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Abstract
Modeling the spread of infectious diseases in space and time needs to take care of complex dependencies and uncertainties.

Machine learning methods, and neural networks, in particular, are useful in modeling this sort of complex problems,

although they generally lack of probabilistic interpretations. We propose a neural network method embedded in a Bayesian

framework for modeling and predicting the number of cases of infectious diseases in areal units. A key feature is that our

combined model considers the impact of human movement on the spread of the infectious disease, as an additional random

factor to the also considered spatial neighborhood and temporal correlation components. Our model is evaluated over a

COVID-19 dataset for 245 health zones of Castilla-Leon (Spain). The results show that a Bayesian model informed by a

neural network method is generally able to predict the number of cases of COVID-19 in both space and time, with the

human mobility factor having a strong influence on the model, together with the number of infections and deaths in nearby

areas.
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1 Introduction

Infectious diseases are the main cause of health hazards in

the world and are responsible for deaths of millions of

people around the world (WHO 2019). Various outbreaks

of infectious diseases have occurred throughout human

history, and indeed there is currently a global health pan-

demic caused by the novel Coronavirus disease (COVID-

19). More than 90 million people have been infected and

more than 2 million people have lost their lives since

January 2021 due to COVID-19 (Wu et al. 2020; Worl-

dometer 2020). To contain the spread of this virus, various

regulations such as social distancing measures, travel

restrictions, and city or nation-wide lockdowns have been

put in place by policy makers around the world. These

regulations, although effective in containing the spread of

the disease, have also impacted the daily lives of people,

social behavior and the global supply chain (Jones et al.

2008). The transmission of general infectious diseases (e.g.

COVID-19) exhibits spatio-temporal patterns and can be

predicted based on ecological, environmental and socio-

economic factors (Anno et al. 2019; Yang et al. 2020).

Prediction of these infections is important for government

and health workers to plan for effective mitigation by

prioritizing the actions of prevention and control measures

(Remuzzi and Remuzzi 2020).

Human movement typically stimulates the introduction

of infectious diseases into a new region. There are various

evidences that due to human movement, a region-specific

disease is introduced to a new region (Nunes et al. 2014;

Stoddard and [Steven T], Morrison A. C., Vazquez-Pro-

kopec G. M., Soldan V. P., Kochel T. J., Kitron U, Scott T.

W. 2009) and spreads locally (Stoddard and [Steven T.],

Forshey B. M., Morrison A. C., Paz-Soldan V. A., Vaz-

quez-Prokopec G. M., Astete H, Scott T. W. 2013; Gross

& Poshan Niraula

al394267@uji.es

Jorge Mateu

mateu@uji.es

Somnath Chaudhuri

al383341@uji.es

1 Department of Mathematics, University of Jaume I,

Castellón, Spain

2 Research Group on Statistics, Econometrics and Health

(GRECS), University of Girona, Girona, Spain

123

Stochastic Environmental Research and Risk Assessment (2022) 36:2265–2283
https://doi.org/10.1007/s00477-021-02168-w(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0001-6527-3593
http://crossmark.crossref.org/dialog/?doi=10.1007/s00477-021-02168-w&amp;domain=pdf
https://doi.org/10.1007/s00477-021-02168-w


et al. 2020). Indeed, a number of recent studies have

incorporated human movement factors into the modeling

strategy (Massaro et al. 2019; Mukhtar et al. 2020; Krae-

mer et al. 2020). For example, the increased human

mobility in western Africa had a high impact in making the

Ebola virus catastrophic (Farrar and Piot 2014). Bogoch

et al. (2015) studied the air transport data of flights going

out of the Ebola virus affected countries, finding air

transport also one of the reasons for the transmission. In the

case of COVID-19, it is also seen that the measures related

to human movements, such as travel restrictions and social

distancing, have been effective in containing the diseases

(Kraemer et al. 2019; Fang et al. 2020). It is a fact that the

introduction of human mobility in epidemiological studies

has been more accessible due to technological advance-

ments in locational services and availability of movement

data (Guinness 2016; Sedlar et al. 2019). In this context,

availability of technologies such as WiFi or cell phone

tower positioning systems and global navigation satellite

systems have made the analysis of mobility much easier

(Gonzalez et al. 2008; Toch et al. 2019).

The spread of infectious diseases in space and their

outbreak in time constitute a complex spatio-temporal

problem, which is an effect of complex dynamics of human

behavior, environment, and their interactions. Furthermore,

as reported in Pan et al. (2020), during pandemics the

human mobility pattern changes compared to that of other

times which makes the problem more complex and difficult

to analyze. Deep learning methods have proven to be

suitable for modeling such complex problems (Mosavi

et al. 2020). Indeed, some researchers have used neural

networks, and some of them with human mobility data, to

model the spread of infectious diseases (Ak et al. 2018;

Titus Muurlink et al. 2018; Anno et al. 2019; Akhtar et al.

2019; Wieczorek et al. 2020; Kapoor et al. 2020). Simi-

larly, studies on the development of geographically

weighted artificial neural networks (Hagenauer and Hel-

bich 2021), and on geographically and temporally neural

network weighted regression (Wu et al. 2021) based on

geographically weighted regression have inspired the way

of developing neural networks to model spatio-temporal

non-stationary relationships. Neural network-based meth-

ods rely on a hidden stage to learn from the data and are

unable to explicitly account for the spatial and spatio-

temporal random effects. However, although these methods

have performed well, they are unable to provide uncer-

tainties in the predictions, which we believe are essential in

statistical inference and probabilistic forecasting. We argue

that predictions accompanied with uncertainties provide

further confidence on the results (Beale and Lennon 2012).

To incorporate uncertainties in neural networks, Bayesian

neural networks have been developed (Kononenko 1989;

Dhamodharavadhani et al. 2020) and applied over various

spatio-temporal problems (McDermott and Wikle 2019).

However, in the field of modeling and understanding the

dynamics of COVID-19, the use of neural networks in

combination with Bayesian inference is limited. Cabras

(2020) presented a method of combining neural networks

with Bayesian inference having a focus on COVID-19

infections in Spain. However, mobility and its influences

were not considered. As spatio-temporal predictions help in

understanding the spread of the disease to further identify

the regions of high risk, a large number of papers can be

found in the field of spatio-temporal modeling of diseases.

Among them, generalized linear models (GLM) with the

addition of spatial effects of nearby places and/or temporal

effects from past events are found to be often used and

proven to be useful in prediction (Cabrera and Taylor 2019;

Giuliani et al. 2020; Guo et al. 2017). For example, Giu-

liani et al. (2020) have used GLM to predict COVID-19

infections in regions of Italy, and found the spatial inter-

actions of nearby places to have a high influence on

modeling; this shows the importance of accounting for the

spatial effects explicitly. In a parallel vein, Bayesian

modeling methods have also been used in this epidemio-

logical context (Aswi et al. 2019; Song et al. 2019; Torres-

Signes et al. 2020; Gelman et al. 2013).

The main objective of this paper is to use deep learning

methods (using a Long Short Term Memory-LSTM)

informing a Poisson regression model in a Bayesian

framework to model and predict the spread and outbreak of

COVID-19 with uncertainties. In particular, human

mobility data along with socio-demographic variables are

incorporated in the combined model to predict the

dynamics of COVID-19. In doing so, we highlight the

importance of human mobility in modeling the dynamics of

infectious diseases.

The plan of the paper is as follows. Section 2 presents

the data along with all covariates considered in the model

to motivate the proposed statistical model. We also con-

sider some spatial weights built from the movement data.

Section 3 presents the statistical model, and the results

come in Sect. 4. The paper ends with some conclusions and

a discussion in Sect. 5.

2 Study area and data

Daily COVID-19 infections aggregated per 2451 health

zones in the community of Castilla-Leon (Spain) were used

in this paper. The temporal range goes from March 1, 2020

to February 5, 2021. Castilla-Leon is the largest commu-

nity in Spain by area located in the northwest part of Spain.

1 Here, the health zones SORIA NORTE, SORIA SUR and SORIA

RURAL are aggregated to a single unit.
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This region has a population of around 2.5 million and is

ranked third among the communities in offering social

services to the citizens.

Figure 1 shows the location map of Castilla-Leon and

the status of the COVID-19 spread in the health zones of

the Community. The cumulative cases in the health zones

are until 2021-02-05. The health zones with most cases are

represented in darker red color. We note that COVID-19

has spread throughout the study area with clusters around

major urban areas.

Figure 1c represents some of the health zones with

highest cumulative cases of COVID-19 per 10000 inhabi-

tants, such as Guijuelo (2330), Sacramenia (2290), Sepul-

veda (2211) and San Ildefonso (2194). For the purpose of

this study, we have depicted the temporal distribution of

the following four selected health zones Avila Estacion,

Casa del Barco, Las Heulgas and Ponferrada II, because the

number of COVID-19 infected cases in these health zones

is distributed throughout the study period and there is a

particular variability in the number of cases. The locations

of these selected health zones are highlighted in the map.

COVID-19 cases data were retrieved from the open data

portal of Castilla-Leon2. Similarly, the socio-demograhic

datasets and the health zone boundary, in shapefile form,

were downloaded from the open data platform of Instituto

Nacional de Estadı́stica3. The human mobility data for the

study area was acquired from Barcelona Supercomputing

Center flowmap dashboard4. A brief description and source

of the datasets used in the current paper are reported in

Table 1.

Figure 2 shows the daily number of COVID-19 cases

per 10000 inhabitants. The highlighted red line represents

the daily mean number of cases per 10000 inhabitants. The

cases increased in March and April 2020 (defining the first

Fig. 1 a location of Spain; b location of Castilla-Leon in Spain; c Cumulative numbers of COVID-19 cases per 10000 inhabitants and health

zones; d Histogram showing number of health zones of Castilla-Leon by cumulative cases per 10000 inhabitants

2 https://datosabiertos.jcyl.es/web/es/datos-abiertos-castilla-leon.

html
3 https://www.ine.es/en/index.htm
4 https://flowmaps.life.bsc.es/flowboard/
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wave), and then started to decrease until August 2020 due

to the imposed lockdown measures. However, due to a

certain relaxation towards the summer period, the cases

started to increase late August to end up with a second

wave in October and November 2020. A third wave of

infection is noted in January and February 2021, and

started to decrease again due to some partial restrictions

and the onset of the vaccination program. Similarly,

weekly trends in the number of cases is visible with a drop

of cases on weekends, due to the reduced number of tests

done over the weekends.

The mobility data acquired from the data portal of

Barcelona Supercomputing Center was prepared by the

Ministry of Transport, Mobility, and Urban Agenda. The

data was preprocessed to guarantee anonymized records

from mobile phones. These recorded events contain both

active events also known as Call Detail Records (CDR) and

passive events with a periodic update of device position,

change of coverage area, etc. The location information is at

the level of the coverage area of each antenna, which is

merged to create origin-destination matrices at municipal-

ity, districts and provinces level. Along with these records

from the cell phones, landuse data, population data,

transport network data such as train lines, and location of

airports have been used to create the merged matrices

(Ministry of Transport and Agenda 2020). The available

daily mobility data was at the municipality level; those

municipalities with population less than 1000 were com-

bined to form aggregated zones. As all other available data

were at the health zones level, these aggregations were

converted to the health zone level by applying spatial

overlay functions and dividing the movement data in pro-

portion to the area. The socio-demographic covariates

considered in this paper were the following: total

Table 1 Summary of data used and their sources

Data Data sources Description of data

COVID-19 Open data portal of Castilla-Leon Daily infected cases at health zone level

Mobility data Barcelona Supercomputing

Center

Daily human mobility matrices at the municipality level

Socio-

demographic

Open data portal of Castilla-Leon Individual health zone total population, unemployment level and number of urban

offices

Geometry Open data portal of Castilla-Leon Boundary shapefiles of 245 health zones

The units of all variables are in total numbers

Fig. 2 Temporal trend of COVID-19 cases in the study area. The orange line represents the daily mean number of cases in all health zones per

10000 inhabitants
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population per health zone, number of people demanding

for employment, number of unemployed people, number of

commercial units, office units, and industrial units in the

urban areas of each health zone (see a description in

Table 2). Additionally, we also considered some built-in

variables (see Table 3). In particular, we computed the

average number of cases and average number of deaths in

the direct neighborhood. The cumulative cases of COVID-

19 for the last 14 days were also computed to consider the

aggregated impact for a short time frame.

Last, but not least, we introduce new spatial weights

based on the movement data that represent the associated

movement-based risk. These weights are computed per

health zone and day. We add a temporal lag to handle past-

term movement data and the daily data are weighted

depending on the temporal distance.

These spatial weights take into account the mobility

from all other regions j into region i, and the weights are

interpreted as the chance of a moving person to import the

infection of the disease into region i from all the other

regions. This spatial weight for a region i and day t, Wi;t,

can be computed as

Wi;t ¼
Xn

j¼1

Xt�Dt

t0¼t�1

mji;t0 � w0
t0

" #
� Ij;t
Pj

ð1Þ

where n is total number of regions, mji;t is the mobility

from all regions j to i on day t, Ij;t is the number of infected

cases at region j at time t, Pj is the total population of the

region j and w0
t is the weight given to the mobility data on

day t.

A time lag Dt is added to the computation of the spatial

weights as the spread of a disease on the region is depen-

dent on the mobility and infections on past days in all other

regions of the study area. We used a 7-day lag as infection

is assumed to act a week before first symptoms. We

assigned the following weights: given t, we give t � 1 and

t � 2 only a weight of 5%, this weight increases up to 10%

for t � 3 and t � 4, then goes up to 20% for t � 5 and t � 6,

and finally the weight is 30% for t � 7.

Figure 3 shows the temporal series of the spatial weights

for the four selected health zones along with the daily

number of COVID-19 cases for the study period. It is

evident that increasing weights correspond to increased

COVID-19 cases. Similarly, Fig. 4 shows the flowmap of

the median mobility for the week 2021-01-30 till 2021-02-

05, prepared with the flowmapblue R package5, and the

spatial distribution of the spatial weights for the same

period.

Summarizing, our model is feeded by COVID-19

covariates, socio-demographic covariates and human

movement-related covariates. COVID-19 covariates

include cumulative cases, average number of cases in

neighboring health zones, deaths and average number of

deaths in neighboring health zones, and spatial weights

computed from the daily mobility matrices and infection. A

temporal covariate, day of the week, was computed as a

factor from the date.

Table 2 Summary of socio-

demographic variables
Variable name Description

Total_pop Total population of the health zone

Demanding_total_employment Number of people demanding for employment

Registered_unemployed_total Number of people registered as unemployed

Number_of_urban_commercial_units Number of commercial offices in the urban areas

Number_of_urban_industrial_units Number of industrial units in the urban areas

Number_of_urban_office_units Number of offices units in the urban areas

The units of all variables are in total numbers

Table 3 Summary of built-in variables

Variable name Description

Day of the week Computed from the date

Cumulative cases Cumulative number of cases for last 14 days

Average number of cases in neighboring health zones Average of number of cases in health zones that share a common border

Average number of deaths in neighboring health zones Average number of deaths in health zones that share a common border

The units of all variables are in total numbers

5 https://github.com/FlowmapBlue/flowmapblue.R

Stochastic Environmental Research and Risk Assessment (2022) 36:2265–2283 2269

123

https://github.com/FlowmapBlue/flowmapblue.R


3 A Bayesian LSTM method

We use here the term Bayesian LSTM method, to indicate

that we use a statistical model within a Bayesian frame-

work informed by the output of a Long Short Term

Memory (LSTM) neural network method. We aim to

model the number of infections on an areal unit, in our case

health zones, based on spatial covariates, temporal trends,

and mobility matrices. Thus our combined model considers

temporal and spatial dependence structures, and provides

predictions in space and time of the number of infections.

Figure 5 shows a graphical overview of the proposed

model which contains two major components: (a) a deep

learning method (LSTM), and (b) a Bayesian spatial

Poisson regression model. The input to the LSTM method

are the temporal series of the cases of infections. The

LSTM method learns from these temporal series and pre-

dicts the number of cases in the future. Predictions from the

LSTM method are embedded into the Poisson regression as

an expected value. The spatial correlation structure is

modeled using a stochastic partial differential equation

(SPDE) method through the Integrated Nested Laplace

Approximation (INLA) approach.

Fig. 3 Spatial weights and COVID-19 cases for the selected health zones

Fig. 4 For the last week of study period 2021-01-30 till 2021-02-05: a Flowmap of the study area with the median mobility; b Spatial distribution

of median values of spatial weights
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3.1 LSTM method

Artificial neural networks are a class of machine learning

methods inspired by the functioning of human brain and

work on the principle of parallel processing. They consist

of layers of interconnected processors known as neurons,

which have a vector of weights associated with them.

Artificial neural networks models consist of input data also

known as input layer, layers of interconnected neurons also

known as hidden states, and the output layer which is the

output of the model. Fitting an artificial neural network

involves estimating the optimal value of these weights

which are able to accurately reproduce and mimic some

training data. The optimization of these weights is done

through the gradient descent method, and the weights

assigned to each layer are adjusted proportionally to the

derivatives (Bengio et al. 1994).

Among many types of artificial neural networks, recur-

rent neural networks are arguably the most useful ones for

sequential data (as time series) as they have a stack of non-

linear units that can learn even long-term dependencies of

time series data (Bengio et al. 1994). Recurrent neural

networks are built from one or more feedback loops of

artificial neurons which are recurrent over time, so they do

not only flow forward but in cycles. These cycles represent

the influence of the present value of a variable on its own

value at a future time step (Goodfellow et al. 2016). In

recurrent neural networks, the configuration of hidden

states acts as the network memory and the hidden layer

state at a time is dependent on its previous state which

enables to learn from past data, thus handling long-term

dependencies (Mikolov et al. 2014). This makes recurrent

neural network an excellent choice for learning and pre-

dicting time-dependent data. However, despite having

these advantages, as the recurrent neural networks perform

the gradient descent method with each timestamp of the

data, they are likely to fall into the gradient vanishing

problem. Due to this problem, as the recurrent neural net-

work loops through the networks recurrent connections, the

effect of a given input on hidden layers, and consequently

on the output, either decays or explodes exponentially

(Hochreiter 1991). One alternative approach to tackle this

problem comes from using a LSTM method (Hochreiter

and Schmidhuber 1997), that solves the gradient vanishing

problem by introducing LSTM memory cells instead of the

hidden units. These LSTM cells consist of input, output

and forget gates; the input and output gates are used for the

control of the flow of memory cell input and output into the

rest of the model, whereas the forget gates are responsible

for learning the weights that control the rate at which the

value stored in the memory cell decays. With the addition

of these gates, the LSTM is able to bypass the vanishing

gradient problem while also learning from the long term

dependencies in the data (Salehinejad et al. 2018). A

dataset with multiple samples, each containing multiple

features, comes into LSTM through the input layers one

sample at a time. The input data and memory of a hidden

layer from the previous time step (t-1), is passed through

the three gates, computing the output of each LSTM cell of

the time step t, and that is used in the next time step (t?1),

and so on for all the time steps of the study period. The

LSTM model is fitted with the use of a training dataset

which learns all the weights of the cells that connect the

input data with the hidden and output layers. The model is

finally applied to a new dataset generating the prediction

for such data.

In our case, the LSTM method accounts for the temporal

trend of the COVID-19 spread, learning from the temporal

trend of the infected cases on individual health zones

separately, rather than considering the spatial cross-corre-

lation amongst the regions. Note that although, as com-

mented in the Introduction, LSTM methods are lately

adapted to also account for spatial structure, in this paper

we make use of LSTM to learn only from the temporal

trend of infections at individual health zones, leaving the

spatial relationships amongst health zones to be accounted

for in the Bayesian regression model.

3.1.1 Architecture

We used a four layered LSTM, for which the first layer is

the input layer given by the daily time series of COVID-19.

In order to create a supervised learning problem, the tem-

poral series of infected cases were converted to an input-

output pair which is performed by shifting the data

(Brownlee 2017). Thus, for every time step t of the time

series, one day ahead shifting is done in the data to create a

shifted prediction at t þ 1. The second layer of the model

consists of the 128 LSTM memory cells; similarly, the

Fig. 5 Graphical overview of the Bayesian LSTM method
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third and fourth layers consist of 64 and 32 memory cells,

respectively. This number of memory cells in each layer

comes from experimentation and also motivated by previ-

ous works (Shahid et al. 2020). With this configuration, the

model has 131489 parameters consisting of three stacked

LSTM layers which are recurrently used for the time period

T (equal to the total number of days under study). Finally, a

dense layer connects all the recurrent layers and connects

them to the output layer. The dense layer has the linear

activation function. The architecture of the LSTM method

is shown in Fig. 6. Additional parameters and hyper-pa-

rameters that define the LSTM method are shown in more

detail in Appendix B (Table 5).

3.2 Spatio-temporal Poisson regression
and Bayesian inference

To deal with uncertainty, we consider in a second stage a

spatio-temporal stochastic model for the counts of COVID-

19 infected cases, which is informed by the output of

LSTM run at a first stage.

Let Yit and Eit be the number of observed and expected

cases in the i-th area (health zone) and the t-th period (day),

t ¼ 1; . . .; T . We assume that conditional on the relative

risk, qit, the number of observed cases follows a Poisson

distribution

Yitjqits Poðkit ¼ EitqitÞ

where Eit are the predicted values from the LSTM model,

and the log-risk is modeled as

logðqitÞ ¼ b0 þ ZT
itbit þ SðxiÞ ð2Þ

with S(.) a spatially structured random effect, and the Zit
stand for the covariates (as mentioned in Sect. 2). We

assigned a vague prior to the vector of coefficients b ¼
ðb0; . . .; bpÞ which is a zero mean Gaussian distribution

with precision 0.001. Finally, all parameters associated to

log-precisions are assigned inverse Gamma distributions

with parameters equal to 1 and 0.00005.

To compute the joint posterior distribution of model

parameters, Bayesian inference has traditionally relied

upon Markov Chain Monte Carlo (MCMC) (Gilks 1996;

Brooks 2011). This distribution is often in a high dimen-

sional space and thus it is computationally very expensive.

As an alternative computationally faster solution, Rue et al.

(2009) developed a new approximation to the posterior

marginal distributions of model parameters based on a

Laplace approximation, and named it as integrated nested

Laplace approximation (INLA). INLA focuses on models

that can be expressed as latent Gaussian Markov random

fields (GMRF). In particular, we use a stochastic partial

differential equation (SPDE) method, as introduced by

(Lindgren et al. 2011). SPDE consists in representing a

continuous spatial process like a Gaussian field (GF) using

a discretely indexed spatial random process such as a

Gaussian Markov random field (GMRF). Note that condi-

tional autoregressive (CAR) models lead to some coun-

terintuitive or impractical results when irregular lattices are

used and/or the ‘cells’ are very different in area (Wall

2004). According to (Bakka et al. 2018) any parameteri-

zation of the CAR model must give positive definite pre-

cision matrices. Also, setting priors on the CAR parameters

needs dealing with the boundaries between proper and

intrinsic models (Bakka et al. 2018). The SPDE approach,

on the other hand, generates precision matrices with the

good computational properties of CAR models and is

applicable to any set of observation locations. So, we have

used SPDE technique that effectively allows INLA to

efficiently compute the spatial autocorrelation structure of

the dataset at the mesh vertices.

In particular, the spatial random process S(.) follows a

zero-mean Gaussian process with Matérn covariance

function represented as

CovðSðxiÞ; SðxjÞÞ ¼
r2

2m�1CðmÞ ðjjjxi � xjjjÞmKmðjjjxi � xjjjÞ

ð3Þ

where Kmð:Þ is the modified Bessel function of second

order, and m[ 0 and j[ 0 are the smoothness and scaling

parameters, respectively. INLA approach constructs a

Matérn SPDE model, with spatial range r and standard

deviation parameter r. The model parameterization is

expressed as

Fig. 6 Architecture of the LSTM method
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ðj2 � DÞða=2ÞðsSðxÞÞ ¼ WðxÞ

where j ¼
ffiffiffiffiffi
8m

p
=r is the scale parameter, D ¼

Pd
i¼1

o2

ox2
i

is

the Laplacian operator, a ¼ ðmþ d=2Þ is the smoothness

parameter, s is inversely proportional to r and W(x) is a

spatial white noise (Blangiardo and Cameletti 2015). Note

that we have d ¼ 2 for a two-dimensional process, and we

fix m ¼ 1, so that a ¼ 2 in our case.

We use the centroids of each health zone as the target

locations over which we build the mesh. The mesh is

formed by smaller triangles within the region of interest,

and by larger ones outside the region. The constrained

refined Delaunay triangulation is illustrated in Fig. 7. The

blue line highlights the outline boundary of the study area,

with the red dots indicating the centroids of the individual

health zones. Note that some few regions show sort of

clusters due to the close proximity of health zones. We

generate the projection matrix to project the spatially

continuous Gaussian random field from the observations to

the mesh nodes. Centroids of individual health zones and

the triangulations in the mesh are used to generate the

projection matrix. We fixed r ¼ 0:1 and r2 ¼ 1. Parame-

ters s and j are renamed as h1 ¼ logðsÞ and h2 ¼ logðjÞ,
and we assign them zero mean vague Gaussian indepen-

dent priors with precisions equal to 0.1. In the current

study, we have chosen to provide default prior distributions

for all parameters in R-INLA, as these have been chosen

partly based on priors commonly used in the literature

(Martins et al. 2013; Blangiardo and Cameletti 2015; Rue

et al. 2016; Moraga 2020). Our results our robust against

other alternative similar and justified priors, as we run

several cases with different priors obtaining the same

results.

4 Results

We fitted our Bayesian neural network approach (named as

LSTM-INLA throughout this section) and compared it with

two other baseline models, one which is only using a

LSTM method (named as LSTM) and the other one that

only fits a spatial Poisson regression with INLA and no

LSTM (named as INLA). We fitted the models for all the

temporal range except for the last week, and used these last

7 days for prediction. The models were evaluated using the

averaged Root Mean Squared Error (RMSE) from all

health zones. Additionally, we also considered the Baye-

sian metrics Watanabe Akaike information criterion

(WAIC) (Watanabe 2010), deviance information criterion

(DIC) (Spiegelhalter et al. 2002) and conditional predictive

ordinate (CPO) (Pettit 1990).

Table 4 shows the corresponding metrics, with RMSE

evaluated over the training period (RMSE Training) and

over only the prediction period (from 2021-01-30 to

2021-02-05, RMSE Prediction).

The RMSE for the LSTM-INLA model is lower than the

INLA and LSTM methods for both the training and pre-

diction periods. We note that although the RMSE for the

training set is quite as good as for the other two methods,

the RMSE for the prediction set for INLA and LSTM is far

larger. This suggests that inclusion of LSTM as an

expected value for the spatial Poisson regression plays an

important role. Similarly, the comparison of INLA and

LSTM-INLA models with DIC, WAIC and CPO metrics,

shows that the LSTM-INLA combination provides the best

fit. The correlation between the observed values and the

predicted ones for the prediction period (recall this is the

last week of the overall temporal range) is largest when

using the combined LSTM-INLA model (0.80) compared

to models using only INLA (0.77), and only LSTM (0.75),

reinforcing the goodness-of-fit of our proposal.

Figure 8 depicts the observed cumulative cases of

COVID-19 at three selected weeks within the overall

temporal range and chosen at different phases of the pan-

demic. We also show the corresponding predictions from

the LSTM method and the combined LSTM-INLA model.

In particular, first row of Fig. 8 represents the cumulative

number of cases on the initial week of COVID-19 spread in

Spain, 2020-03-22 to 2020-03-28, second row is for the

week 2020-10-18 to 2020-10-24, and third row stands for

the 7-days prediction ahead period, from 2021-01-30 to

2021-02-05. A map depicting the prediction from the

LSTM-INLA model and observed cases for the final week

of the study period is published in an R-Shiny app, which

can be accessed through the link6. A sample view of the

shiny app is presented in Fig. 11 in Appendix A.

Fig. 7 SPDE triangulation for the study area of Castilla-Leon 6 https://poshan-niraula.shinyapps.io/CYLCovidPrediction/
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To visualize the temporal trends, Fig. 9 shows the

observed cases together with the predicted ones for four

selected health zones (Avila Estacion, Las Huelgas, Casa

del Barco and Ponferrada-II). In particular, we note that we

can draw, together with the predictions under LSTM-

INLA, the corresponding 95% credible interval, providing

a measure of the uncertainty associated to the prediction,

thing that we can not obtain under LSTM alone. Com-

paring the prediction from the LSTM method (green lines),

the LSTM-INLA prediction with 95% credible interval

(blue lines) with the observed cases (red lines), we note the

better prediction results when using LSTM-INLA.

Figure 12 in Appendix D shows the corresponding residual

plots. They suggest the better behavior of the LSTM-INLA

model as they are lower in magnitude and symmetrically

distributed around the zero line. This is also true to the

prediction ahead case.

Having in mind the model described in Eq. 2, we now

put in place some information related to the posterior dis-

tribution of fixed and random effects. In particular, Fig. 10

depicts the marginal posterior mean and 95% credible

intervals of spatial random effect S(.). ID in the X-axis of

Fig. 10 represents 799 triangulation nodes of the SPDE

mesh used in the model. A stronger and significative spatial

Table 4 Metrics for model

evaluations
Model RMSE training RMSE prediction DIC WAIC CPO

INLA 5.33 14.24 373184.93 375164.6 -2.29

LSTM 4.44 6.07 – - –

LSTM-INLA 4.14 5.51 354601.13 355510.1 22.17

The best model is marked in bold

Fig. 8 Spatial distribution of the observed cases (left column) of COVID-19 for three selected weeks. Prediction from the LSTM method (central

column) and from LSTM-INLA model (right column)
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Fig. 9 Temporal trend plots of the observed and predicted cases with LSTM and LSTM-INLA models for four selected health zones. The grey

band stands for the 95% credible interval under the LSTM-INLA model
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effect is observed basically on the nodes of smaller trian-

gles within the region of interest (as shown in Fig. 7). The

nodes outside the region show no spatial effect.

Additionally, Table 6 in Appendix C and Fig. 13 in

Appendix E depict the marginal posterior distributions of

all fixed effects including the intercept (b0) and the other

covariates. We note that four covariates, namely number of

people demanding for employment, number of commercial

offices, number of industrial units and number of office

units in the urban areas, have no influence in our model.

The positive mean values for covariates such as average

cases in neighbouring health zones, cumulative cases, or

deaths indicate positive influence in the model. The

covariate ‘‘Average cases in neighboring health zones’’ has

a positive relationship with the average number of infected

cases for a specific health zone. Because COVID-19 is

highly infectious, incoming mobility of infected people

from neighboring health zones can have a direct impact on

the number of infected cases in other health zones. How-

ever, increased mortality results in tighter lockdown, lim-

iting mobility between neighboring health zones (dos

Santos Siqueira et al. 2020; Alfonso Viguria and

Casamitjana 2021). With the decrease in incoming mobil-

ity from neighbouring zones the chance of getting infected

has lowered. This leads to the decrease in infected cases

when there is a rise in mortality level in neighboring zones.

Thus, there exists a negative association for covariate

‘‘Average deaths in neighbouring health zones’’. On the

other hand, the covariate associated to daily movement

(spatial weight) has the highest positive mean value which

indicates strong positive influence of human mobility on

the model. Note that we additionally experimented with

other spatial weights that affect mobility. For example, we

introduced socio-demographic variables to incorporate

social behavior of the regions under study while computing

the spatial weights, but the outcome of the model was not

satisfactory. Similarly, other modifications on the spatial

weights were done to check the influence on the prediction,

but the chosen spatial weight was found to be the optimal

one in terms of prediction.

Finally, Fig. 14 in Appendix E shows the marginal

posterior Gaussian distributions of the two hyperparame-

ters for the spatial random field h1; h2. Mean and variance

for the two hyperparameters are h1 ¼ ð�3:10; 0:142Þ, and

h2 ¼ ð3:35; 0:099Þ.

5 Conclusions

For modeling the spread and outbreak of infectious dis-

eases, a model comprising the combination of neural net-

work and Bayesian inference for a spatio-temporal Poisson

regression has been proposed. This model is able to provide

good predictions of further cases of COVID-19 while

handling uncertainties. In particular, our model has two

components, a LSTM neural network, which learns from

the temporal patterns, and a spatial Poisson regression with

expected values the predictions coming from the LSTM.

The spatio-temporal Poisson regression considers various

spatial and temporal covariates. It is noteworthy that we

consider daily matrices of population movement that are

Fig. 10 Marginal posterior mean of the spatial random effect Sð�Þ
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transformed into spatial weights and act as additional

covariates in the model.

The proposed model was evaluated with COVID-19

daily infected cases in Castilla-Leon (Spain), consisting of

245 health zones, and within a temporal range running

from March 1, 2020 to February 5, 2021. The combined

model was able to predict the number of daily infections in

each health zone, outperforming two other cases, one with

only a neural network method and the other with only a

spatio-temporal Poisson regression. A key and novel aspect

is the introduction as a spatial weight of the population

movement, being highly influential in the overall fit.

However, we note that sudden increasing peaks or abrupt

decreasing magnitudes can not be finely fitted by our

model. We believe this is due to typos, errors or under-

reporting actions, and they clearly mean a challenge for

modeling purposes of this sort of data.

6 Discussion

Clearly, the accuracy of prediction may be improved by the

addition of other variables relevant to the disease of study

which may include the weather conditions and preventive

measures. The phenomenon of infectious disease spread

has a lot of complexities and is dependent on numerous

factors. These factors include the organism causing the

disease, the mode of transmission, human behaviors,

environmental conditions, and most importantly, some

potential preventive measures applied. All of these factors

are not quantifiable but a maximum number of these factors

are to be considered while modeling the diseases. In this

study, one of the most relevant considered factors is human

mobility. Some socio-demographic variables were consid-

ered but we believe more variables associated with the

socio-demography and climatic conditions can be intro-

duced. Similarly, the variables related to human behavior

and preventive measures such as social distancing and

personal hygiene should be incorporated in future works.

The focus of this work is on the combination of neural

networks and Poisson regression within a Bayesian

framework. The predictions from neural networks were

used as expected values for the Poisson regression which

can be improved by transferring the predictions to a prior

distribution and use them as prior information in the

Bayesian inference. Here we followed a two-stage proce-

dure, but ideally it would be better a joint solution such as

spatio-temporal recurrent neural networks able to predict

results with uncertainties. Finally, the proposed method is

applied only in one scenario of COVID-19 infection for a

short period. Thus, data with a longer period and different

spatial scales should be used to test the versatility of the

model.

The model is believed to be useful for the governments

in monitoring any infectious diseases. The results from the

model can be used in formulating health-related policies

such as the application of preventive measures or vacci-

nation. The contribution of this work is that it is able to

take advantage of the neural network methods in learning

complex dependencies from the data, as well as from a

Bayesian paradigm to associate the uncertainties in the

predictions. In conclusion, this work is able to present a

model that can provide accurate predictions of infectious

diseases and help in a way to mitigate the impacts.
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A shiny App

B LSTM method parameters

Fig. 11 View of R-Shiny App visualizing observed and predicted COVID-19 cases. See: https://poshan-niraula.shinyapps.io/

CYLCovidPrediction/

Table 5 Summary of

parameters and hyperparameters

in the LSTM model

Parameter Value

Number of LSTM layers 3

Hidden Units in LSTM layers Layer 1: 128, Layer 2: 64 and Layer 3: 32

Number of dense layers 1

Activation function of dense layer Linear

Number of epochs 100

Loss function Mean squared error

Optimizer ADAM (learning rate: 0.001, b1: 0.9, b2: 0.999)

Batch size 10
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C marginal posterior distributions
of covariate coefficients

Table 6 Marginal posterior

mean and credible interval of

fixed effects

Covariate Mean Credible interval

Monday -0.182 -0.193, -0.172

Tuesday -0.207 -0.218, -0.197

Wednesday -0.187 -0.198, -0.177

Thursday -0.658 -0.672, -0.644

Friday -0.326 -0.340, -0.312

Saturday -0.206 -0.212, -0.192

Sunday -0.321 -0.336, -0.310

Average cases in neighboring health zones 0.031 0.030, 0.032

Cumulative cases 0.025 0.019, 0.031

Deaths 0.019 0.013, 0.025

Average deaths in neighboring health zones -0.034 -0.043, -0.025

Daily normal weight (spatial weight) 0.041 0.040, 0.042

Number of people demanding employment -0.001 -0.001, 0.000

Total registered unemployment 0.001 0.000, 0.002

Number of urban commercial units 0.000 0.000, 0.000

Number of urban industrial units 0.000 0.000, 0.000

Number of urban office units 0.002 -0.001, 0.004
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D residual plots of fitted models and their
predictions

Fig. 12 Residual plot of the fitted models (left) and predictions (right)

2280 Stochastic Environmental Research and Risk Assessment (2022) 36:2265–2283

123



E marginal posterior distributions
and hyperparameters

Fig. 13 Marginal posterior distributions of covariate coefficients

Fig. 14 Hyperparameters h1 and h2 for the spatial random field Sð�Þ
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