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Abstract
This paper presents a time-series analysis of SO2 air concentration and the effects of particulates (either PM2.5 and PM10)

concentrations and meteorological conditions (relative humidity and wind speed) on SO2 trend in Tehran for the period

from 2011 to 2020. The source data were obtained from 21 monitoring stations of Air Quality Control Company and

meteorological stations in Tehran. To predict the status of future concentration of SO2, PM2.5 and PM10, a Box–Jenkins

ARIMA approach was used to model the monthly time series. Considering the whole period of ten years, a somewhat

downward trend was noted for SO2 air concentration, even though a slight rising trend was observed in 2020 year. Monthly

sulfur dioxide concentrations showed the lowest value in June and the highest value in January. Seasonal concentrations

were lowest in spring and highest in winter. Then, in the ArcGIS software, the IDW method was used to obtain air pollution

zoning maps. As a result, the highest average concentration of SO2 occurred in the north and southwest of Tehran. In the

last step, Relations between the SO2 concentration and particulate matters and relative humidity and wind speed were

calculated statistically using the daily average data. We finally concluded that the combined effect of particulate matters

and relative humidity with the increasing role of Sulfur dioxide overcomes the decreasing role of wind speed. This study

can contribute to a better understanding of the SO2 air pollution in Tehran affected by meteorological conditions and the

rapid urbanization and industrialization, followed by the possible combustion of fuel oil in power plants and health

problems.

Keywords Sulfur dioxide � Short-lived climate pollutants � Meteorological parameters � Air pollution � Machine learning �
ARIMA forecasting

1 Introduction

Atmospheric Sulfur dioxide (SO2), emitting from anthro-

pogenic and natural sources, is one of the most important

air pollutants leading to climate change, environmental

problems and health risks (Braga et al. 2006; Gonçalves

et al. 2005; Krotkov et al. 2016; Mallik and Lal 2014;

Pereira et al. 2009; Hoveidi et al. 2017; Borhani and

Noorpoor 2020). Sulfur dioxide can cause a number of

harmful effects on the lungs, (i.e., Wheezing, breathing

problems, chest tightness) (EPA 2008; Yun et al. 2015).

While PM2.5 (Particulate Matter with 2.5 lm or less in

aerodynamic diameter) is deposited on the surface of the

deeper parts of the lungs and PM10 (Particulate Matter with

10 lm or less in aerodynamic diameter) on the surface of

the larger airways in the upper part of the lungs. Particulate

matter deposited on the lung surface can lead to tissue
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damage and lung inflammation (Wei and Tang 2018;

Losacco and Perillo 2018; Happo 2009). SO2 is one of the

five main pollutants that together account for more than

90% of air pollution in the world (Sharma 2001). Sulfur

oxides in combination with particulate matter and mois-

ture (e.g. humidity) in ambient air produce the most

harmful effects associated with atmospheric air pollution

(Dutkiewicz et al. 2000; Moldan et al. 2001). Numer-

ous studies to show that exposure to SO2, PM2.5, and PM10

Periodontitis increases the risk of respiratory diseases in

adults, during the COVID-19 pandemic (Borhani et al.

2021a; Zoran et al. 2020; Zou et al. 2020; Wu et al. 2020).

Sulfur dioxide (SO2) is one of the Short-lived climate

forcers (SLCF). Short-lived climate forcers (SLCF) are

also known to as short-lived climate pollutants (SLCP)

(Randall et al. 2008; Retama et al. 2015; Stohl et al. 2015;

Kindbom et al. 2019). SO2 remains in the air for an average

of 2 to 4 days (Turalıoğlu et al. 2005). SO2, PM2.5, PM10

are precursors of aerosols (Wang et al. 2015).

Although the relationships between meteorological

conditions and SO2 air pollution have been investigated,

such as, Kalkstein and Corrigan (1986) examined a syn-

optic climatological approach to assessing the effects of

climate on sulfur dioxide concentrations. Elminir (2005)

mentioned dependence of air pollutants on meteorological

conditions over Cairo in Egypt. And Several works have

been carried out to study SO2 air pollution in Iran. Such as,

Geravandi et al. (2015) investigated the effects of nitrogen

dioxide (NO2) and sulfur dioxide (SO2) exposure related to

health and increased premature deaths in Ahvaz, the cap-

ital of Khuzestan province, Iran. The results showed that

about 5.6% of respiratory mortality and chronic obstructive

pulmonary disease cases occurred when nitrogen dioxide

(NO2) and sulfur dioxide (SO2) concentrations were above

20 lg m-3. Masoudi et al. (2018) studied the effects of

meteorological factors on the prediction of SO2 and the

relationships between air pollutants and some meteoro-

logical parameters in Tehran from 2009 to 2010. Shen et al.

(2020) proposed a machine learning-based extreme learn-

ing model to predict the concentration and ratio of air

pollutants (O3, CO, NO2, SO2, PM2.5, PM10) in Seoul, the

capital of South Korea. Bhatti et al. (2021) analyzed the

relationship between pollutants (CO, NO, O3, SO2) using a

time series model to predict subsequent concentrations.

Naseem et al. (2018) used an autoregressive integrated

moving average (ARIMA) model to predict air quality time

series data and then evaluated its application in air quality

management decision making.

We still have very little information on the dependence

of sulfur dioxide emissions on the geographic and meteo-

rological conditions of the city and the emission rate from

stationary and mobile sources. This study aimed to exam-

ine the relationship between SO2, PM10 and PM2.5

concentrations in ambient air and meteorological condi-

tions in Tehran using the auto-regressive integrated moving

average (ARIMA) method and statistical tools of analysis.

we tried to make a time series model to forecast the

environmental air quality time series data. Therefore, first,

exhibits monthly, seasonal and annual variations of con-

centration of sulfur dioxide and particulates (either PM10

and PM2.5) in the Tehran air over ten years (2011–2020). In

the second step, the effect of particulate matter (i.e., PM10

and PM2.5), wind speed, WS, and relative humidity, (RH in

%)) on variations of sulfur dioxide concentration based on

Pearson correlations between sulfur dioxide and its pre-

cursors were also analyzed. In the third step, the concen-

tration distribution of the air pollutants in 21 air quality

monitoring stations of the regions were zoned based on the

measurements with the ArcGIS software using Inverse

distance weighting (IDW) interpolation method. Finally,

we use a time series model for the prediction of sulfur

dioxide and particulate matter concentrations and wind

speed and relative humidity. Figure 1 shows a flowchart of

the steps followed during the research.

2 Materials and methods

2.1 The study area

Tehran, the largest metropolitan center in Iran, is located at

about 35� 410 2100 N and 51� 230 2000 E (see Fig. 2). The

total area covered by the city is about 751 km2. The

average annual precipitation amounts to 245.8 mm. The

highest temperature in Tehran is 43 �C and the lowest

temperature is - 15 �C. The average relative humidity is

about 40%. The prevailing wind is West Tehran (270�) and

its average speed is 5.5 m/s. Tehran city has a population

of 8.7 million approximately. There are a number of rea-

sons for air pollution in Tehran, some of which are in the

industrial sector, the transportation sector, and the geo-

graphical location of the city, with the large Alborz

Mountains in the north of the city contributing to pollution

levels. Tehran is thus one of the most polluted cities in Iran,

which is why an analysis of air quality in this city must be

conducted.

2.2 Field measurement

In Tehran city, the automatic measurement of air quality is

performed by 21 measuring stations of Air Quality Control

Company (AQCC 2020). Figure 2 shows the location of

the air pollution monitoring stations. The paper presents the

analysis of SO2, PM10 and PM2.5 concentrations measure-

ments collected at 21 stations which provided the infor-

mation for a database covering a period of ten years:
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2011–2020 (Table 1). all air quality monitoring stations

with[ 75% of the hourly data over the year were used for

further calculations, as less than 0.1% of the SO2 data for

each station was removed from the data set and subsequent

calculations. The incoming information was converted into

standard concentrations based on the Clean Discussion

Guidelines issued by the US Natural Security Organization
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Fig. 2 The locations of the air quality monitoring stations and the Mehrabad synoptic station in Tehran. a Iran, b Tehran Province, c Tehran City
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Table 1 Annual average of SO2, PM2.5, PM10 and RH and WS recorded from 2011 to 2020 in Tehran

Year Parameters Dataset

Winter Spring Summer Autumn

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2011 SO2 (ppb) 26.50 18.73 19.00 18.93 18.47 18.64 17.57 18.50 25.40 21.25 20.69 22.94

PM2.5 (lg m-3) 38.67 27.67 32.33 44.50 41.50 37.75 35.75 42.25 45.25 39.00 34.50 43.50

PM10 (lg m-3) 96.36 62.43 60.07 103.71 95.21 111.61 96.85 106.85 93.71 93.13 80.27 105.33

RH (%) 58.95 48.36 45.58 26.74 27.62 19.17 17.10 26.87 23.90 45.00 66.28 52.88

WS (Knot) 4.63 7.41 5.81 7.71 8.60 7.90 6.58 6.50 5.34 6.22 5.00 3.96

2012 SO2 (ppb) 29.91 26.00 22.09 17.38 16.71 18.57 21.61 18.93 19.23 19.77 18.23 21.77

PM2.5 (lg m-3) 34.33 33.33 34.00 33.00 41.56 32.90 38.64 31.15 32.36 36.50 35.14 44.50

PM10 (lg m-3) 75.50 73.30 63.50 72.08 108.00 79.23 84.31 77.87 83.60 80.00 71.06 90.94

RH (%) 48.66 52.74 32.14 38.75 23.79 21.67 23.06 18.41 24.43 33.39 52.34 64.96

WS (Knot) 5.88 6.08 8.69 6.54 8.59 6.31 6.15 5.48 5.51 5.23 4.22 4.27

2013 SO2 (ppb) 24.60 22.00 17.27 18.00 19.20 20.18 15.27 16.75 15.67 16.00 16.64 17.73

PM2.5 (lg m-3) 43.60 35.71 31.40 24.92 23.54 37.46 37.83 33.27 33.70 36.91 33.67 35.46

PM10 (lg m-3) 100.18 80.41 76.53 67.19 68.25 106.87 112.20 97.57 90.57 101.60 84.56 79.73

RH (%) 45.63 44.34 35.15 30.54 28.37 20.77 21.93 24.08 18.67 31.50 53.52 50.79

WS (Knot) 5.85 6.07 7.49 7.11 8.57 8.00 6.78 6.32 6.38 5.57 4.27 5.61

2014 SO2 (ppb) 19.89 19.89 15.22 19.50 21.00 14.12 11.69 14.91 16.91 15.78 17.50 18.60

PM2.5 (lg m-3) 38.62 35.85 24.85 21.90 22.80 34.33 36.00 29.00 34.45 32.09 29.50 37.91

PM10 (lg m-3) 78.40 85.57 64.28 57.21 64.13 94.46 95.21 86.17 94.36 84.00 69.60 86.33

RH (%) 54.36 44.68 36.58 32.38 24.73 18.48 19.34 16.08 19.04 37.65 49.23 53.61

WS (Knot) 5.26 5.07 8.18 7.44 7.72 8.00 6.78 6.16 6.21 6.57 4.58 4.39

2015 SO2 (ppb) 21.29 18.00 15.94 13.00 13.22 14.05 14.88 17.37 16.23 17.71 14.56 13.88

PM2.5 (lg m-3) 33.07 29.75 25.00 22.69 26.25 38.06 27.82 26.91 25.00 25.75 37.00 41.23

PM10 (lg m-3) 79.53 76.23 65.28 68.61 77.39 107.56 89.47 101.33 89.06 111.00 82.40 84.14

RH (%) 42.41 47.34 41.90 23.20 20.51 16.02 18.96 21.18 26.18 38.57 50.11 61.62

WS (Knot) 5.07 6.00 6.89 8.29 7.61 6.93 5.98 5.65 5.42 5.78 4.89 4.51

2016 SO2 (ppb) 13.87 15.44 11.07 8.36 9.00 8.27 13.91 9.54 10.00 10.87 12.38 11.93

PM2.5 (lg m-3) 27.71 32.08 23.38 22.43 25.50 30.14 35.20 35.21 31.33 29.50 42.00 42.00

PM10 (lg m-3) 72.46 87.53 64.36 59.13 68.27 95.78 102.53 92.43 110.36 94.93 101.43 83.50

RH (%) 46.98 37.46 35.89 36.48 26.39 19.23 22.31 18.00 21.43 28.15 41.48 52.64

WS (Knot) 5.76 6.04 8.75 7.57 8.47 8.14 7.03 5.19 6.66 4.71 4.61 5.14

2017 SO2 (ppb) 12.46 9.50 7.00 6.11 5.62 5.59 5.94 6.40 8.75 7.76 6.75 9.50

PM2.5 (lg m-3) 42.69 31.37 23.44 22.87 28.81 27.87 28.87 29.56 30.69 34.00 37.31 52.81

PM10 (lg m-3) 84.71 69.73 56.53 69.87 77.87 78.00 82.50 90.07 95.78 97.20 102.27 105.73

RH (%) 49.88 47.25 46.32 37.73 24.26 16.87 18.65 19.12 20.41 27.98 32.39 40.00

WS (Knot) 5.21 5.87 6.91 6.81 7.21 7.63 5.70 5.62 5.26 5.32 5.43 4.31

2018 SO2 (ppb) 8.50 7.07 6.13 4.88 3.00 3.87 4.86 4.80 5.07 5.26 5.40 6.27

PM2.5 (lg m-3) 40.33 43.47 30.60 25.06 25.00 26.14 32.29 25.86 25.07 24.57 29.93 33.80

PM10 (lg m-3) 81.07 93.21 85.57 58.47 71.20 70.40 85.93 89.81 84.06 68.31 62.63 79.56

RH (%) 47.00 55.95 27.15 37.08 37.46 22.26 14.09 20.00 21.17 40.36 59.14 51.50

WS (Knot) 5.34 5.15 8.38 6.25 7.18 6.30 5.65 6.00 5.58 5.69 4.29 4.71

2019 SO2 (ppb) 6.07 5.64 5.07 3.47 3.78 4.33 4.78 4.88 5.18 5.23 6.47 7.18

PM2.5 (lg m-3) 33.43 27.36 19.00 17.00 22.53 27.07 29.67 27.50 26.81 27.06 45.69 47.94

PM10 (lg m-3) 85.81 59.75 46.25 46.50 64.44 72.81 95.25 85.37 91.62 75.50 85.19 88.50

RH (%) 51.86 44.44 43.09 34.07 25.34 18.13 18.42 20.52 24.53 40.02 57.45 56.81

WS (Knot) 5.81 6.35 7.11 7.12 7.96 5.84 7.24 6.12 6.20 5.03 4.36 4.42
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(USEPA 1997). In this standard, a maximum concentration

of 24 h was used for SO2, PM10, and PM2.5.

The instruments used to measure the concentrations of

SO2, PM10 and PM2.5 were continuous automatic analyzers

manufactured by Thermo Fisher Scientific Inc. (Waltham,

MA, USA) and Teledyne API Inc. (San Diego, CA, USA).

The PM monitor was used to measure the concentrations of

both PM10 and PM2.5 in ambient air based on light scat-

tering and b-ray attenuation. The SO2 analyzer employed

pulse fluorescence detection to determine the SO2 con-

centration in the ambient air. Data must be evaluated in the

wider context of the checks and calibrations employed

during their use and in the production of published data, a

process usually known as quality assurance and quality

control (QA/QC). Recording Air Quality Control Company

systems follows QA/QC (2008/50/EC). Then, in the Arc-

GIS software, the IDW method was used to obtain air

pollution zoning maps. As a result, spatial analysis of

distribution of SO2, PM2.5 and PM10 contaminants in

Tehran was made. Also, the Spearman correlation coeffi-

cient model was used to examine the relationship between

sulfur dioxide and PM10, PM2.5, RH, and WS (Ozbay

2012). Correlation coefficients (r) significant at the 0.05

level (P value B 0.05) are identified with a single asterisk

(significant).

r ¼
P

ŷi � ŷi
� �

yi � yið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

ŷi � ŷi
� �2P

yi � yið Þ2
q ð1Þ

2.3 ARIMA model

Time series forecasts including automatic ARIMA mod-

eling was carried out using the ‘forecast’ package. A dif-

ferenced process that depends upon the p lags of the series

values and q lags of the error terms is termed as ARIMA

(p = autoregressive, d = differencing, q = moving aver-

age). we apply these processes on this series to find out the

best and most appropriate ARIMA model. The ARIMA

model can be considered as a ‘‘cascade’’ of the two models.

The first part of this model is suitable for non-stationary

conditions, the equation of which is as follows:

Yt ¼ 1 � Lð ÞdXt: ð2Þ

The second part is wide-sense stationary, the equation of

which is as follows:

1 �
Xp

i¼1

uiL
i

 !

Yt ¼ 1 þ
Xq

i¼1

hiL
i

 !

et: ð3Þ

The variables of this equation are: L is the lag operator,

hi the parameters of the moving average part, et is error

term, and the three variables p, d, q mentioned earlier.

The values of the p and q variables can be found by one

of the functions: autocorrelation function (ACF), or partial

autocorrelation function (PACF). We used both of these

functions here to find the most suitable order (Agrawal

et al. 2017). To establish whether an ARIMA model

qualifies to predict the concentration of sulfur dioxide,

PM2.5 and PM10 and wind Speed and relative humidity

parameters in Tehran, statistical errors through determi-

nation coefficient (R2), mean square error (MSE) and root

mean square error (RMSE) were applied as follows

(Beckerman et al. 2013; Elavarasan et al. 2018; Goap et al.

2018):

R2 ¼ 1 �
Pn

i¼1 yi � yið Þ
Pn

i¼1 yi � yð Þ ð4Þ

MSE ¼ 1

n

Xn

i¼1

ðyi � ŷiÞ2 ð5Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðyi � ŷiÞ2

s

ð6Þ

where yi and ŷi are the forecasted and observed i values of

y, yi and ŷi represent the mean y values of the forecasted

and observed in the tested sample set and n denotes the

number of datum points in the set.

Table 1 (continued)

Year Parameters Dataset

Winter Spring Summer Autumn

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2020 SO2 (ppb) 7.00 6.22 4.72 3.39 3.83 4.53 4.33 6.05 6.56 5.78 6.33 9.67

PM2.5 (lg m-3) 38.75 26.44 21.56 18.62 22.75 26.25 27.75 24.37 24.50 31.62 30.94 49.50

PM10 (lg m-3) 73.69 68.88 52.37 44.44 65.44 75.57 71.75 78.00 78.19 79.94 62.63 89.12

RH (%) 57.95 46.75 41.37 48.37 26.28 17.46 21.02 26.46 23.60 32.71 57.20 67.71

WS (Knot) 5.11 7.90 6.21 6.86 7.47 7.65 6.27 6.78 5.27 4.42 4.42 4.08
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In this study, Meteorological data from the Mehrabad

synoptic station in Tehran during a period of 10 statistical

years (2011–2020) was used to recorded wind speed and

relative humidity. Mehrabad Meteorological Station is

located at 35� 410 N and 51� 190 E. The average annual

temperature, average annual relative humidity, average

annual precipitation, and annual sunshine hours are

17.7 �C, 41%, 238.9 mm, and 3025 h, respectively. The

prevailing wind is from the west, as calculated at three

times of record (morning, noon, and evening) at a speed of

5.5 m/s (IRIMO 2020).

3 Result and discussion

3.1 Sampling data analysis

The results show that the trend of changes in PM2.5, PM10,

and sulfur dioxide in Tehran decreased from 2011 to 2020

(Fig. 4a–c) (Skrobacki et al. 2019). Torbatian et al. (2020)

investigated air pollution variations in Tehran. Their results

show that the PM2.5 and sulfur dioxide concentrations

decreased from 2005 to 2016. The average concentrations

of SO2, PM2.5, and PM10 during the last 10 Years, are

12.77 ppb, 32.14 lg m–3 and 81.94 lg m–3, respectively.

In December and January 2019 and 2020, the concentra-

tions of PM2.5, PM10, and sulfur dioxide increased

(Table 1). It was found that the maximum concentration for

the examined period was recorded in January 2012 with an

average value of 29.91 ppb and the lowest average monthly

concentration for SO2 was in 2018 (3.00 ppb) (Table 1).

Sulfur dioxide pollutants also cause the formation of sec-

ondary suspended particles in the atmosphere. in winter

and autumn, inversion is often observed in the city, which

leads to an increase in the concentration of pollutants in the

city. Kaushik and Melwani (2007), observed high SO2

concentrations during the colder months in Delhi.

However, in another study in Kerman, Iran, SO2 concen-

trations were shown to have a stable trend (Mansouri et al.

2013).

In this study, PM10 also showed a decreasing trend. The

highest average monthly concentration for PM10 was in

2013 (112.2 lg m-3) and the lowest in 2020

(44.44 lg m-3) and maximum values are seen in summer

(Table 2). The results described in the present study are

consistent with several earlier investigations (Draxler et al.

2001; Shahsavani et al. 2012). According to Fig. 3b, the

highest amounts of PM10 were recorded in the Shad Abad

station.

The highest average monthly concentrations for PM2.5

were in 2017 (52.81 lg m-3) and the lowest in 2019

(17.00 lg m-3). PM2.5 reaches its maximum concentration

in Tehran in December and January (Table 2). Zhang et al.

(2021) examining the trend of PM2.5 concentration, they

also concluded that the average PM2.5 concentration

reaches its maximum in December and January. The zon-

ing map shows that in regions 3 and 18 (Darrous and

Shadabad monitoring stations), concentrations of PM2.5 are

high and in the central regions is less (Fig. 3a).

Two monitoring stations, Darrous and Aqdasiyeh, are

located in the north of the city, and higher sulfur dioxide

concentration is observed at these sites. After that, the

District 16 monitoring station (in the southwest of Tehran)

shows the highest sulfur dioxide concentration (Fig. 3c).

The primary and secondary standard for sulfur dioxide

according to the NAAQS for 24 h was 140 ppb (Goudarzi

et al. 2014; WHO 2003; US EPA 2011). Table 3 shows that

the annual average concentration of sulfur dioxide in air

quality monitoring stations in Tehran was below the

NAAQS standards from 2011 to 2020. One of the factors

that can be effective in the heterogeneous distribution of

pollutants in the city of Tehran is the rapid population

growth and development of construction activity in some

areas compared to other areas. This means that

Table 2 The average monthly

SO2, PM2.5 and PM10

concentration and RH and WS

in the city Tehran from 2011 to

2020

Month SO2 (ppb) PM2.5 (lg m-3) PM10 (lg m-3) RH (%) WS (Knot)

Jan 17.01 37.32 82.77 50.37 5.39

Feb 14.84 32.30 75.70 46.93 6.19

Mar 12.35 26.55 63.47 38.52 7.44

Apr 11.30 25.30 64.72 34.53 7.17

May 11.38 28.02 76.02 26.47 7.94

Jun 11.21 31.79 89.23 19.00 7.27

Jul 11.48 32.98 91.60 19.49 6.42

Aug 11.81 30.51 90.55 21.07 5.98

Sep 12.89 30.92 91.13 22.34 5.78

Oct 12.54 31.71 88.56 35.53 5.45

Nov 12.49 35.52 80.20 51.91 4.61

Dec 13.94 42.86 89.29 55.25 4.54
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Fig. 3 Distribution of annual

average concentration in air

quality monitoring stations in

Tehran from 2011 to 2020,

a PM2.5, b PM10, c SO2
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Table 3 Detailed information on AQMSs and the hourly average of SO2, PM2.5 and PM10 data recorded from 2011 to 2020 in Tehran

No District Air Quality Monitoring Stations (AQMSs) Latitude Longitude *SO2 (ppb) *PM2.5 (lg m-3) *PM10 (lg m-3)

1 1 Aqdasiyeh 35.7958 51.4841 18.00 28.50 64.50

2 2 Sharif University 35.7022 51.3509 8.00 37.50 88.00

3 20 Ray 35.6036 51.4257 11.00 37.50 87.00

4 21 District 21 35.6977 51.2431 11.00 36.50 111.50

5 5 Punak 35.7623 51.3316 12.00 21.75 62.00

6 8 Golbarg 35.7310 51.5061 10.00 23.50 68.00

7 15 Masoudieh 35.6300 51.4990 9.00 25.75 73.00

8 6 Tarbiat Modares University 35.7175 51.3859 8.00 32.75 85.50

9 10 District 10 35.6974 51.3580 18.00 31.75 71.00

10 9 Fath.Square 35.6788 51.3375 13.00 32.75 112.00

11 7 Setad Bohran 35.7270 51.4312 10.00 32.25 72.00

12 19 District 19 35.6352 51.3625 12.00 36.50 85.00

13 18 Shad Abad 35.6700 51.2973 12.00 38.50 119.50

14 22 District 22 35.7233 51.2436 4.00 27.50 64.00

15 16 District 16 35.6445 51.3976 21.00 34.50 61.00

16 13 Piroozi 35.6959 51.4937 11.00 33.75 105.50

17 2 District 2 35.7770 51.3681 8.00 22.75 58.00

18 11 District 11 35.6729 51.3897 12.00 34.25 61.00

19 22 Rose Park 35.7398 51.2678 14.00 27.75 67.00

20 4 District 4 35.7418 51.5064 14.00 32.75 55.00

21 3 Darrous 35.7777 51.4541 20.00 44.75 110.00

*Air Quality Monitoring Stations with less than 75% valid hourly data available were excluded from the next analysis

Table 4 Spearman’s rank

correlations between SO2,

PM2.5, PM10 and RH, WS data

from 2011 to 2020

SO2 (ppb) PM2.5 (lg m-3) PM10 (lg m-3) RH (%) WS (Knot)

SO2 (ppb) 1

PM2.5 (lg m-3) 0.5787 1

PM10 (lg m-3) 0.0648 0.5611 1

RH (%) 0.6845 0.5679 - 0.2986* 1

WS (Knot) - 0.5186* - 0.8083* - 0.4960* - 0.5873* 1

*P B 0.05

Table 5 Square root of the MSE

for Algorithm test the average

monthly SO2, PM2.5 and PM10

concentration and RH and WS

in Tehran from January 2020 to

December 2020

No Models (p, d, q) RMSE SO2 RMSE PM2.5 RMSE PM10 RMSE WS RMSE RH

1 ARIMA (1, 1, 1) 3.6331 8.6379 15.0551 2.1165 Error

2 ARIMA (2, 1, 2) 3.7908 7.1540 17.9815 1.4282 8.9558

3 ARIMA (3, 1, 3) 3.8052 8.4443 14.6274 0.7193* Error

4 ARIMA (3, 2, 3) 1.9937 20.8813 14.4223* 2.8032 Error

5 ARIMA (4, 1, 4) 1.5600 7.6312 16.9547 Error Error

6 ARIMA (3, 1, 4) 1.5172* 7.8734 14.8090 Error 8.6740*

7 ARIMA (2, 1, 4) 3.7239 7.7383 14.5312 0.9204 8.7141

8 ARIMA (2, 1, 3) Error 7.0851* 14.5628 1.3185 Error

MSE Mean squared error, RMSE Square root of the MSE, Error The algorithm has not reached convergence

*Minimum square root of the MSE
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development has not been continuously distributed

throughout the city during these ten years.

3.2 Correlation analysis

Table 4 shows the relationships between sulfur dioxide and

PM2.5, PM10, RH, WS using the average Pearson correla-

tion coefficient (r). The results indicated that the Sulfur

oxides, in combination with particulate matter and rela-

tively high relative humidity, have the strongest negative

impact on the environment (P value[ 0.05) (Schwartz

1996; Asadifard 2013). While the concentration of sulfur

oxides decreases with increasing wind speed

(P value\ 0.05) (Unal et al. 2000). Venners et al. (2003)

also investigated the concentration of sulfur oxides in

Chongqing, China, showing that there is a positive corre-

lation between sulfur dioxide concentrations and particu-

lates (either PM2.5 and PM10) concentrations. wind speed

(WS) has a negative correlation with PM2.5 and PM10

concentrations (r = - 0.808 and - 0.496 respectively). In

addition, a significant positive correlation was observed

between PM2.5 and PM10, which shows that PM2.5 and

PM10 have the same origin (r = 0.561).

3.3 Results of the ARIMA model

For the purpose of time series modelling in this study, the

first 12 observations (January 2020 to December 2020)

were used to fit the ARIMA model while the subsequent 7

observations (from January 2021 to July 2021) were kept

for the post sample forecast accuracy check. As presented

in Table 5, the value of SO2 is decreases till the ARIMA

(3,1,4) but at ARIMA (2,1,4) it again increases. So, the

smallest significant value of SO2 for the ARIMA process is

at ARIMA (3,1,4). So, we may conclude that the ARIMA

(3, 1, 4) gives better results on forecasting the concentra-

tion of sulfur dioxide. Pohoata and Lungu (2017) also used

the ARIMA model to forecast SO2 concentration in

Ploiesti, Romania, showing that the best result was

obtained with ARIMA (3, 1, 3). Das et al. (2019) also

showed the best fitted ARIMA (p, d, q) was selected on the

basis of the maximum value of R2 and minimum value of

RMSE. Similarly, ARIMA (2, 1, 3), ARIMA (3, 2, 3),

ARIMA (3, 1, 4) and ARIMA (3, 1, 3) are the best model

for predicting the concentration of PM2.5, PM10, relative

humidity and wind speed, respectively. The ARIMA model

was able to predict the 7 months from 2021 relatively

accurately, with only 1 year (2020) of data (Table 6). The

ARIMA statistical forecasting method did not provide

satisfactory results to predict PM10 concentrations in 2021,

the relative errors are bigger than 10% (Fig. 4c). The

forecasting of the PM10 concentrations is difficult because

of the uncertainties in describing the meteorological con-

ditions and emission variability (Zhang et al. 2017). This

error rate may be associated with a rapid change in wind

direction. The prevailing wind flows from the west in

Tehran. main winds from west, south and southwest which

are industrial places are the main sources of Tehran

air pollution (Borhani et al. 2017, 2021b). The increasing

error in forecasting is due to the unpredictability of new

trends that may occur in the future. In April 2021 predic-

tion for SO2 concentration, the Actual Value was 4.68 ppb,

while the Predicted Value was 4.61 ppb, a difference of

0.07 ppb. For the data corresponding to SO2, PM2.5, WS

and RH time series, the determination coefficient (R2) and

RMSE equal to (0.74, 2.18), (0.73, 9.49), (0.88, 0.67) and

(0.82, 9.66), respectively (as can be seen in Fig. 4a–e and

Table 6 Comparison of model

predictions and actual values for

average monthly SO2, PM2.5

and PM10 concentration and RH

and WS in Tehran from January

2020 to December 2020

(Algorithm test)

Month SO2 (ppb) PM2.5 (lg m-3) PM10 (lg m-3) WS (Knot) RH (%)

AV PV AV PV AV PV AV PV AV PV

Jan 7.00 6.08 38.75 39.59 73.69 85.31 5.11 5.56 57.95 51.37

Feb 6.22 5.15 26.44 29.46 68.88 79.06 7.90 6.10 46.75 48.88

Mar 4.72 4.78 21.56 23.56 52.37 77.73 6.21 6.71 41.37 42.45

Apr 3.39 4.84 18.62 24.63 44.44 76.61 6.86 7.12 48.37 33.81

May 3.83 5.15 22.75 28.30 64.44 77.51 7.47 7.22 26.28 25.25

Jun 4.53 5.53 26.25 30.20 75.57 77.49 7.65 7.00 17.46 19.05

Jul 4.33 5.83 27.75 29.57 71.75 78.05 6.27 6.50 21.02 16.85

Aug 6.05 6.01 24.37 28.12 78.00 77.93 6.78 5.87 26.46 19.23

Sep 6.56 6.03 24.50 27.39 78.19 78.17 5.27 5.26 23.60 25.57

Oct 5.78 5.91 31.62 27.57 79.94 78.09 4.42 4.85 32.71 34.15

Nov 6.33 5.70 30.94 28.01 62.63 78.27 4.42 4.74 57.20 42.70

Dec 9.67 5.45 49.50 28.16 89.12 78.27 4.08 4.97 67.71 48.93

AV Actual value, PV Predicted value
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Table 7). Therefore, the ARIMA model provided satis-

factory results.

In general, the ARIMA model is the most suitable model

for predicting unexpected values, but drastic changes in the

data and, of course, the monthly step and averaging have

caused a high error for some pollutants, even when the

noise has been removed.

4 Conclusion

The paper presents the results of comparative analysis of

measuring and monitoring the concentration of sulfur

dioxide, based on, the changes in sulfur dioxide concen-

tration due to changes in particulates (either PM10 and

PM2.5) concentrations and meteorological conditions (rel-

ative humidity and wind speed) in the air in the city of

Fig. 4 Time-series analysis (Train set,Forecast set, Algorithm forecast, Test set and Algorithm test) model in air quality monitoring stations in

Tehran from 2011 to 2020, a SO2, b PM2.5, c PM10, d WS, e RH
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Tehran from 2011 to 2020. In this study used an ARIMA

modelling approach for short-term forecasting Sulfur

dioxide (SO2), Particulate Matter (PM10 and PM2.5) con-

centrations, and meteorological conditions (relative

humidity and wind speed). According to the measurements

results of SO2, PM10 and PM2.5 concentrations from 21

monitoring stations of Air Quality Control Company in

Tehran and the data of Mehrabad Meteorological Station

(RH and WS), it can be deduced, average SO2, PM10, and

PM2.5 concentrations have decreased significantly over the

past decade. And as for the seasonal concentrations, SO2

concentrations in the air are increased in the winter, which

is affected not only by weather but also by other pollutants

(production of thermal energy for city heating, combustion

of fuel oil in power plants, small boiler rooms for certain

economic entities, companies, old vehicles, etc.). The

results show that the monthly concentration of sulfur

dioxide is lowest in June and highest in January. The dis-

tribution of annual average concentration in air quality

monitoring stations shows that the highest average SO2

concentration in zoning map is related to the north and

southwest of Tehran. The Correlations of SO2 with PM2.5

and PM10 and with relative humidity and wind speed were

examined using Pearson correlation. The results showed

that SO2 has a positive and significant correlation with

PM2.5, PM10 and relative humidity and a negative corre-

lation with relative wind speed. These results come from

the fact that more than 80% of sulfur oxides are produced

by burning fossil fuels from stationary pollution sources,

followed by the most important cause of particulate matter

emissions, the high volume of traffic in Tehran. The Alborz

Mountains have made Tehran’s climate very humid and as

a result, sulfur oxides combined with suspended particulate

matter and humidity have the most harmful effects on air

pollution in Tehran.

However, for quality improvement, it is necessary to

take many additional measures, such as the expansion of

the public transport system, especially the metro system,

the establishment of technical control centers and the

obligation of technical inspection of vehicles, the control

and monitoring of car traffic, especially in the last hours of

the night, the change of fuel consumption of suburban

power plants and the monitoring of pollution standards, and

better distribution of fuel for intercity buses, because

without this update, no concrete measures can be taken to

reduce SO2.

In addition, relatively accurate prediction of air pollutant

concentrations, both short and long term, is an important

step in mitigating the damage causes of poor air quality.

For example, public and private institutions can plan for

the economic, health and environmental impacts of air

pollution by predicting the period when air pollution levels

may be particularly high.
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Özbay B (2012) Modeling the effects of meteorological factors on

SO2 and PM10 concentrations with statistical approaches. Clean-

Soil Air Water 40(6):571–577. https://doi.org/10.1002/clen.

201100356

Pereira L, Braga A, Morimoto T, Braga L, Andre PA, Saldiva P

(2009) Association between low birthweight and air pollution in

an industrial Brazilian city. Epidemiology 20(6):S82. https://doi.

org/10.1097/01.ede.0000362955.25009.82

Pohoata A, Lungu E (2017) A complex analysis employing ARIMA

model and statistical methods on air pollutants recorded in

Ploiesti. Romania. Rev. Chim. 68(4):818–823. https://doi.org/10.

37358/RC.17.4.5559

Randall S (2008) Baseline assessment of short-lived climate pollu-

tants in Bangladesh. In: Proceedings of 3rd international

conference on environmental aspects of Bangladesh, p 33

Retama A, Baumgardner D, Raga GB, McMeeking GR, Walker JW

(2015) Seasonal trends in black carbon properties and co-

pollutants in Mexico City. Atmos Chem Phys Discuss

15(8):12539–12582. https://doi.org/10.5194/acpd-15-12539-

2015

Schwartz J (1996) Air pollution and hospital admissions for

respiratory disease. Epidemiology 7(1):20–28

Shahsavani A, Naddafi K, Haghighifard NJ, Mesdaghinia A, Yune-

sian M, Nabizadeh R, Goudarzi G (2012) The evaluation of

PM10, PM2.5, and PM1 concentrations during the Middle Eastern

Dust (MED) events in Ahvaz, Iran, from April through

September 2010. J Arid Environ 77:72–83. https://doi.org/10.

1016/j.jaridenv.2011.09.007

Sharma BK, Kaur H (2001) An introduction to environmental

pollution, vol 456. Krishna Prakashan Media (p) Ltd

Shen J, Valagolam D, McCalla S (2020) Prophet forecasting model: a

machine learning approach to predict the concentration of air

pollutants (PM2.5, PM10, O3, NO2, SO2, CO) in Seoul, South

Korea. PeerJ 8:e9961. https://doi.org/10.7717/peerj.9961

Skrobacki Z, Dabek LE, Lagowski P (2019) Modelling and forecast-

ing of SO2 concentration in atmospheric air—a case study of the

city of Krakow. In: IOP conference series: materials science and

engineering, vol 471, no 10, p 102057. IOP Publishing. https://

doi.org/10.1088/1757-899X/471/10/102057

Stohl A, Aamaas B, Amann M, Baker L, Bellouin N, Berntsen TK,

Boucher O, Cherian R, Collins W, Daskalakis N, Dusinska M

(2015) Evaluating the climate and air quality impacts of short-

lived pollutants. Atmos Chem Phys 15(18):10529–10566.

https://doi.org/10.5194/acp-15-10529-2015

Tehran Air Quality Control Company, AQCC (2020). http://air.

tehran.ir/

Torbatian S, Hoshyaripour A, Shahbazi H, Hosseini V (2020) Air

pollution trends in Tehran and their anthropogenic drivers.

Atmos Pollut Res 11(3):429–442. https://doi.org/10.1016/j.apr.

2019.11.015
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