described in Table 1. The model with the

least error metrics was selected.

Finally, to test the model’s efficiency in different years,

the study used the historical EC readings—available from

the monthly reports of the Egyptian Environmental Affairs

Agency (EEAA 2015)—for Lake Qaroun during Nov 2015.

Model Application

Water quality plays an important role in fish production.

Availability of reliable continuous up to date limnological

data can help in managing the reservoir’s fisheries effi-

ciently. However, the high-cost expenses of field mea-

surements limit its regularity. Accordingly, the current

study examined the possibility of using the developed EC

model, as a decision-support tool, to assist managers in

making first-order estimates of potential fish yield (Y;

tonnes) regularly for Lake Qaroun during the month of

November. The study applied the developed EC model into

Khalil’s empirical fish yield model (Khalil 1997) as

follows

Fig. 2 Flowchart of the methodology adopted in the present study (EC electrical conductivity (mS/cm), MEI Morphoedaphic index)
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Y kg=hað Þ ¼ 16:3757�MEI0:4445 ðR ¼ 0:8627Þ

where (Y) is the potential fish yield; kg/ha, (MEI) is the

morphoedaphic index (= Ryder’s index), (TDS) is the total

dissolved solids; mg/l, and (Ź) is the average depth; m

(Ryder 1965).

In Lake Qaroun, a strong positive correlation (R = 0.9)

was recorded between water EC and TDS (Abdel-Satar

et al. 2010). Accordingly, the current study replaced the

TDS by EC and calculated the morphoedaphic index values

for Lake Qaroun, using both the measured and the pre-

dicted EC values from the developed model, during

November 2018. The two MEI average values were then

compared, and their level of significance was examined.

Knowing that the area of Lake Qaroun in acre is 56,340,

the study used the following formula to convert the esti-

mated potential yield into tonnes

Y tonnesð Þ ¼
Y kg=hað Þ � 0:405� 56340
� �

1000

Moreover, the mean absolute percentage error (MAPE;

%) was calculated for the potential yield estimates to

examine the level of accuracy between the yield obtained

using the EC measured in the field and that obtained from

the developed EC model during Nov 2018 and Nov 2015.

3 Results and discussion

3.1 Descriptive statistics of field measurements

Table 2 presents the descriptive statistics of the field

measurements of electrical conductivity (EC; mS/cm) and

water depths (Z; m) recorded in the 17 sampling sites

distributed along the eastern and western basins of Lake

Qaroun during November 2018.

In the present study, EC values ranged from 42.86 mS/

cm (station #3; near El-Bats drain) to 49.08 mS/cm (station

#6) with an average value of 46.08 ± 0.93 mS/cm along

the eastern basin and from 47.01 mS/cm (station #17; near

El-Wadi drain) to 52.55 mS/cm (station #12) with an

average value of 50.57 ± 0.58 mS/cm along the western

basin of Lake Qaroun during November 2018 (Table 2;

Fig. 3). Our results resemble Goher et al. (2018) and Al-

Afify et al. (2019) results who reported that the station near

El-Bats drain recorded the lowest EC value followed by

that near El-Wadi drain. The ranges recorded between the

minimum and maximum EC values along the eastern and

western basins, in the present study, were 6.22 and 5.54,

respectively (Table 2). The overall mean EC value in Lake

Qaroun was 48.98 ± 0.72 mS/cm during November 2018.

According to Waiser and Robarts (2009), Lake Qaroun can

be regarded as mesohaline (30–70 mS/cm).

The spatial distribution of EC along the entire lake

showed that the eastern part recorded the minimum values

and increased gradually towards the northwestern area

(Fig. 3). This could be attributed to the dilution effect of

drainage water discharging into the lake from the south-

eastern side rather than the northwestern side (Abdel

Wahed et al. 2015; El-Zeiny et al. 2019).

Readings of depth measurements in Lake Qaroun indi-

cated that station #12 (at the southwestern side) and station

#2 (at the southeastern side) recorded the least values

(2.2 m and 2.24 m, respectively) (Table 2; Fig. 3), whereas

the deepest areas ([ 6 m) were recorded at stations #7

(8.9 m), #11 (7.57 m), and #3 (6.8 m) at the northern areas

of the lake (Fig. 3). The overall mean depth value recorded

in Lake Qaroun was 4.34 ± 0.48 m (Table 2). Our results

resemble Elgamal et al. (2017) results who mentioned that

the northern side of Lake Qaroun near the Qarn island

Table 2 Descriptive summary

statistics of the electrical

conductivity (EC; mS/cm) and

water depths (Z; m) measured in

Lake Qaroun along the eastern

and western basins as well as

along the entire lake during

November 2018

Parameter Statistical parameters

Mean ± SE Median ± SD Min Max Range CI (95%)

Eastern basin (stations from 1 to 6)

EC (mS/cm) 46.08 0.93 46.13 2.29 42.86 49.08 6.22 2.40

Z (m) 4.15 0.72 4.31 1.76 2.24 6.88 4.64 1.85

Western basin (stations from 7 to 17)

EC (mS/cm) 50.57 0.58 51.20 1.92 47.01 52.55 5.54 1.29

Z (m) 4.45 0.65 4.42 2.16 2.20 8.93 6.73 1.45

Overall (stations from 1 to 17)

EC (mS/cm) 48.98 0.72 49.61 2.97 42.86 52.55 9.69 1.53

Z (m) 4.34 0.48 4.42 1.97 2.20 8.93 6.73 1.02

EC electrical conductivity, Z depth, SE Standard Error of mean, SD Standard deviation,Minminimum,Max
maximum, CI Confidence Interval
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recorded the highest depth of 9.0 m and the average depth

of the lake was about 4.20 m.

3.2 Morphometric Analysis

The Morphometric characteristics of lakes play a para-

mount role in the ecological processes that can support

their productivity (Ezekiel et al. 2019). Accordingly, the

current study analyzed the morphometry of Lake Qaroun.

Table 3 summarizes the physical characteristics of Lake

Qaroun. Results obtained from analyzing the lake’s

boundary shapefile in ArcMap (10.1) showed that the lake

basin is aligned in a SW-NE direction, with a surface area

(A) of 228 km2 (22,800 ha), a maximum length (Lmax) of

41.07 km, and a maximum width (Wmax) of 9.8 km,

resulting in an average width (Wa) of 5.55 km and an

elongation value of 0.23 (Table 3). According to Wirth

(2004), the lake becomes more elongated as the ratio

approaches zero. The maximum effective length (Le) and

width (We) are 89.5 and 99.5% of the maximum length and

width of Lake Qaroun, respectively. These characteristics

promote the proper mixing of water within the lake, which

in turn enhances the circulation of oxygen required for life

underwater (Ezekiel et al. 2019).

The lake level is at & 47 m below sea level, which

makes it the deepest area in El-Fayoum depression. That’s

why, the lake receives most of the natural (subsurface flow)

and artificial (agricultural) drainage along El-Fayoum

depression (Abd El-Wahed et al. 2015). In the current

study, the lake’s volume was estimated as 9.879*108 m3

(Table 3). In 1999, the lake received drainage water with a

volume of about 338*106 m3 from the two main drains in

addition to about 67.8*106 m3 from groundwater (El-

Shabrawy and Dumont 2009). In 2011, the amount of water

reaching the lake from the two main drains reached

419.56*106 m3 (Fouda and Fishar 2012).

GIS analysis and mathematical computation yielded a

shoreline length (SL) of 139 km and a shoreline develop-

ment index (DL) of 2.59 for Lake Qaroun (Table 3) indi-

cating a subrectangular elongated lake that can support the

lake’s potential for fisheries development (Ezekiel et al.

2019).

Analysis of depth readings revealed that Lake Qaroun

had a maximum depth (Zmax) of 8.93 m and a mean depth

(Ź) of 4.34 m. The depth ratio (Rz) of 0.48 for Lake Qaroun

(Table 3) indicated that the lake basin had a conical shape

property (Kalff 2002).

Fig. 3 Spatial distribution of the electrical conductivity (mS/cm) and depth (m) readings as obtained from GIS analysis along Lake Qaroun

during November 2018
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3.3 Regression analysis

3.3.1 Correlation

In the current study, during November 2018, EC showed

very strong positive correlations (R[ 0.80) with Landsat

band ratios rather than individual bands. The correlation

pattern followed the order B2/B4 (0.917)[B2/B8

(0.915)[B1/B4 (0.911)[B1/B8 (0.907)[B1/B3

(0.887)[B2/B3 (0.886)[B3/B4 (0.880)[B7/B5

(0.870)[B7/B6 (0.860)[B8/B4 (0.854)[B7/B4

(0.851)[B6/B5 (0.836)[B1/B2 (0.833)[B6/B4

(0.824)[B7/B8 (0.815). This strong correlation can be

attributed to the fact that band ratios can (to some extent)

eliminate the influence of atmosphere (Kutser 2012).

That’s why, regression models with spectral ratios were

found to be more powerful than with single band (Emam

2016; Khalil et al. 2016; Deutsch et al. 2018).

3.3.2 Model calibration

Table 4 summarizes the statistical outputs of the regression

analysis performed using the above-mentioned Landsat

band ratios as independent variables to predict the elec-

trical conductivity over Lake Qaroun during November

2018. The key in selecting the best fit regression model is

to choose an appropriate regression method as well as

independent variables that result in the highest R2

(Mushtaq and Lala 2016), lowest SE, and most significant

values (Emam 2016). In accordance with Emam (2016) and

Deutsch et al. (2018), we observed that incorporating more

spectral information into the model enhances the value of

R2 (Table 4). Accordingly, the cubic regression model for

Landsat band ratio (Green ‘‘B3’’/Red ‘‘B4’’) (R2 = 0.870;

adjusted R2 = 0.859; ± SE = 0.853; P\ 0.0001)

(Table 4) was considered the best regression model. EC is

sensitive in the visible spectra (Avdan et al. 2019) and the

visible red band (B4) can differentiate the reflectance of

each salinity class (Gorji et al. 2020). This can probably

explain why B3/B4 showed the best regression results.

Moreover, the study considered examining all the four

possible combinations, within the polynomial cubic model,

with their associated error metrics and significance values

(Table 5) to ensure selecting the model with the least

prediction error. Accordingly, model #2 (EC = –

476.800 1 879.266 (B3/B4)2 – 436.411 (B3/B4)3) was

selected as it showed significant regression coefficients

(P\ 0.001), the highest R2, ENS, d, and the least error

metrics (RMSE, MAE, PBIAS, and MAPE).

3.3.3 Model validation

After developing the model, the study used the remaining

nine samples to assess the validity of the developed model

in estimating EC along Lake Qaroun. Table 6 summarizes

the statistical performance results of the developed EC

Table 3 Morphometric parameters of Lake Qaroun during November 2018

Parameter Value Formula

Surface area (A; km2 or hectares) 228 km2 (22,800 ha) ArcMap 10.1

Maximum length (Lmax; km) 41.07 ArcMap 10.1

Effective maximum length (Le; km) 36.79 ArcMap 10.1

Maximum width (Wmax; km) 9.8 ArcMap 10.1

Effective maximum width (We; km) 9.76 ArcMap 10.1
[1]Average width (Wa; km) 5.55 Wa = A/Lmax

[2]Elongation (k) 0.23; highly elongated k = Wmax/Lmax

Shoreline length = lake perimeter (SL; km) 139 ArcMap 10.1
[3]Shoreline development Index (DL) 2.597; subrectangular elongated shoreline DL = SL / [2 * (pA)1/2]

Maximum depth (Zmax; m) 8.93 Ecosounder

Average depth (Ź; m) 4.34 Ecosounder
[4]Depth ratio (Rz) 0.48; conical basin Rz = Ź/ Zmax

Volume (V; m3) 9.879*108 V = A * Ź

p = 3.14
[1]Wetzel and Likens (2000)
[2]Wirth (2004)
[3]Mortimer (1959)
[4]Kalff (2002)
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model in terms of R, R2, ENS, d, RMSE, MAE, PBIAS, and

MAPE for both the training and validating sets.

R and R2 values—in both the training and validation

sets—were greater than 85% (Table 6) signifying a very

strong correlation that succeeded in estimating 95% of EC

values. In both sets, there were no significant differences

(p\ 0.001) between the measured and the estimated EC

values. Willmott’s index (d) values—in both the training

and validation sets—were very close to one (Table 6)

revealing a perfect match between the measured and esti-

mated EC values. Moreover, results of ENS ([ 0.75) and

PBIAS (\± 10) (Table 6) indicated a very good

performance.

The current results showed that EC had satisfied retrie-

val results according to the RMSE, which was the most

important criterion for fit if the main objective of the model

was prediction (Emam 2016). RMSE values developed for

training and validation were 0.804 and 1.477, respectively

(Table 6). The best value for RMSE should be less than

half that of the standard deviation (SD) (Singh et al. 2004).

Since the value of RMSE in the current study was less than

half that of the SD (Table 6), the performance of the model

can thus be considered high.

Furthermore, the MAPE values were less than 5%—in

both the training and validation sets—(Table 6) indicating

that the accuracy of the model is high and can be accepted

(Lewis 1982; Swanson 2015), with an overall error of 23%

being overestimated on average in the validation phase

(MAE = 1.23 mS/cm).

Regarding the graphical validation, Fig. 4 illustrates

how close the measured EC values were to the model

predicted values—in both the training and validation sets—

during 2018.

Moreover, the study applied the generated model into

Landsat image (Fig. 5) to ensure that the noncalibrated

sites throughout the lake provided reasonable EC values

and spatial distribution over the entire lake. It was clear

that the western and northwestern areas of the lake dis-

played the highest EC values, whereas the edges of the

eastern basin recorded the lowest values (Fig. 5). Abdel-

malik (2018) noted similar distribution pattern in Lake

Qaroun using ASTER image during 2007.

Table 4 Summary output of the polynomial regression statistics

Independent

variable

(X)

Simple linear Quadratic Cubic

EC = a ? b1 (X) EC = a ? b1 (X) ? b2 (X
2) EC = a ? b1 (X) ? b2

(X2) ? b3 (X
3)

R2 Adj.

R2
± SE Sig R2 Adj.

R2
± SE Sig R2 Adj.

R2
± SE Sig

B1/B2 0.682 0.669 1.308 \ 0.0001 0.746 0.725 1.193 \ 0.0001 0.769 0.738 1.163 \ 0.0001

B1/B3 0.750 0.740 1.160 \ 0.0001 0.751 0.730 1.181 \ 0.0001 0.781 0.752 1.132 \ 0.0001

B1/B4 0.821 0.814 0.981 \ 0.0001 0.821 0.806 1.001 \ 0.0001 0.835 0.813 0.983 \ 0.0001

B1/B8 0.799 0.791 1.040 \ 0.0001 0.801 0.784 1.057 \ 0.0001 0.820 0.796 1.026 \ 0.0001

B2/B3 0.738 0.727 1.187 \ 0.0001 0.753 0.733 1.175 \ 0.0001 0.802 0.776 1.075 \ 0.0001

B2/B4 0.836 0.830 0.938 \ 0.0001 0.843 0.830 0.936 \ 0.0001 0.848 0.829 0.942 \ 0.0001

B2/B8 0.813 0.805 1.004 \ 0.0001 0.816 0.801 1.015 \ 0.0001 0.825 0.802 1.012 \ 0.0001

B3/B4 0.790 0.781 1.064 \ 0.0001 0.869 0.859 0.854 \ 0.0001 0.870 0.859 0.853 < 0.0001

B6/B4 0.700 0.688 1.270 \ 0.0001 0.746 0.725 1.193 \ 0.0001 0.770 0.740 1.160 \ 0.0001

B6/B5 0.741 0.731 1.180 \ 0.0001 0.761 0.741 1.157 \ 0.0001 0.813 0.788 1.047 \ 0.0001

B7/B4 0.721 0.710 1.225 \ 0.0001 0.773 0.754 1.127 \ 0.0001 0.785 0.757 1.120 \ 0.0001

B7/B5 0.781 0.772 1.086 \ 0.0001 0.784 0.766 1.100 \ 0.0001 0.817 0.793 1.034 \ 0.0001

B7/B6 0.712 0.701 1.244 \ 0.0001 0.748 0.727 1.188 \ 0.0001 0.750 0.718 1.208 \ 0.0001

B7/B8 0.658 0.645 1.355 \ 0.0001 0.725 0.702 1.242 \ 0.0001 0.733 0.698 1.250 \ 0.0001

B8/B4 0.754 0.744 1.150 \ 0.0001 0.838 0.825 0.951 \ 0.0001 0.857 0.839 0.913 \ 0.0001

a, b1, b2, b3 regression coefficients, R2 Coefficient of determination, Adj. R2 adjusted R2, SE Standard Error, Sig. significance

Landsat Bands: [B1 = Coastal aerosol; B2 = Blue; B3 = Green; B4 = Red; B5 = Near Infrared; B6 = Shortwave Infrared-1; B7 = Shortwave

Infrared-2; B8 = Panchromatic band]

The best regression model is marked in bold
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3.3.4 Model testing

The study evaluated the model’s performance on previous

field data retrieved for the same month in year 2015

(Table 6). Based on the values of ENS and PBIAS, the

model showed very good performance in estimating 97%

(R2) of EC values with a satisfactory low RMSE value

(2.5824 mS/cm) during 2015. Based on MAPE value, the

estimated EC values were 4.793% close to the measured

readings revealing an acceptable high accuracy.

The cross-validation and testing results proved that the

model developed, in the current study, using Landsat band

ratio (B3/B4) in estimating the electrical conductivity

along Lake Qaroun is promising and can be used as a

decision-support tool in tracking the lake’s electrical con-

ductivity in the future.

Table 7 displays the model developed in the present

study, to estimate EC using Landsat-8, in comparison with

other previous studies. It was clear that there was no single

model common to all waterbodies. Ferdous and Rahman

Fig. 4 Graphical scatter plots of observed against predicted values of

electrical conductivity at Lake Qaroun during 2018. a in the training

phase (n = 27); b in the validation phase (n = 9); c the overall pattern

of the observed and predicted values of electrical conductivity along

the entire 36 stations

Fig. 5 Electrical conductivity spatial distribution map generated from the developed model
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(2020) used Landsat-8 combination of B3, B4, B2*B3,

(B2*B3)/B4, and (B2*B4)/B3 as independent variables to

estimate EC for Satkhira Upazilas in Bangladesh

(R2 = 0.76; p\ 0.001). González-Márquez et al. (2018b)

used Landsat-8 band ratio (B2-B3)/(B4-B6) to estimate EC

for El-Guájaro reservoir in Colombia (R2 = 0.69;

p\ 0.05). Mushtaq and Lala (2016) used Landsat 8 red

band (B4) in their model to estimate EC for Wular Lake in

Kashmir (R2 = 0.615; p\ 0.004). The differences in

selecting the independent variables (bands and band ratios)

may be related to the differences in image quality or may

depend on the physicochemical properties of the water

body (Zhao et al. 2011). Even in the same lake, different

satellites resulted in different models (Table 7). Abdel-

malik (2018) used ASTER image to generate a linear

regression model to estimate EC for Lake Qaroun during

2007 (R2 = 0.996; p\ 0.0001). The wavelengths of the

bands used in his model (range 0.78–2.365 lm) were

higher than that used in the current study (range 0.53–

0.67 lm) for the same lake. This discrepancy could be

attributed to the increase in the electrical conductivity of

the lake throughout the period from 2007 to 2018. Theol-

ogou et al. (2015) noted that increasing water salinity

changes the reflectance values within the bands (visible and

infrared).

In closure, it is worth emphasizing that monitoring EC

using Landsat-8 depends on the lake’s state. The model

developed in the current study is site specific and can be

relevant only to other lakes that resemble the environment

in Lake Qaroun.

3.4 Model application

The quantity of fishes produced in Lake Qaroun depends

on the potential productivity of the lake. Table 8 displays

the descriptive statistics of the potential fish yield estimates

(tonnes) calculated for Lake Qaroun using the MEI values,

obtained from Landsat-based EC model in comparison

with that from field measurements, during November 2015

and 2018.

Abdel-Satar et al. (2010) reported that electrical con-

ductivity varied significantly among seasons (p\ 0.01) in

Lake Qaroun. Accordingly, the current study focused on

applying the developed model in estimating the mor-

phoedaphic index and the potential fish yield of Lake

Qaroun during the month of November.

Results of the present study showed that MEI values

obtained from the field measurements ranged from 5.26 to

23.84 with an average value (± SE) of 13.52 ± 1.38,

whereas those obtained from the developed model ranged

from 5.20 to 23.57 with an average value (± SE) of

13.61 ± 1.39 during Nov. 2018 (Table 8). There was no

significant difference (P\ 0.00001) between the two

methods in estimating the values of MEI (Table 8) which

indicates the possibility of using Landsat-based EC model

in estimating the lake’s potential productivity.

Based on MEI values, the potential fish yield average

values estimated during Nov. 2015 (1017.01 and 987.64

tonnes from Landsat and field, respectively) were lower

than those obtained during Nov. 2018 (1166.74 and

1163.32 tonnes from Landsat and field, respectively)

(Table 8) due to the increase in the mean values of

Table 8 Descriptive summary

statistics of potential yield

values (Y; tonnes) estimated

based on morphoedaphic index

(MEI) for Lake Qaroun

Parameter Statistical parameters

Mean ± SE Median ± SD Min Max Range CI (95%)

Using EC field measurements

EC (mS/cm) 48.98a 0.72 49.61 2.97 42.86 52.55 9.69 1.53

MEI 13.52b 1.38 11.68 5.70 5.26 23.84 18.58 2.93

Y (tonnes)

Nov 2015 987.64d 48.38 1034.83 108.18 795.26 1046.11 250.85 134.32

Nov 2018 1163.32c 54.90 1114.12 226.37 781.68 1529.98 748.30 116.39

Applying the developed EC empirical model

EC (mS/cm) 49.27a 0.59 49.14 2.41 45.24 51.96 6.72 1.24

MEI 13.61b 1.39 11.74 5.74 5.20 23.57 18.38 2.95

Y (tonnes)

Nov 2015 1017.01d 51.10 1055.59 114.27 819.88 1107.35 287.47 141.88

Nov 2018 1166.74c 55.15 1116.77 227.39 777.30 1522.32 745.02 116.91

The potential yield and MEI were calculated using measured and predicted EC values along the 17

examined stations during Nov. 2018. Mean values with the same superscript letter are not significantly

different (P\ 0.00001 for a, b, c) (P B 0.01 for d)

EC electrical conductivity, MEI Morphoedaphic Index, SE Standard Error of mean, SD Standard deviation,

Min minimum, Max maximum, CI Confidence Interval
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electrical conductivity from 39.16 mS/cm (during Nov

2015) to 48.98 mS/cm (during Nov 2018). This result was

in agreement with Jackson and Marmulla (2001) who

reported that reservoirs with high concentration of dis-

solved solids have high potential productivity. Moreover,

based on the annual reports of the environmental moni-

toring program for Lake Qaroun, the average annual

readings of chlorophyll-a (lg/l) have increased throughout

the period from 2013 (66.6 lg/l) to 2018 (124.13 lg/l)
(https://www.eeaa.gov.eg/en-us/topics/water/lakes.aspx).

The study computed the mean absolute percentage error

(MAPE) to determine the accuracy of Landsat-based EC

model in estimating the potential yield of Lake Qaroun

during Nov. 2015 and Nov. 2018. MAPE results showed

that the average values of the estimated potential fish yield

were 3.64% and 0.90% close to the measured readings

during Nov. 2015 and Nov. 2018, respectively, revealing

an acceptable high accuracy (\ 5%) (Swanson 2015).

In comparison with the actual fish yield obtained from

Lake Qaroun, it was found that during Nov. 2015, the

actual fish yield was 96 tonnes (CAMPAS 2017) and

decreased by 35.2% in 3 years to reach 71 tonnes in Nov.

2018 (CAMPAS 2020a). This decrease in actual produc-

tion, despite an increase in the potential production, indi-

cates that something is hampering the lake’s efficiency in

production. This decrease could be attributed to the

cymothoid ectoparasite that entered the lake accidentally

during the process of fish fry transplantation (Mehanna

2020) and/or to the high densities of algal blooming

reported in Lake Qaroun by Ibrahim et al. (2021).

4 Conclusion

Our results proved that the EC model derived in the current

study using Landsat-8 OLI for Lake Qaroun can be used

very efficiently as a decision support tool to assist man-

agers not only in monitoring the lake’s electrical conduc-

tivity regularly, during the month of November, but also in

making preliminary estimates of the lake’s potential yield.

Landsat-8 band ratio B3/B4 was found to be the most

prominent independent variable for EC retrieval in Lake

Qaroun. The model showed a very good performance in

estimating 95% of EC values significantly with high

acceptable accuracy. It is worth mentioning that the model

developed in the current study is site specific and can be

relevant only to other lakes that resemble the environment

in Lake Qaroun.
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