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Abstract
Assessment of the thermal bioclimatic environmental changes is important to understand ongoing climate change impli-

cations on agriculture, ecology, and human health. This is particularly important for the climatologically diverse trans-

boundary Amy Darya River basin, a major source of water and livelihood for millions in Central Asia. However, the

absence of longer period observed temperature data is a major obstacle for such analysis. This study employed a novel

approach by integrating compromise programming and multicriteria group decision–making methods to evaluate the

efficiency of four global gridded temperature datasets based on observation data at 44 stations. The performance of the

proposed method was evaluated by comparing the results obtained using symmetrical uncertainty, a machine learning

similarity assessment method. The most reliable gridded data was used to assess the spatial distribution of global warming-

induced unidirectional trends in thermal bioclimatic indicators (TBI) using a modified Mann–Kendall test. Ranking of the

products revealed Climate Prediction Center (CPC) temperature as most efficient in reconstruction observed temperature,

followed by TerraClimate and Climate Research Unit. The ranking of the product was consistent with that obtained using

SU. Assessment of TBI trends using CPC data revealed an increase in the Tmin in the coldest month over the whole basin at

a rate of 0.03–0.08 �C per decade, except in the east. Besides, an increase in diurnal temperature range and isothermally

increased in the east up to 0.2 �C and 0.6% per decade, respectively. The results revealed negative implications of thermal

bioclimatic change on water, ecology, and public health in the eastern mountainous region and positive impacts on

vegetation in the west and northwest.
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1 Introduction

Climatic variables, especially temperature and precipita-

tion, control the phenology, productivity, abundance,

interaction and geographical distribution of biodiversity

and biotic ecosystems’ overall function. Organisms physi-

ologically react differently to different thermal environ-

ments, which prefer homeothermy for adaptation

(Bła _zejczyk 2011; Pour et al. 2020c). Environmental gra-

dient and climate differences affect the germination and

seedling process and plant populations’ genetic structure

(Hamasha et al. 2013). Therefore, the spatial distribution of

species and biotic ecosystems depended on the different

climatic characteristics. The bioclimate indicators are

generally used to represent the climatic characteristics that

affect the biotic system (Attorre et al. 2007; Miguet and

Groleau 2007; Noce et al. 2020; Schröder et al. 2014;

Muhammad et al. 2019; Pour et al. 2020b). Therefore,

changes in bioclimatic indicators can indicate the impacts

of global warming-induced climate change on living things

(Hadi Pour et al. 2019). Climate change impacts on thermal

bioclimatic are most certain and visible across the globe.

Therefore, changes in thermal bioclimatic indicators (TBIs)

and their implications have attracted more attention in

recent years (Pour et al. 2020a).

Many studies have been conducted to find how thermal

bioclimate conditions affect the ecology (Hadi Pour et al.

2019). However, most of the recent studies were focused

on the relations of bioclimatic condition in terms of tem-

perature with human thermal comfort in urban areas where

the effect of the urban island are dominant (Daemei et al.

2019; Gaitani et al. 2007; Kim et al. 2019; Ma et al. 2016;

Sajani et al. 2008; Salat 2007). Besides, few studies eval-

uated the implications of thermal bioclimate on crop

growth and public health. For example, Moriondo et al.

(2013) reported the possible consequence of future climate

variability on the olive plants in the Mediterranean Basin.

Fraga et al. (2019) showed climate change effect on rice

bioclimatic growth conditions in Portugal. Recently, Bashir

et al. (2020) showed an association of thermal climate with

the spread of disease in New York. They found that tem-

perature, among several other climatic variables, signifi-

cantly correlate with the COVID-19 epidemic.

The Amu Darya is the most crucial transboundary river

basin of Central Asia. Millions of people from five coun-

tries living in the basin depend on agriculture for their

livelihood (Jalilov et al. 2016). The Amu Darya River basin

(ADRB) hydrology has undergone a tremendous change in

recent years due to human intervention in river flow. Cli-

mate change, particularly the rise in temperature, has

worsened the situation. These caused severe damage to the

ecology of the basin. The evaporation in the basin is high

due to aridic climate conditions. The temperature rises

caused an increase in evapotranspiration and water demand

in the basin. The changes in the thermal bioclimatic envi-

ronment also influenced crop growth and yield. The

changes in inter-annual and inter-seasonal temperature

variability affected soil moisture and land suitability for

cultivation. These changes severely affect agricultural

productions, ecological services and livelihoods of agri-

cultural dependent people (Sidike et al. 2016). Besides,

public health is a growing concern due to changes in dif-

ferent TBIs related to human health. Evaluation of trends in

TBIs of the ADRB basin is important for climate-resilient

development planning of Central Asia’s most important

river basin.

High spatial resolution and sufficient reliable tempera-

ture dataset are the major obstacles in assessing thermal

bioclimate and its trends in the ADRB. Numbers of high-

resolution gridded temperature data are available from

different research organizations to substitute for observed

data to assess climate (Bai et al. 2018; Guo et al. 2020;

Yasutomi et al. 2011; Yin et al. 2015). These datasets are

generated from in-situ measurement, satellite retrieval,

reanalysis, and satellite-observed data integration (Mah-

mood et al. 2019). These datasets can be used to assess

thermal bioclimatic trends in the basin as an alternative to

in-situ data. However, gridded datasets are usually asso-

ciated with large uncertainties (Nijssen and Lettenmaier

2004), originating from numerous factors, including inter-

polation from heterogeneous distributed gauge networks,

measurement representativeness, and records errors

(Newman et al. 2015). Therefore, it is required to evaluate

their performance and reliability before using them for any

purpose (Gampe and Ludwig 2017; Musie et al. 2019).

Several studies evaluated gridded climate data’s ability

to reconstruct local and global climate. General statistical

metrics like correlation coefficient, mean bias and mean

error are mostly used for this purpose (Ahmed et al. 2019;

Colston et al. 2018). The major limitation of using the

conventional metrics is the contradictory results of differ-

ent metrics (Muhammad et al. 2019; Salman et al. 2018).

Artificial intelligence algorithms have recently been pro-

posed to overcome the drawbacks of conventional statistics

(Nashwan and Shahid 2019). However, different machine

learning algorithms also give different ranking outcomes

for gridded climate products. In recent years, the multi-

criteria group decision-making method (MCGDM) has

been used to solve the problem mentioned above. The

inconsistent results of various indices can be combined in

MCGDM to identify the best product (Salman et al. 2019).

Compromise programming (CP) is a class of multiple

criteria decision-making methods known as the ‘‘distance-

based’’ method. It is used to analyze multi-objective

problems based on the concept of choosing a solution from
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a set of solutions considering the nearest to the optimum

points (Zeleny 1973). Its strength over the conventional

weighting approach is that it measures the minimum dis-

tance Pareto optimal point, especially when the distribution

of the points is nonlinear (Zhang 2003). CP was originally

introduced by Zeleny (1973) and later used by many

researchers related to their fields of studies, including

analyzing hydrological and environmental issues (Brahim

and Duckstein 2011).

The selection of gridded temperature products is not

straightforward like rainfall products. The gridded tem-

perature data should be selected based on their ability to

replicate both maximum and minimum temperatures, as

both are equally required for temperature-related studies.

MCDA or machine learning algorithms can select different

products in estimating maximum and minimum tempera-

ture. However, using two different products, one for

maximum and the other for minimum temperature, is not

practical as it may incur high error in providing inter-de-

pendent indices like diurnal temperature range or maxi-

mum temperature in cold months. The present study

proposed an innovative method of selecting the best-grid-

ded temperature product by integrating CP indices using

MCGDM.

This study aims to (1) rank the best gridded maximum

and minimum temperature (Tmax and Tmin) datasets in the

ADRB through employing CP and MCGDM; (2) use the

best gridded temperature dataset to assess the spatial dis-

tribution and trends in thermal bioclimatic indicators in

ADRB to understand the possible consequences of global

warming on agriculture and ecology in the basin. The

performance of the gridded data selection method proposed

in this study was evaluated by comparing the results with

that obtained using a machine learning algorithm known as

symmetrical uncertainty (SU). The SU has been proven

effective in feature selection and assessing similarity in

time series data (Ahmed et al. 2019; Homsi et al. 2020;

Nashwan and Shahid 2019; Sa’adi et al. 2020; Shiru et al.

2020). Four gridded temperature datasets were evaluated,

namely the Climate Prediction Centre (CPC) global data-

set, University of East Anglia Climatic Research Unit CRU

TS V4.03 (CRU), Princeton University Global Meteoro-

logical Forcing dataset for land surface modelling (PGF)

V3 and TerraClimate dataset. Trends in seven bioclimatic

indicators related to the ecological environment of the

basin are evaluated. The results presented in this study can

be used for policy formulation to achieve sustainable

development goals for the Central Asian nations. The

identified best gridded temperature dataset can be used for

Fig. 1 The geographical position of the Amu Darya River basin in Central Asia and the meteorological stations in the basin; the colour of the

circles represents the data sources
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climate change studies in the basin to overcome data

scarcity challenges.

2 Study area and data

2.1 Amu Darya River basin

The Amu Darya river is the lengthiest transboundary river

shared by five counties of Central Asia, including Afgha-

nistan, Tajikistan, Kyrgyzstan, Turkmenistan and Uzbek-

istan (Jalilov et al. 2016; Schlüter et al. 2005), as shown in

Fig. 1. Rising from headwaters in the glacier and ice-packs

in the mountains of Tajikistan, Kyrgyzstan and the north of

Hindu Kush, it passes through Karakum and Kyzylkum

deserts and drains into the Aral Sea (Kumar et al. 2019;

Nezlin et al. 2004; Sun et al. 2019). The basin has a typical

continental climate characterized by cold winter, hot

summer, low precipitation, and relative humidity (Jalilov

et al. 2013). The topography of ADRB ranges from 7500 m

in the upstream mountains to around 200 m in the down-

stream northwest plains with a delta and feeding the Aral

Sea. The annual mean precipitation in ADRB is 464 mm.

The maximum precipitation occurs upstream (Eastern

Pamir) of the ADRB, nearly 2000 mm, while downstream

receive a minimum, less than 100 mm/year. Precipitation

mostly occurs in the form of snow in winter (Nov-May).

The summer (Jun-Sept) is dry and hot with an average

temperature of 35 �C which gradually decrease to 18 �C in

the autumn and reaches to - 8 to - 20 �C in the winter

(Gaybullaev and Chen 2013; Wang et al. 2016).

Few attempts have been made earlier to estimate his-

torical changes and future temperature projections in the

basin using gridded temperature data, considering the

scarcity of observed temperature data. Table 1 summarizes

the major conclusions of those studies.

2.2 Observed temperature data

The observed monthly Tmax and Tmin data were collected from

the Ministry of Energy and Water of Afghanistan (MEW–AFG)

and the website of Global Summary of the Day (GSOD): https://

www7.ncdc.noaa.gov/CDO/cdoselect.cmd?datasetabbv=GSOD

&countryabbv=&georegionabbv = . Data from the above-men-

tioned sources were collected for different stations, as shown in

Fig. 1. The data sources are represented using different colors.

After screening the data, 44 stations with a longer period of data

coverage were selected. The data were available for the period

1979 –2019. Also, few stations adjacent to the basin’s boundary

having a longer data availability period were considered. Stations

having large missing datawere notused in thecurrent study. Most

observations were located in the southeast, while relatively less in

the west and southwest. Also, observation data were less in the

Table 1 Previous studies in the study area and nearby areas using gridded temperature data

References Study region Data used Main finding

White et al.

(2014)

Amu Darya

basin

CRU used as a reference for

temperature projections

The temperature is projected to increase up to 5 �C by 2070–2099, which

would cause a rise in irrigation needs by 10.6–16%

Törnqvist (2013) Amu Darya

basin

Evaluation of CRU data in the

basin

Large uncertainty in CRU temperature

Lutz et al. (2013) Amu and Syr

River basins

PGMFD temperature The temperature would increase nearly 2 �C between 2007 and 2050

Savoskul and

Shevnina

(2015)

Syr Darya

basin

CRU temperature in GCM

selection

CRU upscaled to match with GCM

Shibuo et al.

(2007)

Aral Sea

catchment

CRU temperature for

evaporation estimation

A rise in evaporation with temperature rise

Sidike et al.

(2016)

Amu Darya PGMFD, WSD and

CRUNCEP temperature

PGMFD simulated station data well

Haag et al.

(2019)

Central Asia CRU temperature CRU can replicate in-situ temperature patterns

Khaydarov and

Gerlitz (2019)

Uzbekistan CHELSA temperature CHELSA agreed with the observed temperature

Wang et al.

(2016)

Amu Darya

basin

PGMFD temperature Temperature rising between 0. and 0.3 �C/decade, which would affect

streamflow in the basin

CRU climate research units, PGMFD Princeton’s global meteorological forcing data, CHELSA climatologies at high resolution for the earth’s

land surface areas, WSD the one weather station dataset, CRUNCEP The National Centers for Environmental Prediction (NCEP I and II) and

Climatic Research Unit-NCEP
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northwest part of the basin. Overall, the station’s distributions

were more or less homogeneous over the basin.

2.3 Gridded temperature data

Four gridded temperature data that include National

Oceanic and Atmospheric Administration (NOAA) Cli-

mate Prediction Center (CPC) global dataset, University of

East Anglia Climatic Research Unit TS V4.03 (CRU),

Princeton University Global meteorological Forcing data-

set for land surface modelling V3 (PGF) and TerraClimate

were evaluated as shown in Table 2. These data were

obtained from the public domain in NetCDF format, which

was subsequently extracted and analyzed using statistical

software R. The gridded temperature products were

Data collection

Observed temperature data 
(From GSOD & MEW–AFG)

Gridded temperature data
(CPC, CRU, PGF & TerraClimate

Homogeneity assessment Evaluation of gridded data

Statistical indices 
(R2, NRMSE, KGE, MD, PBIAS & rSD)

Measure the weight of statistical indices

Compromise programming index (CPI)

Multi-criteria group decision–making

Ranking of the gridded dataset 

Estimation of bioclimatic indicators

Trends in bioclimatic indicators
(MMK test and Sen’s Slope)

Symetrical 
uncertainty (SU) 

Ranking of the 
gridded dataset 

Comparison of ranking

Fig. 2 The general methodology

of the current study

Table 2 List of gridded

temperature datasets with their

spatiotemporal resolutions and

availability periods

Datasets Spatial resolution (�) Temporal resolution Available period

CPC 0.5 Daily 1979–2019

CRU V4.03 0.5 Monthly 1901–2018

PGF 0.25 Daily 1948–2016

TerraClimate 0.04 Monthly 1958–2019
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evaluated according to their capability to reconstruct

observed data for their common period 1979-2016.

TerraClimate is a global gridded monthly climate data-

set with 0.04� spatial resolution, available from 1958 to the

present. TerraClimate, climatically interpolation for grid-

ding the monthly station data obtained from the WorldClim

dataset, coarse-resolution other monthly data productions

of various climate variables (Abatzoglou et al. 2018). The

TerraClimate data was downloaded from the site https://

climatedataguide.ucar.edu/climate–data/terraclimate–glo

bal–high–resolution–gridded–temperature–precipitation–

and–other–water. The CPC is a station observation-based

product, generated at the Climate Prediction Center,

National Centers for Environmental Prediction (Tanarhte

et al. 2012; Xie et al. 2010). The data are available at ftp://

ftp.cdc.noaa.gov/Datasets/cpc_global_precip/. The CRU

used angular distance weighting interpolation for gridding

the monthly station data obtained from different interna-

tional and national organizations covering the global land

except for Antarctica (New et al. 2000). The data was

downloaded from https://crudata.uea.ac.uk/cru/data/hrg/

cru_ts_4.03/. Princeton University has developed the PGF

datasets by combining several global observation-based

datasets with the National Centers for Environmental Pre-

diction - National Center for Atmospheric Research

(NCEP–NCAR) reanalysis (Sheffield et al. 2006). It was

downloaded from http://hydrology.princeton.edu/data/pgf/

v3/0.25deg/daily/.

3 Research method

3.1 Procedure

The procedure used to rank gridded temperature datasets

and analyze TBI trends is shown using a flowchart in

Fig. 2. Homogeneity of station data was first evaluated and

then compared with the gridded data. The assessment of

gridded data is generally done either by interpolation

gridded data at observed locations or correlation with

nearby stations (Caesar et al. 2006). In the present study,

gridded temperature data were interpolated at the

Table 3 The statistical indices

used for the assessment of

gridded temperature data

Index Range Optimal value

R2 ¼
Pn

n¼1
xo�xoð Þ xg�xgð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

n¼1
xo�xoð Þ2

Pn

n¼1
xg�xgð Þ2

q

0

@

1

A

2 - 1 to 1 1

NRMSE ¼
1
nð Þ
Pn

i¼1
xg�xoð Þ2

� �1=2

sdv xoð Þ

0–! 0

PBias ¼
PN

i¼1
xo�xgð Þ

PN

i¼1
xo

� �
- ! to ! 0

KGE ¼ 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r � 1ð Þ2þ b� 1ð Þ2þ c� 1ð Þ2
q

b ¼ lg
lo

andc ¼ rg=lg
ro=lo

- ! to 1 1

MD ¼ 1 �
Pn

i¼1
xo�xgð Þ j

Pn

i¼1
xg�xoj jþ xo�xgj jð Þ j

0–1 1

rSD ¼ sd xoð Þ
sd xgð Þ

- ! to ! 1

where Xg and Xo are the gridded (g) and observed (o) temperature respectively; r is Pearson’s correlation; b
represents the bias; c is a fraction of the coefficient of variation. l and r are the data mean and standard

deviation.

Table 4 Description of thermal

bioclimatic indicators evaluated

in this study

Index Estimated method Unit

TBI1 The yearly mean of daily average temperature 0 �C
TBI2 The yearly mean of daily temperature ranges 0 �C
TBI3 Temperature variation between hot and cold seasons %

TBI4 The standard deviation (SD) of monthly average temperature in a year 0 �C
TBI5 The Tmax in the hottest month 0 �C
TBI6 The Tmin in the coldest month 0 �C
TBI7 The monthly temperature range of a year 0 �C
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observation location using the inverse distance weighting

(IDW) method for comparison. The results obtained using

different statistical metrics were summarized using CP for

the ranking of the products.

Tmax and Tmin temperature data of the best gridded

product were used to estimate the annual time series of the

TBIs at each grid location. The Sen’s slope was employed

to calculate the change in TBIs, and the modified Mann–

Kendall (MMK) test was used to assess the statistical

significance in change. The methods employed in this study

are explained below.

3.2 Performance evaluation

Six statistical indices including the coefficient of determi-

nation (R2), normalized root mean square error (NRMSE),

percentage of bias (PBIAS), Kling–Gupta Efficiency

(KGE), modified index of agreement (MD), and the ratio of

standard deviation (rSD) were employed to assess the

accuracy of temperature products. These statistics can

evaluate the performance of different properties of in-situ

temperature like the average, variability and pattern.

Table 3 shows the expression, possible range and ideal

values of the metrics.

3.3 Compromise program

3.3.1 g (CP)

The present study used CP to merge the outcomes obtained

using different statistical indices to derive a single metric.

The CP identifies the best product by estimating its lowest

distance from the ideal point (Raju et al. 2017; Zeleny

1973). The compromise programming index (CPI) is pre-

sented as,

CPI ¼
Xn

i¼1

x1
i � x�

i

�
�

�
�p

" #1=p

ð1Þ

where i is the statistical index; x1
i is the normalized value of

index i for gridded dataset 1; x�i is the normalized ideal

value of index i; and p is the parameter (p-value 1 is for

linear and 2 for measuring squared Euclidean distance). In

the current research, the p-value is considered 1 for the

linear measure. CPI can be any positive value, but the

smaller CPI of a gridded temperature indicates its closeness

to observed temperature data.

CP can rank different data products at a station location.

But the challenge remains in deciding about the best pro-

duct for the whole basin, based on ranking at different

stations. A multicriteria group decision–making method

(MCGDM) method was used to order the data products

Fig. 3 Annual average of daily

Tmax estimated by different

gridded datasets over the basin

for the available periods
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based on their performance. In the proposed method, each

gridded product was weighted according to the rank

obtained by the product at different observation points. The

weight to a product is provided as the reverse of the rank,

which means if a product obtained 1st, 2nd and 3rd rank at

r1, r2 and r3 stations, its integrated index, Ix is calculated as

Ix ¼ r1 1=1ð Þ þ r2 1=2ð Þ þ r3 1=3ð Þ ð2Þ

3.4 Symmetrical uncertainty

SU uses mutual information (MI) to measure similarity

between two series, x and y, as below:

SU x; yð Þ ¼ 2 � MI x; yð Þ
H xð Þ þ H yð Þ ð3Þ

where H represents the entropies of a series. SU values

near 1 indicate better similarity. FSelector package of R

was employed to implement SU.

3.5 Thermal bioclimatic indicators

The spatiotemporal changes in 7 TBIs were evaluated in

this study. The details of the TBIs are summarised in

Table 4.

3.6 Trend analysis

Sen’s slope is a nonparametric method that estimates the

change over time from time series data (Sen 1968). It

estimates the change as the median of all slopes calculated

for two successive data points.

Man-Kendall (MK) is a nonparametric test used for non-

normally distributed data (Kendall 1975; Mann 1945). It

provides two measures, significant level and sign; the

farmer shows the strength while the latter indicates the

direction of change. Hamed (2008) improved the MK test

to remove the impacts of long-term persistence in data

series on-trend significance. This allows unidirectional

trend evaluation due to global warming. The modified MK

Fig. 4 Boxplot shows different gridded dataset’s performances in replicating Tmax at different locations based on the statistical metrics
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(MMK) test procedure begins with assessing the trend

using the MK test. If there is a significant trend in the time

series, the MMK test de-trends the series and estimates the

Hurst coefficient. This estimate of the secular trend due to

global warming by omitting the trends that arise from

natural climate fluctuation. Different recently published

articles provide details of the MMK test (Nashwan et al.

2019a).

4 Results

4.1 Performance assessment of gridded Tmax

4.1.1 Mean daily Tmax

Figure 3 shows the geographical distributions of observed

and estimated Tmax over ADRB. For a fair comparison, the

spatiotemporal resolution of all datasets was made

homogenous. Datasets (Observed, PGF and TerraClimate),

which were not available at 0.5� resolution, were interpo-

lated to 0.5� resolution using the IDW method. Figure 3

shows that the spatial distribution of Tmax of all gridded

datasets was almost similar to the observed one. Overall, a

higher temperature (* 33 �C) was noticed in the center

and western part of the basin and lower in the basin’s east

(nearly - 10 �C). The spatial distribution of CPC Tmax

was most similar to observation. However, CPC estimated

relatively lower temperatures (5 to 10 �C) in the south and

east of the basin. The underestimation was highest for

Terra (nearly - 10 �C) in the east. The spatial pattern of

observed and estimated Tmin by different products were

more or less similar to Tmax, as provided in the

supplementary.

4.1.2 Statistical evaluation of Tmax

The metrics, R2, KGE, MD, rSD, PBIAS and NRMSE,

were computed at all the station locations for all the

gridded data to assess their capability in reconstructing

observed Tmax. Figure 4 presents the results obtained for

different data products at all locations using box plots. The

highest median of R2 was observed for CRU followed by

CPC, PGF and TerraClimate. The KGE for all the products

at all the locations was negatively skewed. The TerraCli-

mate received the highest value of KGE. The median of

MD was higher for CPC while more or less the same for

the other products. The median of rSD was nearest to its

ideal value was for CPC, followed by TerraClimate, CRU

and PGF. The CPC showed the lowest bias (PBIAS) and

NRMSE.

Table 5 shows the ranking of the products in replicating

Tmax in terms of six statistical metrics. The values in the

table indicate the number of stations at which a product

ranked first in terms of a particular metric. The results

showed the best performance of CRU in R2 at most of the

locations (28), followed by CPC (25) and PGF (12). More

than one product received the same R2 at some stations and

thus, obtained the same rank. For example, CRU and CPC

obtained the highest R2 value (1) at locations (lat, long),

(39.083, 63.6), (40.467, 62.283), (41.75, 59.817) and

(37.833, 65.2). Therefore, both were ranked 1st at those

locations. It made the total number of stations where dif-

ferent products received the highest rank more than the

total station number (44).

In terms of KGE, TerraClimate was the best at 18 sta-

tions, followed by CPC. The TerraClimate achieved the

best rank at most stations in rSD (23) and NRMSE (23).

The CPC was best in MD at most stations (30) and CRU

for PBAS (15). The results indicate contradictory outcomes

based on different metrics. Therefore, CP was employed to

merge the outcomes of all metrics to have a common index

(CPI) for ranking.

4.1.3 Ranking of gridded Tmax datasets

Figure 5 shows the CPI estimated for different gridded

Tmax datasets at 44 stations using a heatmap. A lower value

of CPI represents good performance, and therefore, the red

color in the heatmap indicates higher capability. Similarly,

the green color represents less capability. Figure 5 reflects

many cells with colors ranging from deep red to yellow for

CPC, followed by TerraClimate, PGF and CRU.

4.2 Performance assessment of gridded Tmin

A similar analysis was conducted for Tmin. The spatial

distribution of Tmin over the basin for 1979-2016, esti-

mated using the station and gridded data, is given in Fig-

ure S-1. Like Tmax, the higher value of Tmin was in the

center and west part, and the lowest temperature was in the

Table 5 The number of observation locations at which different

gridded datasets received the higher rank in terms of different sta-

tistical metrics

Statistical metrics CPC CRU PGF Terra

Gridded Tmax dataset

R2 25 28 20 12

KGE 14 7 6 18

MD 30 19 21 29

rSD 18 1 2 23

PBIAS 10 15 5 14

NRMSE 18 1 2 23

Stochastic Environmental Research and Risk Assessment (2022) 36:2919–2939 2927

123



2928 Stochastic Environmental Research and Risk Assessment (2022) 36:2919–2939

123



east part of the basin. TerraClimate showed the lowest

estimation of Tmin (- 24.48 �C) followed by PGF

(- 14.78 �C), CRU (- 12.84 �C) and CPC (- 7.73 �C).

Figures S-2 presents the performance of the gridded data in

replicating observed Tmin at different stations based on CPI

(heatmaps). The figure indicates the better performance of

CPC in most of the stations.

4.3 Group decision-making process of Tmax

and Tmin

The MCGDM was used to merge the ranks of the gridded

data products at different stations to select the best product

for the entire basin rationally. Table 6 presents the ranks

for Tmax and Tmin datasets obtained using CPI and the ranks

obtained by merging them using MCGDM. The data

products were assigned a weight based on the number of

stations they were ranked 1st, 2nd and 3rd. Finally, an

integrated MCGDM index was estimated using Eq. (2).

The higher value of the index indicates a better perfor-

mance of a product. The overall ranking using MCGDM

revealed CPC as the best temperature product in the basin,

followed by TerraClimate and PGF.

4.4 Performmance evaluation using symmetrical
uncertainty

The results obtained for Tmax using SU are provided in

Fig. 6 as a heatmap. CPC obtained higher SU values at

more stations (indicated by red cells) than other products.

The result was also very consistent with that obtained using

CPI in Fig. 5. Table 7 shows the overall ranking of the

gridded Tmax and Tmin datasets in the Amu Darya River

basin obtained using SU. The results showed the best

performance of CPC Tmax and Tmin at most of the stations.

The results approve the findings obtained using CPI.

4.5 Spatial analysis of the trends in thermal
bioclimate indicators

The estimated trends in the TBIs at 241 CPC grids loca-

tions were used to generate maps and assess the geo-

graphical distribution of their trends over the ADRB. A

similar legend was applied to present the value of change in

all bioclimate indicators except TBI3 (different unit) to

easily compare the changes among different indicators. The

color ramp of the maps indicates the changes estimated by

Sen’s slope. The red indicates a positive, while the green

indicates a negative change. The black dot placed in the

center of each box specifies the trend significance obtained

using MMK test at a 95% confidence interval.

4.5.1 Annual average temperature (TBI1)

The TBI1 indicates the average thermal condition in the

basin. It gives information about approximate total energy

inputs received in the basin for an ecosystem. Figure 7a,

represents the geographical variability of TBI1, and Fig. 6b

shows the trends in TBI1 in the ADRB. The TBI1 over the

basin ranges from - 2 to 18.8 �C. The maximum TBI1 is

in the center and the minimum in the east of the basin.

Figure 7b reveals a significant reduction in TBI1 in the

north-western and central parts of the basin. Despite a

rising tendency in the TBI1 in the eastern part of the basin,

the increases are still not significant. In general, a reduction

in average temperature in the high-temperature zone and

increasing tendency in the cold region indicates a more

homogeneous temperature distribution in the basin in

recent years.

TBI1 is directly related to vegetation health and the

species richness of an area. Islam et al. (2021) showed

positive relation of TBI1 with NDVI of Bangladesh.

Adhikari et al. (2018) showed that TBI1 determines the

species richness in the mountainous region of South Korea.

Table 6 The overall ranking of the gridded Tmax and Tmin datasets in

the Amu Darya River basin, based on multicriteria group decision

analysis

Product Station rank (Tmax) Station rank (Tmin) MCGDM index

1st 2nd 3rd 1st 2nd 3rd

CPC 19 17 5 18 5 8 9.9

CRU 2 9 20 10 13 14 4.4

PGF 3 12 15 6 17 18 4.7

Terra 20 6 4 10 9 4 7.9

Table 7 The overall ranking of the gridded Tmax and Tmin datasets in

the Amu Darya River basin using symmetrical uncertainty

Product Station rank (Tmax) Station rank (Tmin)

1st 2nd 3rd 1st 2nd 3rd

CPC 19 2 2 18 5 5

CRU 9 18 11 15 14 12

PGF 3 16 12 2 5 15

Terra 13 8 14 9 20 12

bFig. 5 Heatmap of CPI for all gridded Tmax datasets used in this study
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Fig. 6 Heatmap showed the

performance of gridded Tmax

datasets at different stations

using symmetrical uncertainty
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Sosa and Loera (2017) found the highest positive correla-

tion of TBI1 with species richness in Mesoamerica among

all other indicators. Käfer et al. (2020) assessed the thermal

limits of European Seed Bugs, critical to thermal maxima

(mean = 45.3 �C) and showed their high correlation with

TBI1 and TBI5. The decrease in TBI1 over a major region

of ADRB can have severe negative implications on vege-

tation and ecology in the basin.

4.5.2 Diurnal temperature range (TBI2)

This TBI2 indicates the daily fluctuation of temperature or

the differences in daily Tmax and Tmin. Therefore, TBI2

indicates the relative change in Tmax and Tmin. Figure 8a, b

show the spatial distribution of TBI2 and its trend over

ADRB. The TBI2 is higher in the high-temperature region

in the west and less in the cold region in the east. The TBI2

trends revealed a significant rise in the cold eastern zone.

The increases were more than 0.17 �C/decade in some

locations. A faster rise in Tmax than Tmin in the cold region

caused a sharp increase in TBI2.

The TBI2 defines the relative difference in Tmax and

Tmin and is often used to show global warming-induced

climate change (Noce et al. 2020; Shahid et al. 2012).

Increases in TBI2 can significantly affect the vegetation

and public health of a region. Evans and Lyons (2013)

found an increase in the TBI2 caused forest death in the

east of Perth in Western Australia. Yaro et al. (2021) found

TBI2 has significant impacts on the geospatial distribution

of soil-transmitted helminths (STHs). TBI2 is positively

related to mortality, especially from heart and respiratory-

related diseases (Cheng et al. 2014). Therefore, increases in

TBI2 in the east of the basin can severely affect the

region’s vegetation, soil, and public health. The TBI2 is

generally negatively related to the precipitation of a region

(He et al. 2015). The increase in TBI2 can reduce precip-

itation over the eastern mountainous zone, which is the

basin’s water supply source. This can severely affect the

water availability in the basin.

4.5.3 Isothermality (TBI3)

TBI3 is the ratio of the diurnal temperature range (DTR) or

TBI2 to seasonal temperature fluctuation expressed as a

percentage. Figure 9a shows that TBI3 in ADRB varies

from 31.5 to 54.3%, with higher variability in the center,

south and western part of the basin. Results of the trend

analysis showed a steady rise in TBI3 in the basin’s east

(Fig. 9b). A large increase in TBI2 in the east of the basin

was the cause of a significant rise in TBI3.

The species distribution of an area depends on the

temperature fluctuation of the area within a year (Nix 1986;

O’donnell and Ignizio 2012). Therefore, isothermality

plays a vital role in the biodiversity and ecology of a

Fig. 8 a Spatial distribution of

diurnal range (TBI2); b trends

in TBI2 (�C/decade) in the basin

Fig. 7 a Spatial pattern of

yearly average temperature

(TBI1); b trends in TBI1 (�C/

decade) in the study area
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region. Rai et al. (2016) reported the most significant effect

of TBI3 on the plant composition among all the indicators.

Sommer et al. (2010) estimated a reduction of biological

diversity with an increase in temperature. Reitalu et al.

(2014) also found an inverse relationship of species rich-

ness, particularly grasslands with TBI3. Other studies also

showed negative consequences of increasing TBI3 on

forest and bird species (Distler et al. 2015; Zhang et al.

2013). The TBI3 showed a significant rise in the east and

central-north of the basin. Increasing TBI3 would nega-

tively affect mountain forests and mountain ecology in

those mountainous regions significantly.

4.5.4 Temperature seasonality (TBI4)

TBI4 estimates the SD of the monthly mean temperature

over a year, and thus, temperature variability within a year.

The larger SD shows more variability of temperature in a

region (Noce et al. 2020). Therefore, higher TBI4 indicates

both hot and cold extremes in a region. The TBI4 in the

study area (Fig. 10a) ranges from 7.4 to 11.5 �C. It is

maximum in the northwest, where the temperature is pre-

dominantly high. Besides, it is high in the cold eastern

region. The MMK test showed the TBI4 changes in the

basin are insignificant (Fig. 10b). However, there was a

rising tendency in TBI4 in the east of the basin.

Generally, people experience higher thermoregulatory

stress in a high TBI4 region (Monterroso et al. 2014).

Wang et al. (2017) found that TBI4 and annual rainfall

(TBI12) as the major drivers of coniferous forest coverage

across China. A small change in TBI4 strongly affects the

distribution of many species. Besides, the increase in

temperature seasonality may increase temperature-related

risks (Hadi Pour et al. 2019). Mancinelli et al. (2019)

showed the direct association of thermal seasonality with

non-arboreal foliage coverage. The rises in TBI4 can affect

public health and vegetation in the southeast of the basin.

4.5.5 Maximum temperature of warmest month (TBI5)

TBI5 provides an understanding of the effect of warm

temperature anomalies over the year, which greatly influ-

ences species distribution. The TBI5 in the basin ranges

from 16.5 to 40.1 �C (Fig. 11a). The higher values of TBI5

were in the center, west and northwest of the basin. It

indicates a higher susceptibility to the region of heat

extremes. The MMK test revealed an increase in TBI5 in

the center part of the basin by up to 0.3 �C/decade

(Fig. 11b). It indicates increasing TBI5 in the region where

it is already high. The increasing TBI5 in the region with

high summer temperatures has increased the vulnerability

of hot extremes like heatwaves in the region. This increase

in TBI5 would also increase the discomfort to the residents

Fig. 9 a Geographical

distribution of isothermally

(TBI3); b trends in TBI3 (%/

decade) in the basin

Fig. 10 a Geographical

variability; and b trends in

temperature seasonality (�C/

decade) in the basin

2932 Stochastic Environmental Research and Risk Assessment (2022) 36:2919–2939

123



of this aridic region, reduce water availability through the

increase of evaporation and decline agricultural

productivity.

Reitalu et al. (2014) showed that the TBI5 is negatively

associated with phylogenetic diversity within the Baltic

Sea region. Therefore, a rise in TBI5 in central ADRB may

disturb the thermotolerant level of many species, spread

diseases and cause other environmental effects (Hadi Pour

et al. 2019).

4.5.6 Minimum temperature of coldest month (TBI6)

TBI6 measures Tmin in the coldest month, and therefore, it

provides an understanding of susceptibility to clod

extremes. The Tmin in the coldest month is below zero in

most of the basin (Fig. 12a). The Tmin is less than - 20 �C
in the eastern mountainous region and nearly zero in the

central region, where summer maximum temperature goes

as high as 40 �C. The MMK test revealed a rise in TBI6

over the whole basin, except in the west (Fig. 12b).

Increases in TBI6 is most of the basin indicates a gradual

reduction of clod extreme in most region. However, the

TBI6 is not changing in the east, where it is lowest. This

means cold wave vulnerability remains in the high sus-

ceptible region of the basin. Besides, the increase in Tmin in

the coldest month over a large region of the basin might

affect the population of coniferous plants in the tundra,

which prolific more in a frost environment (Li et al. 2016).

It can also increase species distribution in the west and

northwest of the basin, where TBI6 was increasing fast

(Ancillotto et al. 2016; Koo et al. 2015).

4.5.7 Temperature annual range (TBI7)

TBI7 is the difference in Tmin of the coolest month and

Tmax of the hottest month. Therefore, it provides an

understanding of temperature anomalies over a year. This

information helps to know the impact of extreme temper-

ature conditions on biodiversity. Figure 13a presents the

geographical variability of TBI7 in the basin. The highest

TBI7 was in the northwest ([ 32 �C) and lowest in the

central region (\ 25 �C). The large values of TBI7 in the

northwest indicate the area’s susceptibility to both hot and

cold extremes. The MMK test showed an increase in TBI7

only over a small area in the center north at a rate of nearly

0.1 �C/decade (Fig. 13b). The increase in TBI7 was mostly

in the region where it is less. This indicates the suscepti-

bility of both hot and cold extremes in the less susceptible

region is increasing. The increase in TBI7 in the central-

south region of the basin can have some other implications.

Dakhil et al. (2019) reported a greater influence of TBI7 on

coniferous forests distribution than precipitation in Tibetan

Plateau China. Hradilová et al. (2019) showed significant

relation of TBI7 to germination responsivity of pea seed.

Fig. 11 a Spatial distribution of

maximum temperature of the

warmest month (TBI5); b trends

in TBI5 (�C/decade) in the basin

Fig. 12 a Spatial distribution of

minimum temperature of the

coldest month (TBI6); b trends

in TB6 (�C/decade) in the basin
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Yaro et al. (2021) significant relationship of TB7 with the

geospatial variability of soil helminths (STHs) in Kogi

East, North Central Nigeria.

5 Discussion

Though gridded temperature data are widely used for

various climatic studies, uncertainty in results obtained

using gridded data is always a major concern (Ahmed et al.

2017; Khan et al. 2018). The uncertainty in gridded tem-

perature data primarily occurs from the interpolation

technique, lacks observation, quality of in-situ data, data

homogenization method (Nashwan et al. 2019a, b, c; Bador

et al. 2020; Alexander et al. 2020). None of the datasets

performs well at all locations of the globe. Bador et al.

(2020) evaluated 22 gridded rainfall data products and

suggested that none of the datasets can be considered the

best globally. However, their study showed that a particular

dataset could perform better than other data products at the

regional or national scale. This is particularly true in the

catchment scale like ADRB.

It is also vital to use the most suitable gridded dataset for

reliable analysis of the climate of a region. Bador et al.

(2020) showed considerable uncertainty in one-day maxi-

mum precipitation estimated using different gridded data

products. Therefore, estimating future changes in rainfall

extremes using different gridded data products as a refer-

ence can significantly vary. Nashwan showed different

rainfall trend directions using different data products, even

over a small region. Therefore, climate change analysis

without selecting suitable data product can provide mis-

leading information.

The performance of four widely used gridded tempera-

ture datasets was assessed in this study. The objective was

to find the most appropriate product for temperature anal-

ysis in the ADRB, where scarcity of in-situ data is the

major barrier for climatological studies. The CP was

employed to evaluate the ability of gridded temperature

products. The CP is a multicriteria decision-making

method known as the ‘‘distance-based’’ method, which

solves multi-objective problems by measuring the distance

of a solution closer to the ideal point. It is less computa-

tionally intensive and avoids decision makers’ choices

(Gan et al. 1996). The major strength of CP is to find the

real Pareto optimum curve when the optimal points are

heterogeneously distributed, a task that the conventional

weighting methods are failed to do (Zhang 2003). Statis-

tical measures fail when the gridded data over- and

underestimate in-situ data simultaneously. Therefore, GP

overcomes these problems by combining the overall per-

formance of a gridded dataset by comparing the statisti-

cally obtained outcomes (Behar et al. 2015; Fan et al. 2018;

Jamil et al. 2020). Also, the statistical measure cannot rank

and compare numerous models in such a way as to select

the best. Still, GP does it easily and accurately by using all

measures (Despotovic et al. 2015). Therefore, it is expected

that the ranking of gridded temperature obtained using CP

is robust.

The present study identified CPC as the most suit-

able product for replicating both Tmax and Tmin. Literature

review suggests limited studies in the basin to evaluate the

ability of gridded temperature products (Haag et al. 2019;

Sidike et al. 2016; White et al. 2014). Therefore, it was not

possible to make a critical comparison with previous

findings. However, the findings of those few existing

studies collaborate with the results presented in this article.

White et al. (2014) used CRU for the ADRB and showed

that the product is not fair to provide good climatic input

for water assessment. The present study also showed rel-

atively poor performance of CRU data. Sidike et al. (2016)

used Tmax and Tmin of PGF, WSD and CRUNCEP datasets

for hydrological simulations in ADRB. They found that

PGF simulated the observed data well, although underes-

timated high and overestimated low temperature. Haag

et al. (2019) used CRU data to assess temperature changes

in central Asia. Their results showed a good correlation of

CRU data with available observed data. However, Sidike

et al. (2016) and Haag et al. (2019) did not evaluate the

ability of CRU and PGF with other gridded temperature

Fig. 13 a Spatial distribution of

the difference in minimum

temperature of the coolest

month and maximum

temperature of the hottest month

(TBI7); b trends in TBI7 (�C/

decade) in the basin
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datasets used in this study. The present study revealed that

though CRU and PGF showed good correlations with

observed temperature, their performance is poorer than

CPC in ADRB.

Several previous studies used different gridded temper-

ature datasets to evaluate temperature changes in the

ADRB. Wang et al. (2016) used PGF temperature data to

assess temperature trends in ADRB. They showed a rise in

average Tmax and Tmin by 0.2 and 0.3 �C/decade at a 99%

confidence interval. It indicates a rise in daily mean tem-

perature in ADRB. The present studies also showed a rise

in the average temperature over most of the basin. Haag

et al. (2019) used CRU data and showed a rise in annual

mean temperature by 0.28 �C/decade at a 95% confidence

level. They also showed that the plain area has a relatively

higher temperature trend compare to mountains areas. It is

also consistent with the results presented in this study. The

present study showed an increase in average temperature in

the central plain land and no significant change in the

eastern mountainous region.

The results discussed above indicate similar estimates of

spatiotemporal variability of temperature trends in ADRB

using CPC, the best product and CRU, the least performing

product. However, the spatial coverage of the trends esti-

mated using CPC data was different from the earlier

studies. The trend significance was also much less in this

study than in the previous studies. This is because of the

usage of CPC data and the MMK test. Nashwan et al.

(2019b) estimated the relative capability of different grid-

ded rainfall products for trend analysis in Bangladesh.

They showed rainfall trends significantly vary for different

gridded data products. Therefore, they suggested evaluat-

ing the relative performance of different gridded data

products to find the best product before their use for trend

analysis. Therefore, the difference in spatial coverage of

trends between CPC in the present study and CRU in the

earlier studies is due to the quality of gridded temperature

data. The present study suggests that temperature studies in

ADRB should be conducted using CPC data for better

reliability.

The MMK test rather than MK test was employed in this

study to evaluate change significance. The trends in climate

series may occur due to existing multi-year cycles in

temperature series. Such cycles arise due to the influence of

different atmospheric oscillations like the Mediterranean

oscillation. The length of the cycles varies widely, with

some being higher than 50 years (Khan et al. 2019). The

MK test shows significant trends, often due to variability in

data series because of these embedded cycles. The MMK

test can avoid this and provides unidirectional trends.

Therefore, the trend detected in this study is much less than

that detected in previous studies. The trends presented in

this study is due to climate variability caused by global

warming.

The present study revealed an increasing trend in TBI1

in the deserts arid zone of the basin. It was not changing in

the eastern low-temperature region. However, TBI2

revealed a significant rise in the cold eastern region. This

indicates an increase in both Tmax and Tmin in arid desert

zones in the center and west of ADRB. The increase in

Tmin was much higher than the Tmin in the cold eastern

region. Therefore, the increase in TBI2 was significant only

in the cold eastern region. The results agree with the earlier

studies conducted by (You et al. 2011) in China, (Araghi

et al. 2016) in Iran and (Khan et al. 2019) in Pakistan. They

showed a faster increase in TBI2 in the cold region than in

the warm region. The results are also in harmony with the

temperature changes in ADRB reported by (Wang et al.

2016). TBI3 showed a higher increase in temperature in

cold months than in warmer months, which is significant in

the cold region of the basin. This indicates the significant

influence of TBI3 on critical thermal tolerance (Käfer et al.

2020). The trends in TBI4 collaborates with the results

obtained by (Hadi Pour et al. 2019) in Iran. The TBI6

showed a significant increase over the west and central

region of ADRB. An increase in temperature of the coldest

month can be favourable for vegetation health and forest

growth in the west and central region. The TBI7 showed

significant change in a small patch in the south, and

therefore, less implication in the basin.

6 Conclusion

The main objective of this study was the suitability

assessment of gridded temperature datasets and the use of

the best gridded temperature datasets to evaluate the trends

in TBIs in ADRB. The CPI was used to rank the contra-

dictory outcomes obtained by six statistical metrics in

performance assessment of Tmax and Tmin datasets to find

the most suitable dataset among selected products. Fur-

thermore, the MCGDM method was employed to integrate

the CPI of all stations to get a homogeneous result. The

finding indicates CPC as the most suitable gridded dataset

in replicating in-situ temperature over the ADRB. The TBI

analysis revealed an increasing trend in temperature in the

warmest and coldest month, particularly over the center

and south of the basin. The increase in Tmax in the warmest

month was more pronounced over the basin than in Tmin. In

the future, other reanalysis and remote sensing temperature

datasets can be compared to evaluate their performance in

the basin. Other recently developed algorithms, particularly

machine learning algorithms, can be employed to evaluate

the ability of gridded data. The reliability of daily gridded
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temperature data to replicate the temperature extremes in

the basin can also be evaluated in the future.
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