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Abstract
In flood frequency analysis (FFA), annual maximum (AM) model is widely adopted in practice due to its straightforward

sampling process. However, AM model has been criticized for its limited flexibility. FFA using peaks-over-threshold

(POT) model is an alternative to AM model, which offers several theoretical advantages; however, this model is currently

underemployed internationally. This study aims to bridge the current knowledge gap by conducting a scoping review

covering several aspects of the POT approach including model assumptions, independence criteria, threshold selection,

parameter estimation, probability distribution, regionalization and stationarity. We have reviewed the previously published

articles on POT model to investigate: (a) possible reasons for underemployment of the POT model in FFA; and

(b) challenges in applying the POT model. It is highlighted that the POT model offers a greater flexibility compared to the

AM model due to the nature of sampling process associated with the POT model. The POT is more capable of providing

less biased flood estimates for frequent floods. The underemployment of POT model in FFA is mainly due to the

complexity in selecting a threshold (e.g., physical threshold to satisfy independence criteria and statistical threshold for

Generalized Pareto distribution – the most commonly applied distribution in POT modelling). It is also found that the

uncertainty due to individual variable and combined effects of the variables are not well assessed in previous research, and

there is a lack of established guideline to apply POT model in FFA.
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1 Introduction

Flooding is one of the worst natural disasters worldwide

leading to significant economic losses (Acosta et al. 2016;

Lathouris 2020). To effectively reduce flood damage,

arising from the stochastic nature of extreme rainfall and

runoff, assessments are usually undertaken by statistical

methods. Flood frequency analysis (FFA) is one of the

most preferred statistical methods, and widely used in

infrastructure planning and design. FFA aims to estimate

flood discharge with an associated frequency by fitting a

probability distribution function to observed flood data.

Hydrologists generally apply two modelling frameworks to

perform FFA, annual maximum (AM) and peaks-over-

threshold (POT). The AM model uses maximum discharge

value from each year (i.e. one value from each year) at the

location of interest. On the other hand, POT model extracts

all the flow data above a threshold. The POT model is

receiving a greater interest recently to understand the the

nature of frequent floods, which are useful in characterising

channel morphology and aquatic habitat, and helping river

restoration efforts (Karim et al. 2017).

The AM model is the most popular method in practice

given its straightforwardness in the sampling process.

However, the sampling process in the AM model elimi-

nates a large portion of the data from recorded streamflow

time series. As an example, for a station with 50 years of

streamflow record, AM model only considers 50 elements

for modelling, each being the highest discharge data in a

single year. Several studies note that AM model results in
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loss of useful information, e.g., the second highest flow

data in a year (which could be higher than many data points

in the AM series) is not selected (Bačová-Mitková and

Onderka 2010; Bezak et al. 2014; Gottschalk and Kra-

sovskaia 2002; Robson and Reed 1999). Traditional at-site

FFA favors a 2 T rule, e.g. 100 years of streamflow record

is needed for estimating 2% annual exceedance probability

(AEP) or 50-year flood quantile estimate. The AM model

has been criticized for its biased flood estimates in arid and

semi-arid regions, in particular for smaller average recur-

rence intervals (ARIs) or frequent floods (Metzger et al.

2020; Zaman et al. 2012). The AM model has also been

criticized for its considerable uncertainty in estimating

frequent floods (Karim et al. 2017).

The POT model has been employed in extreme value

analysis using Generalised Pareto (GP) distribution

(Bernardara, Andreewsky and Benoit 2011; Coles 2001;

Coles 2003; Coles et al. 2003; Liang et al. 2019; Northrop

and Jonathan 2011; Pan and Rahman 2021; Thompson

et al. 2009). The POT sampling process extracts a greater

number of data points from the historical record compared

to the AM model. The extracted POT series provides

additional information by retaining all the data points

above a selected threshold (Kumar et al. 2020; Madsen

et al. 1997). POT model is also advantageous in terms of

flexibility of sampling process, i.e. based on the purpose of

the analysis, the POT model can extract desired numbers of

data points by adjusting the level of threshold (Pan and

Rahman 2018). However, the additional complexity asso-

ciated with the POT model in relation to data independence

is a negative aspect, which is one of the reasons for its

under-employment (Lang et al. 1999; Pan and Rahman

2021). There is no unique procedure to select a threshold

value in the POT modelling, and hence an iterative process

is commonly adopted. As the threshold reduces, the num-

ber of selected flood peaks in the POT model increases;

however, a very small threshold value can compromise

with the independence criteria for some of the selected

flood peaks. The threshold varies from catchment to

catchment depending on catchment characteristics and

flood generation mechanism. In contrast, in the AM series,

the selected peak floods are most likely to be independent,

as in this method, only one discharge data per year is

selected.

As mentioned earlier, one of the complexities associated

with POT model is the threshold selection (Beguerı́a 2005;

Gharib et al. 2017; Sccarrott and Macdonald 2012). Several

methods have been proposed in selecting the threshold,

which includes graphical methods (e.g. mean residual life

plot) and shape stability plot of the GP distribution. These

methods assume that for all the thresholds, above a well-

chosen level, results in a stable shape parameter of the GP

distribution (Durocher et al. 2018a, b). The graphical

methods are subjective and difficult to apply for a large

number of stations. To select a threshold without human

intervention, some studies (Irvine and Waylen 1986; Lang,

Ouarda and Bobée, 1999) proposed selection of threshold

associated with a given exceedance rate, which is mainly

governed by site characteristics (with an acceptable range

of 1.2–3 events per year on average). Selection of a

threshold based on a given exceedance rate may not

guarantee the fulfilment of the POT model assumption. To

overcome this problem, Davison and Smith (1990) pro-

posed Anderson–Darling (AD) test to identify a range of

thresholds where the GP distribution hypothesis cannot be

rejected.

Despite the rising interest of applying POT model, there

is lack of commonly accepted guideline for its wider

application, and only limited reviews on this approach have

been conducted. For example, Lang et al. (1999) reviewed

POT modelling and prepared a guide for application.

Sccarrott and Macdonald (2012) reviewed advances in

POT modelling based on statistical perspective. Later,

Langousis et al. (2016) performed a critical review on

threshold selection. Recently, the automated threshold

detection techniques have been compared (Curceac et al.

2020; Durocher et al. 2019; Durocher et al. 2018a, b). To

the best of our knowledge, scoping review on POT

approach is limited and the literature on applying POT

model remains sparse as compared to the AM model. To

bridge the knowledge gap, this study aims to review and

summaries the current status of POT model and to identify

the difficulties in applying the POT model in FFA. It is

expected that this scoping review will enhance the appli-

cability of POT model and provide guidance on future

research needs.

2 Review methodology

To undertake this scoping review, we followed the rec-

ommended framework by Sccarrott and Macdonald (2012)

and Langousis et al. (2016). We firstly formulate the

research questions, which is followed by identification of

relevant keywords. To initialize the thought process, we

asked: ‘Why is POT modelling framework under-employed

in FFA?’ If we find the answer to this question, we then

ask: ‘What are the conveniences in applying POT in FFA?’

and ‘What challenges do we face in applying POT in

FFA?’ Besides the questions mentioned above, we also

formulated a range of additional questions to fully develop

the framework of this scoping review:

i. What are the current progresses in applying the POT

model and at what scale (at-site or regional)?
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ii. What are the major research gaps and future research

needs in applying POT based FFA?

Based on the above research questions, we identified the

relevant keywords for searching published articles on the

POT model. The following keywords were applied to

maximize the searching performance and to locate relevant

articles from scientific database: ‘extreme value’ & limited

to ‘Pareto’, ‘partial duration’ & limited to ‘POT’ and

partial duration series (‘PDS’), ‘peaks over the threshold’,

‘Pareto’, ‘pooled analysis’, ‘threshold selection’, ‘annual

maximum’ & limited to ‘POT’. The following scientific

databases were used to locate relevant publications: Sci-

ence Direct, Google Scholar and Scopus. We found more

than 500 articles related to POT based FFA and only

selected 135 publications that satisfied the above-men-

tioned criteria. The final step was to examine the selected

articles and compile the review results in the form of this

article. Figure 1 presents components and sub-components

that were considered in this study.

The paper is organized as follows. Section 3 focuses on

the common model assumptions applied to POT model,

followed by reviewing the independence criteria and

threshold selection in Sect. 4. Section 5 and Sect. 6 cover

the parameter estimators and distribution functions for the

POT model, respectively. Section 7 contains regional

techniques, followed by discussion on stationarity in

Sect. 8. Section 9 presents discussion, and Sect. 10 pre-

sents a summary of this review.

3 Model assumptions

Two common forms of model assumptions are associated

with POT modelling, Poisson and Binomial (or negative

binomial) processes coupled with either exponential or GP

distributions. Poisson arrival assumes that the occurrence

of the flood peaks above the selected threshold follows a

Poisson process, provided the magnitude of flood peak is

identically, independently distributed (i.i.d.). The most

useful aspect of the Poisson arrival is that, with a given

threshold, X, if the model follows Poisson process then

other thresholds with values greater than X also follow

Poisson process. Poisson assumption is the most applied

sampling technique for construction of POT data series.

However, the model assumption of Poisson arrival is not

always valid. Cunnane (1979) used recorded flood data

from 26 stations in the U.K to assess the validity of Poisson

assumption, coupled with the exponential distribution and

found that, the variance of the number of yearly flow peaks

is significantly larger than the mean, which rejects the

Poisson arrivals and suggests the fitting of binomial or

negative binomial distributions. Ben-Zvi (1991) applied the

Chi-square test to evaluate the model fitting performance of

Poisson and negative binomial distributions using data

from eight gauged stations in Israel. This study supported

the negative binomial arrival in contrast to Poisson arrival.

However, this study was inconclusive due to the limitations

of the Chi-square test.
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Fig. 1 Selected components and sub-components of POT based FFA
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Lang et al. (1997) suggested using dispersion index test

based on the given threshold for a choice of model

assumption. They stated if the index test is greater or

smaller than one, negative binomial or binomial assump-

tion should constitute the Poisson process, respectively.

Lang et al. (1999) proposed a practical guideline for POT

based FFA, which only validate the Poisson assumption if

the dispersion index is located within a 5% confidence

interval with the selected threshold.

Önöz and Bayazit (2001) further evaluated the validity

of applying binomial or negative binomial process in

combination with the exponential probability distribution

in POT based FFA. They found that the flood estimates

based on binomial or negative binomial variates, are

identical to the ones obtained from the Poisson process.

The study concluded that Poisson arrival is the preferred

process over binomial or negative binomial ones even if the

Poisson process hypothesis is rejected. Furthermore, Eastoe

and Tawn (2010) proposed mixed models to account for

the overdispersion issue of annual peak count concerning

the Poisson assumption. This study included the use of

regression and mixed model to extend the homogeneous

Poisson process.

To summarize the findings on the model assumption in

POT based FFA, the Poisson arrival is the most preferred

sampling assumption provided that the i.i.d. criterion is

fulfilled. A dispersion index test could indicate if a con-

stituted process to Poisson arrival should be used. How-

ever, only limited studies have evaluated the combined

effects of model assumptions and sample size (Ben-Zvi

1991; Cunnane 1973, 1979). This potentially poses some

degree of uncertainty in the design flood estimates based on

POT modelling, which requires further investigation. Fig-

ure 2 illustrates POT modelling assumption.

4 Independence and threshold selection

POT sampling requires a dual-domain approach including

time and magnitude. Coles (2001) proposed a de-clustering

method, which filters the dependent elements from natural

streamflow records (Solari and Losada 2012). Bernardara

et al. (2014) later proposed a two-step framework for POT

modelling for estimating environmental extremes through

defining physical and statistical thresholds for de-clustering

and GP distribution, respectively. Two commonly applied

independence criteria are discussed below.

(i) USWRC (1976) stated that independent flood peaks

must have at least five days separation period (h), plus the

natural logarithm of selected basin area (A) measured in

square mile. Besides, the intermediate flow value between

two consecutive peaks must be dropped below three-

quarter of the lowest of these two flow values. The second

or any other flood peaks must be rejected if any of the

criteria from Eq. 1 is met. The independence criteria

specified by USWRC (1976) have been applied to POT

based FFA by several studies (Bezak et al. 2014; Hu et al.

2020; Nagy et al. 2017).

h\5 days þ log Að Þor Qmin [ 75%Min: ½Q1;Q2� ð1Þ

where A is basin area in mile 2.

(ii) Another commonly applied independence criteria is

recommended by Cunnane (1979), which is that two peaks

must be separated by at least three times of the average

time to peak. The average time to peak is obtained by

assessing the hydrographs. Also, the minimum discharge

between two consecutive peaks must be less than two-

thirds of the discharge of the first of the two extremes. The

second or any other flood peaks must be rejected if any of

the criteria from Eq. 2 is met. Silva et al. (2012) and Chen

et al. (2010) adopted the below independence criteria:

h\3Tp or Qmin [
2

3
ðQ1Þ ð2Þ

where Tp is the average time to peak.

Noteworthy, the criteria in Eqs. 1 and 2 for extraction of

POT data series have been criticized due to the associated

uncertainty. Ashkar and Rousselle (1983) reviewed the

above two equations and concluded that the restriction for

independence might render the Poisson process

inapplicable.

Besides the criteria mentioned above, other methods are

also proposed. For example, Lang et al. (1999) and Mostofi

Zadeh et al. (2019) proposed: (i) Fixing the average

number of exceedance per year for a predefined condition;

(ii) Retaining flood peaks based on a predefined return

Fig. 2 Illustration of POT

modelling assumptions
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period; (iii) Retaining flood peaks based on a predefined

frequency factor; and (iv) Selecting flood peaks that exceed

60% of bankfull discharge at a given station (Page et al.,

2005). The bankfull discharge can be found examining the

stage-discharge relationship and riverbank elevation at the

gauging location, e.g. an inflection point on the stage-dis-

charge relationship points to the bankfull discharge (Karim

et al. 2017). Bankfull discharge is unique to each river and

depends on factors like catchment area, geology and

channel geometry and is generally taken as the AMF dis-

charge with 1.5-year return period (Edwards et al. 2019).

Solari and Losada (2012) proposed a unified statistical

model for POT based FFA. Dupuis (1999) applied optimal

bias-robust estimates (OBRE) to detect the threshold.

Another complexity associated with POT based FFA is

determining the statistically sound threshold to fit GP dis-

tribution (POT-GP). Based on Pickands (1975), an

extracted POT series with a sufficiently high threshold, the

tail behavior follows a GP distribution. One of the most

well-known properties of GP distribution is that the shape

and modified scale parameter remain constant with the

increased threshold. This property of GP distribution had

been employed widely to verify the suitability of POT-GP

approach in frequency analysis.

Traditionally, graphical diagnostics are employed to find

a suitable threshold. Coles (2001) suggested three different

types of graphical diagnostics including mean residual life

plot (MRLP), threshold stability (TS) plot and other tools

such as Q-Q, P-P and return level plot. Li, Cai and

Campbell (2004) studied the extreme rainfall in Southwest

Western Australia using POT-GP approach and identified

the threshold based on the TS plot. Langousis et al. (2016)

performed a critical review on representative methods for

threshold selection for POT model based on GP distribu-

tion. This study suggested using MRLP over other methods

as it is less sensitive to record length. However, graphical

diagnostics have some drawbacks. For example, Sccarrott

and Macdonald (2012) noted that graphical method

required the practitioner to have substantial experience,

and selecting a threshold could be subjective and associ-

ated uncertainty is difficult to quantify. There are several

proposals to overcome this drawback by automating the

threshold selection for POT-GP model through a computer

program (Dupuis 1999; Liang et al. 2019; Solari and

Losada 2012; Thompson et al. 2009). The main objectives

of using such computer programs include quantifying the

associated uncertainty in the flood estimates based on dif-

ferent sets of estimated parameters; and guiding the

threshold selection based on goodness-of-fit (GOF) statis-

tics, then to determine range of suitable thresholds based

on a significance level while not rejecting the hypothesis of

GP distribution.

The automation of threshold selection is developed

based on the property of POT-GP model. Davison and

Smith (1990) suggested using the Anderson–Darling (AD)

GOF test to select a range of the threshold candidates for

POT-GP model based on acceptable normality p-value

(ND). This methodology is applied by Solari et al. (2017);

in their study, the obtained thresholds based on POT-GP-

ND approach mostly agreed with the ones obtained using

the traditional graphical method. Durocher et al. (2018a, b)

compared several automated threshold selection techniques

based on POT-GP-ND approach and then proposed a

hybrid method. The suggested method has a lower

boundary of one peak per year (PPY) and an upper limit of

5 PPY, which accommodates the 1.6 PPY as recommended

by Cunnane (1973) (at least of 1.63PPY for POT frame-

work to have smaller sample variance compared with AM

framework), and to accommodate the practical guideline

between 1 and 3 PPY by Lang et al. (1999). This study

found the shape parameter’s consistency through a hybrid

method in most of their selected sites. Zoglat et al. (2014)

proposed another method using square error (SE), which

was applied by Gharib et al. (2017). This method aims to

find the optimum threshold by locating the minimum SE

between stimulated and observed flood quantiles.

Curceac et al. (2020) evaluated the POT-GP-SE and

POT-GP-ND approaches and proposed an empirical auto-

mated threshold selection based on cubic curve fitting to

TS plot. They found that the proposed method based on TS

plot had the greatest agreement of indices between

empirical and theoretical quantiles at different time scales

(15 min to daily). They addressed the need for further

research on the combined effects of data scale, threshold

selection and parameter estimator of the shape parameter of

the GP distribution. Hu et al. (2020) applied POT model to

USA and noted that when automatic threshold selection

method was adopted with shorter data length, POT was

unable to offer any additional benefit compared to AMF

model.

Noteworthy, a single threshold for POT-GP approach

might not be suitable for all situations. To overcome this,

Deidda (2010) proposed a multiple threshold method

(MTM) and found that MTM was better as compared to a

single threshold through Monte Carlo simulation. Later, a

quantitative assessment was performed by Emmanouil

et al. (2020) for comparison of estimated quantiles using

several approaches such as, AM, POT-MTM and multi-

fractal approach.

Based on the above discussion, it is evident that the

associated uncertainty with the POT-GP model does not

arise only due to model assumption as noted in Sect. 3, but

it is due to the combined effect of model assumption,

threshold selection, data scale and parameter estimator.

Future research could include the extent of the statistical
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argument in an automated algorithm and explore the upper

limit of applying MRLP. Figure 3 illustrates different

threshold selection methods in POT modelling.

5 Parameter estimator

Parameter estimation is an essential step in POT based FFA

like the AM model. Commonly applied estimators include

maximum likelihood (ML), method of moments (MOM),

probability weighted moments (biased/unbiased (PWMB/

PWMU)), generalized probability weighted moments

(GPWM) and other methods. This chapter briefly reviews

the advances of parameter estimators in relation to FFA

based on POT and GP distribution.

Pickands (1975) introduced GP distribution, and Hosk-

ing and Wallis (1987) first adopted this distribution in FFA.

Hosking and Wallis (1987) compared the performance of

the MOM, PWM and ML for estimation of GP parameters.

They concluded that the PWM and MOM are the preferred

estimator over ML, except for large sample size for

quantile estimation, which aligns with Bobée et al. (1993)

and Zhou et al. (2017a, b, c). MOM and PWM were pre-

ferred by Hu et al. (2020) and Metzger et al. (2020),

respectively. ML has been widely adopted in many studies

despite a limited sample size (Martins & Stedinger 2001;

Mostofi Zadeh et al. 2019; Nagy et al. 2017; Ngongondo,

Zhou and Xu 2020; Zhao et al. 2019a, b; Zhou et al.

2017a, b, c). Madsen et al. (1997) compared the perfor-

mance of parameter estimator between AM and POT-GP

models. Recently, Curceac et al. (2020) applied several

commonly used estimators by Monte Carlo experiment and

found that PWMU and PWMB are consistently least biased

and less sensitive to the sample size, which is also in

agreement with Hosking and Wallis (1987).

Other estimators were also evaluated in FFA using POT-

GP model. For example, Ashkar and Ouarda (1996) eval-

uated the generalized method of moment (GMOM) for

different shape parameters using observed and simulated

data. Rasmussen (2001) developed a GPWM method and

provided practical guidelines on this. In this study, GPWM

was found to be outperforming the PWM, but only a rel-

atively small difference was observed when compared with

MOM. Martins and Stedinger (2001) examined the per-

formance of generalized maximum likelihood estimator

(GML) and compared its performance with MOM and L

moments (LMOM). Kang and Song (2017) reviewed six

estimators for GP distribution and found that the nonlinear

least square-based method with modified POT series out-

performing other estimators.

Selection of the best estimator for POT-GP model is an

area that needs further research. The uncertainty due to

parameter estimator is difficult to quantify. Ashkar and

Tatsambon (2007) evaluated the upper bound of GP dis-

tribution applying different estimators, including MOM,

ML, PWM and GPWM, through stimulation studies. They

found that the upper bound of GP distribution is incon-

sistent between estimated and observed data. Later, Gharib

et al. (2017) proposed a two-step framework for selecting

both threshold selection techniques and the associated

parameter estimators. However, the study was inconclusive

(only POT-GP-SE method was assessed), and the study

stressed the need of assessing the combined effects of

estimator and threshold selection, similar to Curceac et al.

(2020).

The Bayesian approach can be used to estimate distri-

butional parameters in FFA for both AM and POT models.

Here, the parameter of a distribution is treated as a random

variable where the knowledge on a parameter is expressed

by a prior distribution. In the context of PDS, Madsen et al.

Fig. 3 Threshold selection methods in POT modelling
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(1994) adopted a regional Bayesian approach for extreme

rainfall modelling in Denmark where the empirical regio-

nal distributions of the parameters of the POT model were

used as prior information for both exponential and GP

distributions. Parent and Bariner (2003) also adopted a

Bayesian approach to deal with the classical Poisson–Par-

eto-POT model for design flood estimation in the Garonne

river in France. Bayesian POT approach was also adopted

by Ribatet et al. (2007) and Silva et al. (2017).

Figure 4 illustrates MLRP plot for an Australian stream

gauging station (223,204 Nicholson River at Deptford)

having 56 years of streamflow data. This presents a com-

parison of the identified threshold based on MLE and

PMWU in MRLP. It can be seen that there is no remark-

able distinction in the identified thresholds using the two

estimators having the same p-value (Pan and Rahman,

2021).

To summarize, it may be stated that the most applied

parameter estimators for POT model include MOM, PWM

and ML provided the sample size is large. The application

of Bayesian approach in POT modelling is limited. We

conclude that the sample size and range of the shape

parameters are the primary considerations for selecting the

parameter estimator. A choice of parameter estimator

should be made based on the nature of a given data set.

There is a lack of general practice guideline for selecting

parameter estimator combined with threshold selection

technique, and there is a lack in assessment of the upper

bound of GP distribution.

6 Probability distributions

Fitting of the probability distribution to observed flood data

is a primary step in any FFA exercise. GP distribution and

its reduced form, exponential distribution, remains the

most popular distribution in POT based FFA (Bobée et al.

1993; Davison and Smith 1990; Lang et al. 1999; Lang

et al. 1997; Lang et al. 1999; Madsen et al. 1997; Ras-

mussen & Rosbjerg 1991; Rosbjerg, Madsen and Ras-

mussen 1992; Silva et al. 2014; Yiou et al. 2006; Zhao,

et al. 2019a, b). In this regard, use of extreme value theory

by Pickands (1975) is justified. The GP distribution (two-

parameter) is preferred over exponential (one-parameter)

based on flexibility in modelling. However, use of GP

distribution is restricted by its complexity of selecting a

statistically sound threshold as discussed in Sect. 4.

GP distribution is well-known for its flexibility of

modelling upper tail behavior, which is typical for

observed flood records and other environmental extreme

events. GP distribution is also widely employed in other

disciplines for forecasting, trend analysis and risk assess-

ment (Kiriliouk et al. 2019). Other probability distributions

have also been applied in POT based FFA but remained

unpopular. For example, Bačová-Mitková and Onderka

(2010) applied Weibull distribution in POT based FFA and

compared the obtained results with AM based FFA. This

study concluded that the POT based FFA could produce

comparable quantile estimates, especially for a shorter

record length. Ashkar and Ba (2017) compared the Kappa

distribution with GP due to their inherent similarity. Chen

et al. (2010) proposed a bi-variate joint distribution for

POT based FFA.

Figure 5 illustrates fitting of the GP distribution to POT

series for stream gauging station 419,016 (Cockburn River

at Mulla Crossing in New South Wales, Australia). It

shows that POT 2-ND-MLE model provides the best fit to

the observed flood data (POT 2 indicates 2 events per year

being selected in the POT series). Also, POT3-ND-MLE

model provides very good fit to the observed flood, in

particular in frequent flood ranges (smaller ARIs).

Although the GP distribution remains the most popular

distribution in POT based FFA, the associated uncertainty

in higher return period is difficult to quantify. There are

proposals to enhance the model fitting to POT series by

introducing a mixture of models, which is GP based. For

Fig. 4 Mean residual life plot

based on POT-ND method (p-

value = 0.25) (223,204

Nicholson River at Deptford)

(Pan and Rahman 2021)
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example, Solari and Losada (2012) proposed a unified

statistical model called log-normal mixed with GP and

quantified uncertainty associated with its tail behavior.

However, the study was inconclusive and required further

investigation to assess the combined effects (Curceac et al.

2020).

Another overlooked area is the bulk data below the

threshold, as the GP distribution is only ideal for approx-

imating the behavior of elements above the threshold.

Several methods for the mixture of models (below and

above threshold) are reviewed by Sccarrott and Macdonald

(2012) and still, the associated uncertainty of these models

are unquantifiable. The difficulties introduced by the mix-

ture of models are the transitional point between two dis-

tribution functions and difficulties to accommodate the site

specifics in modelling.

The goodness-of-fit (GOF) is commonly applied in

selection of probability distribution(s) by comparing the

empirical and theoretical distributions, such as Akaike

information criterion (AIC), Bayesian information criterion

(BIC), Kolmogorov–Smirnov (KS) and Anderson–Darling

(AD) test. GOF is commonly applied in AM based FFA

and can be used as a supplementary verification tool in

POT based FFA. Choulakian and Stephens (2001) assessed

the GP distribution fitting to 238 stream gauging stations in

Canada by applying AD & Cramér–von Mises statistics

and found that GP distribution providing an adequate fit to

the observed POT data series. Gharib et al. (2017) assessed

six parameter estimators using Relative Mean Square Error

(RMSE) and AD test for the proposed framework based on

the shape parameter. This study found that using the AD

test, the proposed framework improved for 38% of the

stations by an average of 65%. Laio, Di Baldassarre and

Montanari (2009) reviewed AIC, BIC, and AD, and

concluded that the GOF tests produced satisfactory results.

Haddad and Rahman (2011) also assessed several GOF

tests and found from the Monte Carlo simulation that ADC

was more successful in recognizing the parent distribution

correctly than the AIC and BIC when the parent is a three-

parameter distribution. On the other hand, AIC and BIC

were better in recognizing the parent distribution correctly

than the ADC when the parent was a two parameter dis-

tribution. Heo et al. (2013) proposed a modified AD test to

assess the POT model. In regional POT framework, GOF is

vital to assess the fit for the individual and group of sites.

Silva et al. (2016) applied AIC, BIC, and likelihood ratio

test for their study.

The parent probability distribution remains unknown at

a given site. There are limited studies to quantify the

uncertainty in fitting GP distribution to the POT data series,

and current practice in comparing the flood estimates with

either observed data or estimated flood quantiles by AM

based FFA may not be adequate.

7 Regional flood frequency analysis

Regional flood frequency analysis (RFFA) is used to esti-

mate design floods at ungauged catchments or at gauged

catchments with limited data length or having data with

poor quality(Komi et al. 2016; Haddad and Rahman 2012;

Walega et al. 2016). In RFFA, AM flood data have widely

been adopted (Haddad, Rahman and Stedinger 2012), and

only minor attention has been given to the POT-based

RFFA methods (Kiran and Srinivas 2021).

Identifying the hydrologically similar group or, the

homogenous region is the first step in any RFFA. Three

main categories of homogeneous regions are considered,
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which are based on catchment attributes, flood data and

geographical proximity (Ashkar 2017; Paixao et al. 2015;

Shu & Burn 2004; Zhang et al. 2020). Traditionally, the

geographical proximity is commonly adopted to form

homogeneous groups. Other methods include catchment

characteristics data to form homogeneous groups (Bates

et al. 1998). Zhang and Stadnyk (2020) reviewed the

popular attributes considered in RFFA in forming homo-

geneous groups in Canada, which included geographical

proximity, flood seasonality, physiographic variables,

monthly precipitation pattern, and monthly temperature

pattern. A revision of RFFA algorithm was proposed by

Zhang et al. (2020) based on AM based RFFA and to

satisfy 5 T rule, which was initially suggested by Hosking

and Wallis (1987) and Reed et al. (1999). Rahman et al.

(2020) performed an independent component analysis

using data from New South Wales, Australia; however, it

considered AM flood data and homogeneity was not spe-

cially considered. All of the above methods to identify

homogeneous regions used AM flood data. Research on

homogeneous regions using POT data is limited to-date.

Cunderlik and Burn (2002) proposed a site-focused

pooling technique based on flood seasonality, namely flood

regime index, to increase the number of initial homogenous

groups and found it to be superior to the mean of mean day

(MDF) descriptor; however, the sampling variability was

not considered. Cunderlik and Burn (2006) later proposed a

new pooling group for flood seasonality based on non-

parametric sampling, where the similarity between the

target site and potential site was assessed by the minimum

confidence interval of the intersection of Mahalanobis

ellipses. Shu and Burn (2004) developed a method using

fuzzy expert system to derive an objective similarity

measure between catchments. There are also other methods

for forming of the homogeneous groups (Burn and Goel

2000; Cord 2001). Carreau et al. (2017) proposed an

alternative approach using hazard level to partition the

region into sub-regions for POT model, which aims to

formulate the approach as a mixture of GP distributions.

Index flood method was proposed by Dalrymple (1960)

and remains one of the most popular methods in AM based

RFFA (Hosking & Wallis 1993; O’Brien and Burn 2014;

Robson and Reed 1999). This is due to its simplicity in

developing a regional growth curve and weighing the sites

by index-variables such as mean annual flood. Index flood

approach was applied with POT data by Madsen and

Rosbjerg (1997b) where GP shape parameter was region-

alized. They examined the impacts of regional hetero-

geneity and inter-site dependence on the accuracy of

quantile estimation. They found that POT-based RFFA was

more accurate than the at-site FFA estimate even for

extremely heterogenous regions. They also noted that

modest inter-site dependence had only minor effects on the

accuracy of POT based index flood method. The POT

based RFFA was further explored by Madsen and Rosbjerg

(1997a) and Madsen et al. (2017). Roth et al. (2012)

developed a nonstationary index flood method using POT

data based on a composite likelihood test. Mostofi Zadeh

et al. (2019) performed a pooled analysis based on both

AM and POT data (using AM pooling technique and then

applied to POT model and vice versa) and concluded that

the POT model pooling group reduced uncertainty in

design flood estimates. Quantile regression technique has

been widely employed under AM model (Haddad and

Rahman 2012). Durocher et al. (2019) compared four

estimators based on index flood method and quantile

regression technique including regression analysis, L-mo-

ments and likelihood method using POT data.

Gupta et al. (1994) noted that the coefficient of variation

of AM flows should not vary with catchment area in a

proposed region/group. This may not satisfy for many

regions, which led to the Bayesian approaches, which was

studied by Madsen, Rosbjerg and Harremoës (1994) by

using an exponential distribution in RFFA using POT data.

This study adopted total precipitation depth and maximum

10-min rainfall intensity of individual storms for Bayesian

inferences. The proposed method was found to be prefer-

able for estimating design floods of return period less than

20 years. Madsen and Rosbjerg (1997a) proposed an index

flood method based on a Bayesian approach, which com-

bined the concept of index flood with empirical Bayesian

approximation so that the inference on regional informa-

tion can be made with more accuracy. Ribatet et al. (2007)

implemented Markov Chain Monte Carlo (MCMC) tech-

nique along with GP distribution to sample the posterior

distribution. Silva et al. (2017) studied Bayesian inferential

paradigm coupled with MCMC under POT framework.

Some attention was drawn to using historical information

in RFFA to enhance accuracy of flood estimates. Sabourin

and Renard (2015) proposed a new model utilising his-

torical information similar to Hamdi et al. (2019). Kiran

and Srinivas (2021) used POT data from 1031 USA

catchments to develop regression based RFFA technique.

They noted that scale and shape parameters of the GP

distribution fitted to PDS data were largely governed by

catchment size and 24-h rainfall intensity corresponding to

2-year return period.

8 Stationarity

Stationarity is one of the most critical concepts in applying

extreme value theory in hydrology, which implies that the

estimated parameters of the given probability distributions

do not change with time, i.e., the current parameters used

for modelling remain constant for the future so that the
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quantile estimates remain consistent over time. However,

in assessing the AM and POT time series data, a trend or a

jump may be found in many cases, which undermines the

stationary assumption (Ishak and Rahman 2015; Ishak et al.

2013). The identified anomalies may be statistically sig-

nificant or insignificant, which may be due to climate

change or other reasons such as land use changes (Burn

et al. 2010; Cunderlik et al. 2007; Cunderlik and Ouarda

2009; Ngongondo et al. 2013; Ngongondo, Zhou and Xu

2020; Silva et al. 2012; Zhang, Duan and Dong 2019).

Recent application of POT with non-stationarity is pro-

posed by Lee, Sim and Kim (2019) for extreme rainfall

analysis.

To account for non-stationarity, parameters of the dis-

tribution requires adjustment as a function of time. El

Adlouni et al. (2007) and Villarini et al. (2009) applied the

function of temporal covariates for parameters of a prob-

ability distribution. Koutsoyiannis (2006) evaluated the

two commonly applied approaches for nonstationary

analysis and argued that the common FFA approaches are

not consistent with the rationale of the stationary analysis.

In POT modelling, GP distribution is the most used

distribution. In non-stationary approach, GP distribution

commonly presents a constant shape parameter and a var-

ied scale parameter (time-dependent or covariate with cli-

mate indices under nonstationary condition). In this regard,

Coles (2001) argued that even under stationary condition,

the shape parameter is difficult to estimate. Regression

analysis is commonly applied to quantify the trend before

applying the variation in the scale parameter (Vogel,

Yaindl and Walter 2011). Moreover, for GP distribution,

the threshold can also be treated as time-dependent (Kyselý

et al. 2010). Recently, Vogel and Kroll (2020) compared

several estimators for non-stationary frequency analysis.

In the context of POT based RFFA, Roth et al. (2012)

examined non-stationarity by varying scale parameter

using index flood method and suggested a time-dependent

regional growth curve for temporal trends observed in the

study data set. Silva et al. (2014) proposed a zero-inflated

Poisson GP model for the non-stationarity condition, and

proposed a non-stationarity RFFA technique based on

Bayesian method (Le Vine 2016; Parent and Bernier 2003;

Silva et al. 2017). Mailhot et al. (2013) proposed a POT

based RFFA approach to a finer resolution using rainfall

time series data. O’Brien and Burn (2014) studied non-

stationary index flood method using AM flood data. They

noted the challenge of forming a homogenous group, which

was due to several sites presenting significant level of non-

stationarity. Durocher et al. (2019) compared several esti-

mators under nonstationary condition using index flood

method for a data set of 425 Canadian stations and found

that the L moments approach was more robust and less

biased than ML estimator. This study also found that a

hybrid pooling group approach, which included sites with

stationary and nonstationary conditions, improved the

accuracy of the quantile estimates. The recent study by

Agilan, Umamahesh and Mujumdar (2020) stated the

uncertainty due to threshold under non-stationarity condi-

tion is 54% higher than the ones under stationary consid-

eration. Reed and Vogel (2015) questioned the

applicability of return period concept in FFA under non-

stationary condition. They demonstrated how a parsimo-

nious nonstationary lognormal distribution can be linked

with nonstationary return periods, risk, and reliability to

gain a deeper understanding of future flood risk. For the

non-stationary POT models, the risk and reliability concept

need to be further explored as suggested by Reed and

Vogel (2015).

Iliopoulou and Koutsoyiannis (2019) developed a

probabilistic index based on the probability of occurrence

of POT events that can discover clustering linked to the

persistence of the parent process. They found that rainfall

extremes could exhibit notable departures from indepen-

dence, which could have important implications on POT

based FFA under both stationary and non-stationary

regimes. Thiombiano et al. (2017) and Thiombiano et al.

(2018) presented how climate change indices can be used

as covariates in a non-stationary framework in the POT

modelling.

9 Discussion

Traditional FFA based on AM model is the most popular

FFA method given its straightforward sampling process

and availability of a wide range of literature and guidelines.

Even though there are theoretical advantages with POT

based FFA, this is still under-employed. Table 1 presents a

summary where POT based FFA have been examined. It

should be mentioned that although many researchers have

examined the suitability of the POT based FFA, its inclu-

sion in flood estimation guide is limited. For example,

Australian Rainfall and Runoff (ARR) 2019 stated that

POT-based method can be adopted for FFA, but its FLIKE

software does not include any POT-based analysis (Kucz-

era and Franks, 2019). They stated that POT is more

appropriate in urban stormwater applications and for

diversion works, coffer dams and other temporary struc-

tures; for most of these cases recorded flow data are

unavailable. In design rainfall estimation for Australia in

ARR 2019, POT-based methods have been adopted to

estimate more frequent design rainfalls (Green et al., 2019).

Unlike AM model, which only extracts a single value

per year, the POT is more complex in its sampling process.

Cunnane (1973) argued to have at least 1.6 event per year

on average in the POT model to provide less biased
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estimates than AM model. However, with the recent

advances in computational modelling, Durocher et al.

(2018a, b) applied an upper limit of 5 events per year in

POT based FFA and obtained results which are comparable

to the AM model. Besides, ensuring the independence of

the extracted data is one of the other difficulties faced in

applying the POT model. Two commonly applied criteria

in constructing POT series as described in Sect. 4 have

been criticized by Ashkar and Rousselle (1983) for possible

violation of the model assumptions. POT based FFA is also

constrained to the model assumptions, either with Poisson

or binomial (or negative binomial) arrivals. Önöz and

Bayazit (2001) reported a comparable result even when the

assumptions are violated, although the associated uncer-

tainty is not well studied.

Another well-known difficulty is to identify the thresh-

old for GP distribution in POT modelling. Based on the

critical review of current methods by Langousis et al.

(2016), MRLP is found to be the most effective detection

method, which leads to the least bias design flood esti-

mates. However, this study suggested further research on

automated procedure in POT data construction under sta-

tionary condition with additional statistical arguments.

Nonstationary POT based FFA has attracted more attention

recently (Durocher et al. 2019; Mostofi Zadeh et al. 2019);

however, the findings of these studies are not conclusive,

and further research is warranted on nonstationary POT

based FFA.

Uncertainty in flood estimates is still a challenging topic

with the recent floods in Europe and China, it is noted that

traditional FFA approaches need an overhaul, and a com-

prehensive uncertainty analysis is warranted. POT model is

flexible in data extraction as compared to AM model, but

this brings additional levels of uncertainty such as sample

Table 1 Summary of POT based flood frequency analysis studies in selected countries

United

Kingdom

Cunnane (1973), (1979); Hosking and Wallis (1987); Acreman (1987); Davison and Smith (1990); Reed et al. (1999); Eastoe

and Tawn ( 2010); Northrop and Jonathan (2011); Le Vine (2016); Curceac et al. (2020)

USA Hu et al. (2020); Kiran and Srinivas (2021); Metzger et al. (2020); Phillips et al. (2018); Armstrong et al. (2014); Edwards

et al. (2019); Armstrong et al. (2012);

Australia Page and McElroy (1981); Keast and Ellison (2013); Rustomji (2009); Karim et al. (2017); Pan and Rahman (2018); Green

et al. (2019); Pan and Rahman (2021)

Canada Ashkar and Ba (2017); Ashkar et al. (1987); Ashkar and El Adlouni (2015); Ashkar and Ouarda (1996); Ashkar and Rousselle

(1983); Ashkar and Tatsambon (2007); Irvine and Waylen (1986); Burn (1990a, b); Burn and Goel (2000); Burn and

Whitfield (2016); Bobée et al. (1993); Adamowski (2000); Adamowski et al. (1998); Dupuis (1999); Shu and Burn (2004);

Ribatet et al. (2007); O’Brien and Burn (2014); Gharib et al. (2017); (Mostofi Zadeh and Burn 2017; Mostofi Zadeh et al.

2019); (Durocher et al. 2019; Durocher et al. 2018a, b; Durocher et al. 2018a, b); (Zhang et al 2020); Lang et al. (1999)

France Navratil et al. (2010); Bernardara et al. (2011); Bernardara et al. (2014), (2012); Evin et al. (2016); Laio et al. (2009); Lang

et al. (1999); Lang et al. (1997); Weiss et al. (2012); Carreau et al. (2017); Tramblay et al. (2013); Thompson et al. (2009);

Hamdi et al. (2015), (2019); Sabourin and Renard (2015);

Denmark Madsen et al. (2002); Madsen et al. (1997); Madsen and Rosbjerg (1997a, b); Madsen et al. (1994); Madsen et al. (1995)

China Chen et al. (2010); Liang et al. (2019); Zhou et al. (2017a, b)

Portugal Silva et al. (2016); Silva et al. 2012, 2014; Silva et al. 2017); (Tavares and Da Silva 1983)

New Zealand Mohssen (2009); Sccarrott and Macdonald (2012); Nagy et al. (2017)

Turkey Önöz and Bayazit 2001) Poland Rutkowska et al. (2017a, b); Rutkowska et al. (2017a, b);

Walega et al. (2016);

Morocco Zoglat et al. (2014) Spain Solari et al. (2017); Solari and Losada (2012); Cord (2001)

Algeria Renima et al. (2018) Greece Koutsoyiannis (2006)

Slovak Republic Bačová-Mitková & Onderka (2010) Norway Ngongondo et al. (2013); Ngongondo et al. (2020)

Israel Metzger et al. (2020); Ben-Zvi (1991) Germany Komi et al. (2016)

The Netherlands Beguerı́a (2005); Roth et al. (2012); Kiriliouk

et al. (2019)

India Kumar et al. (2020)

Slovenia Bezak et al. (2014), (2016) South

Korea

Heo et al. (2013); Kang and Song (2017)

Czech Republic Yiou et al. (2006); Kyselý et al. (2010)
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size variation (i.e., average events per year is not fixed) and

effects of time scale of data extraction (e.g., 15 min,

hourly, daily or monthly).

Besides, POT model requires a threshold to be deter-

mined for GP distribution. For this, no universal method

has been proposed. To successfully extract the POT series,

two independence criteria for retaining flood peaks are

discussed in Sect. 4. However, the uncertainty associated

with independence criteria is not fully understood despite

studies have shown that the independence criteria need to

be situation specific. On the other hand, the threshold

determination to suit the assumption of the GP distribution

is one of the other concerns. The associated uncertainty is

more complex in homogeneous group formation for POT

modelling. Beguerı́a (2005) performed a sensitivity anal-

ysis on the threshold selection to the parameter and quan-

tile estimates and stated no unique optimum threshold

value could be detected. Durocher et al. (2018a, b) also

stated that the threshold selection affects the trend detec-

tion significantly, and currently, no acceptable method has

been found. Moreover, as discussed in Sects. 5 and 6,

various estimators, distribution functions, and GOF tests

aim to reduce the uncertainty in POT based FFA.

AM model certainly is the most popular and well-stud-

ied FFA approach but it has limitations too. POT model is

an alternative FFA approach, which has been proven to be

advantageous in many studies. Below is the list that sum-

marizes key points on the conveniences of applying POT

model in FFA.

• POT model is not that limited (compared to AM model)

by smaller data length due to its sampling process as the

overall data length is controllable. This provides

additional flexibility with the POT model.

• POT model is proven to be efficient for the arid/semi-

arid regions as streams here may have low/zero flows in

many years over the gauging period.

• POT is proven to be efficient in estimating very

frequent to frequent flood quantiles, which are needed

in environmental and ecological studies.

• Due to the controllable resolution of the time series,

POT is more suited to present the trend and perform the

nonstationary FFA.

• POT can provide bigger data set in the context of RFFA

due to its nature of data extraction process, which may

be useful to regionalize very frequent floods.

10 Conclusion

Two main modelling approaches, annual maximum (AM)

and peaks-over-threshold (POT), are adopted in FFA. The

AM model is well employed due to its straightforward

sampling process, while the POT is under-employed

internationally. In this scoping review, we found that POT

model is more flexible than AM one due to the nature of

the data extraction process. It is found that POT based FFA

can provide less biased estimates for small to medium-

sized flood quantiles (in the more frequent ranges). Fur-

thermore, POT model is more suitable for design flood

estimation in the arid and semi-arid regions as in these

regions many years do not experience any runoff.

Despite the advantages with the POT model, it has

several complexities. The physical threshold determination

(to ensure the independence of the extracted data points

and to satisfy the model assumptions) is the first obstacle

that discourages the wider application of the POT model in

FFA. The effects of independence criteria on the uncer-

tainty in the final flood estimates are not examined thor-

oughly as well as the combined effects of the extracted

sample size and independence criteria.

The statistical threshold selection in applying GP dis-

tribution in POT based FFA is the second obstacle. In this

regard, a commonly accepted guideline has not been pro-

duced yet. In the critical review by Langousis et al. (2016),

the MRLP is found to be a promising method of threshold

detection; however, the scaling effect is not well examined

(e.g., to what scale, the MRLP is efficient for detection of

threshold). The suggested approach is to examine a more

suitable statistical argument in the iterative/automated

process. Additional complexity arises from the model

assumption (Poisson or binomial/negative binomial),

parameter estimators and distribution functions. The

uncertainty of the individual component may not be sig-

nificant; however, the combined effects of these aspects

may increase the level of uncertainty in flood quantile

estimates by the POT model, which requires further

investigation.

We have found few recent studies involving the mixture

of AM and POT modelling frameworks, but this needs

further research as there are several unanswered questions

with this combination. The POT based RFFA also requires

further research as there are only handful of studies on this,

which would be very useful to increase the accuracy of

design flood estimates in ungauged catchments for smaller

return periods, which are often needed in environmental

and ecological studies. The non-stationary FFA based on

POT model needs further research as the future of FFA lies

in the non-stationary approaches. Since POT model has

more parameters, the estimation of the effects of climate

change on this model is more challenging, and this is an

area that needs further research.
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Komi K, Amisigo BA, Diekkrüger B, Hountondji FCC (2016)

Regional flood frequency analysis in the Volta River Basin, West

Africa. Hydrology 3(1):5

Koutsoyiannis D (2006) Nonstationarity versus scaling in hydrology.

J Hydrol 324(1):239–254

Kuczera, G., & Franks, S. (2019). At-site flood frequency analysis. in

Australian Rainfall & Runoff, Commonwealth of Australia.

Kumar M, Sharif M, Ahmed S (2020) Flood estimation at Hathnikund

Barrage, river Yamuna, India using the Peak-Over-Threshold

method. ISH J Hydraulic Eng 26(3):291–300
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