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Abstract
To study urban air quality, this paper proposes a novel categorical time series model, which is based on a linear

combination of bounded Poisson distribution and discrete distribution to describe the dynamic and systemic features of air

quality, respectively. Daily air quality level data of three major cities in China, including Beijing, Shanghai and

Guangzhou, are analyzed. It is concluded that the air quality in Beijing is the worst among the three cities but is gradually

improving, and its dynamics is also the most pronounced. Theoretically, the design of our model increases the flexibility of

the probabilistic structure while ensuring a dynamic feedback mechanism without high computational stress. We estimate

the parameters through an adaptive Bayesian Markov chain Monte Carlo sampling scheme and show the satisfactory finite

sample performance of the model through simulation studies.
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1 Introduction

Air quality has become a common concern, both for health-

sensitive individuals and for the academics interested in it.

The reason for concern is that air pollution is a major cause

of death and disease, further posing a threat to economic

development and inclusive prosperity. Exposure to air

pollution is the fourth leading fatal health risk worldwide

behind metabolic risks, dietary risks, and tobacco smoke,

while in low- and middle-income countries, it is the third

behind metabolic risks and dietary risks (World Bank and

IHME 2016). In 2016, the global health cost of mortality

and morbidity caused by exposure to ambient PM2.5 air

pollution was $5.7 trillion, equivalent to 4.8% of global

gross domestic product. By region, the cost in China and

India is equivalent to 7.5–8% of GDP (World Bank 2020).

Andrée (2020) showed that PM2.5 was a very important

predictor of confirmed COVID-19 cases and associated

hospital admissions. Because air pollution leads to the loss

of productive labor, it is also an economic burden. In

addition, air pollution disproportionately affects the poorest

populations, which hinders the achievement of shared and

inclusive prosperity.

Over the past two decades, China has been actively

working to reduce average urban ambient air pollutant

concentrations. However, challenges remain in managing

air pollution according to either the World Health Orga-

nization guidelines or China’s own grade I limit value.

Therefore, it is necessary and valuable to conduct research

on the air quality of major cities in China. In this paper, we

focus on the air quality in recent years in three of China’s

most developed first-tier cities, including Beijing, Shanghai

and Guangzhou. The air quality level is quantized into six

categories in China: (1) excellent; (2) good; (3) slightly

polluted; (4) moderately polluted; (5) heavily polluted; (6)

severely polluted. Daily data on air quality levels of each

city over time naturally form a categorical time series. This

paper is about the analysis of such categorical time series

X1; . . .;Xn with the ordered categorical range

fm1; . . .;mMg, where m1\ � � �\mM . Such data can also be

viewed as an ordinal time series, see Weiß (2020) for

details, which expresses the dissimilarity of ordinal cate-

gories through a distance metric.
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This paper proposes an observation-driven model to

study the data of air quality level, in which the observations

are supposed to follow a novel distribution based on a

linear combination of a bounded Poisson distribution and a

discrete distribution. On the one hand, the dynamic struc-

ture relies on the intensity parameter of the bounded

Poisson distribution, which is conditional on past infor-

mation with the form of the autoregression. On the other

hand, the discrete distribution characterizes systemic fea-

tures in the observations that do not vary with time. This

design increases the flexibility of the probabilistic structure

of the model while ensuring the presence of a dynamic

feedback mechanism. It is meaningful to distinguish

between systemic and dynamic changes in air quality

research. Specifically, in China, suspended dust, coal

combustion, industrial dust, vehicle emissions, biomass

burning and secondary particulate matter contribute to

urban pollution sources (World Bank 2012), where sus-

pended dust, coal combustion, biomass burning and sec-

ondary particulate matter are seasonal factors, but there

exists a considerable non-seasonal part of them due to

almost fixed climate and topography and the high maturity

of the industrial structure in each city. Therefore, this part

is treated as systemic, while industrial dust, vehicle emis-

sions and the non-systemic part of seasonal factors are

considered dynamic. According to data released by the

Ministry of Public Security of China, 27.53 million new

motor vehicles were registered in the first three quarters of

2021, an increase of 4.363 million units or 18.83% year-on-

year, which supports the rationality of our classification in

one way.

As for our proposed model, it is suitable for studying air

quality data. The first advantage of our proposed model is

its simplicity and practicality, mainly thanks to the fact that

it does not require the conversion of observations into

vector form and has fewer parameters to be estimated.

There exist some categorical time series models that treat

observations as a ðM � 1Þ-dimensional vector, and the

conditional distribution given its past is multivariate nat-

urally. Many other categorical time series models such as

Markov chain models, generalized choice models, and

spectral envelope models have also been studied in the

literature. For earlier works, see, for example, Stoffer et al.

(1993), Fokianos and Kedem (2003) and the references

therein. For more recent ones, Kauppi and Saikkonen

(2008), Moysiadis and Fokianos (2014), Fokianos and

Moysiadis (2017) and Fokianos and Truquet (2019) con-

ducted relevant studies. The theory of modeling categorical

time series in vector form is gradually being refined, but

there usually exist a large number of parameters to be

estimated resulting in high computational costs. Therefore,

the application of this type of model is difficult to imple-

ment. In contrast, our proposed model guarantees a time-

varying feedback mechanism without high computational

cost.

The second contribution of the proposed model is that it

breaks, to some degree, the restriction of pre-defined dis-

tribution for models of bounded count time series or cat-

egorical time series. A large number of studies have been

devoted to modeling bounded count time series with

binomial distributions. For example, Weiß (2009), Cui and

Lund (2010), Weiß and Pollett (2012) and Weiß and Kim

(2013) modeled count data time series with a finite range

based on the binomial thinning operator introduced by

Steutel and van Harn (1979). And the binomial AR(1)

model defined in Al-Osh and Alzaid (1991) based on the

hypergeometric thinning operator is also available. More-

over, the integer-valued GARCH models with binomial

marginals is an implementable approach, see Weiß and

Pollett (2014) and Chen et al. (2020). Liu et al. (2022)

proposed the zero-one-inflated bounded Poisson autore-

gressive model focusing on the normalcy-dominant phe-

nomenon in the data of air quality levels, and achieved the

ranking of air quality of major cities in China. However,

the true probability structure of real data is complex and

hard to determine, so the reliance on distribution type in the

modeling process makes the risk of model mis-specifica-

tion unavoidable, which in turn may result in the invalid

estimation. In this paper, the introduction of the discrete

distribution, which describes systemic features in the

observations that do not vary with time, and weakens the

restrictions on distribution to a certain extent. Compared

with a fixed binomial marginal distribution or a bounded

Poisson distribution, the linear combination of a bounded

Poisson distribution and a discrete distribution makes the

probability structure more adaptive to the data in practice.

For the estimation and inference, we develop Bayesian

inference procedures via Markov chain Monte Carlo

(MCMC) methods for the proposed model. Related Baye-

sian works can be found in Chen et al. (2016), Xu et al.

(2020) and Gorgi (2020). The daily air quality level data

for three major cities in China, including Beijing, Shanghai

and Guangzhou, are analyzed. For this data set, we have

two main concerns. The first is the overall difference in air

quality in the three cities from 2016 to 2020. The second is

the year-to-year change in air quality for each city.

Accordingly, we draw conclusions separately.

The organization of this paper is as follows. Section 2

introduces the so called Novel Category model. Section 3

investigates Bayesian inference procedures. Simulations

are provided in Sect. 4. Applications to the air quality level

data are provided in Sect. 5.
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2 Categorical time series models combining
dynamic and systemic information

We start by considering a novel distribution with the fol-

lowing probability mass function, named the Novel Cate-

gory (NC) distribution:

PðY ¼ kÞ ¼ d
kk=k!
DðkÞ þ ð1� dÞak; k ¼ 0; . . .;K;

where d is the proportion parameter satisfying d 2 ½0; 1Þ,

k[ 0 is the intensity parameter, DðkÞ ¼
XK

i¼0

ki

i!
, the

integer K � 1 is a given upper bound, ai � 0 for i ¼
0; . . .;K satisfying

PK
i¼0 ai ¼ 1. For some i� 2 f0; . . .;Kg,

ai� is set to be zero to ensure the identifiability of the

model, i.e., there are at most K entries of a ¼ ða0; . . .; aKÞ
are non-zero. The above distribution is denoted as

NCðk; a; d;KÞ. It can be observed that the NC distribution

is a linear combination of the bounded Poisson distribution

BPðk;KÞ and the discrete distribution satisfying

PðZ ¼ kÞ ¼ ak, where the probability mass function of

BPðk;KÞ is PðX ¼ kÞ ¼ kk=k!
DðkÞ .

The NC distribution is suitable to fit categorical data.

One reliable reason is its finite states f0; 1; . . .;Kg, and the

other is that the existence of parameter d and ais breaks

restrictions of the existing probability structure, and no

longer limited to Poisson form or even any other fixed

form. The flexible probability structure improves the

credibility of fitting sundry categorical data in real life.

Meanwhile, the existence of k facilitates the introduction of
dynamic information, which will be explained in detail

later.

Consider a categorical time series fYtgnt¼1 that is con-

ditionally NC distributed with time-varying kt as follows:

YtjF t�1 � NC ðkt; a; d;KÞ; ð2:1Þ

where F t�1 is the r-field generated by fYt�1; Yt�2; � � �g. By
the above specification, the conditional mean of Yt is:

E½YtjF t�1� ¼ dkt 1� kKt =K!
DðktÞ

� �
þ ð1� dÞ

XK

i¼0

iai:

It can be clearly observed that E½YtjF t�1� is composed of

two parts, including the time-varying term

kt 1� kKt =K!
DðktÞ

� �
ð2:2Þ

and the constant
PK

i¼0 iai, which represent dynamic and

systemic information, respectively. Further, we assume

autoregressive structure for fktgnt¼1:

kt ¼ xþ wkt�1 þ /Yt�1; ð2:3Þ

where x[ 0;w� 0 and /� 0. For ease of discussion, only

the first-order autoregressive structure for fktg is investi-

gated. However, the generalization to higher-order

autoregression is possible using similar stylized arguments.

Note that the structure of (2.3) has been used by Chen et al.

(2018) to examine the causal relationship between ambient

fine particles and human influenza in Taiwan.

Equations (2.2) and (2.3) imply that the current state Yt
in (2.1) is comprehensively determined by two parts,

including the time-varying part affected by past observa-

tions and the inherent part that does not change with time.

The closer the proportion parameter d is to zero, the more

stable the probability structure, and the lighter the pro-

portion of the part that changes over time. Conversely, The

d reflects the flexibility of the probability structure over

time, with closer to 1 indicating higher flexibility. Next, we

give an explicit definition.

Definition 2.1 A categorical time series fYtgnt¼1 is said to

follow the flexible categorical autoregressive (FCAR)

model, if fYtgnt¼1 satisfies (2.1) and (2.3).

The FCAR model introduces an autoregressive feedback

mechanism in the linear combination of bounded Poisson

and discrete distributions, which lays the foundation for

realizing the analysis of the dynamics and systemic fea-

tures of air quality. The subsequent section is concerned

with the estimation of parameters in the FCAR model.

3 Bayesian inference

Before proceeding formally with parameter estimation, it is

necessary to specify the dimensionality of the parameters

to be estimated. Because of the restriction
PK

i¼0 ai ¼ 1 and

the identifiability condition ai� � 0 for some

i� 2 f0; . . .;Kg, only K � 1 parameters of a need to be

estimated. For i� ¼ 0; 1; . . .;K � 1, we have

aK ¼ 1�
PK�1

i¼0 ai; for i� ¼ K, we have

aK�1 ¼ 1�
PK�2

i¼0 ai. Define

as¼
ða0;a1;...;ai��1;ai�þ1;...;aK�1Þ; if i�¼0;1;...;K�2;

ða0;a1:::;aK�3;aK�2Þ; if i�¼K�1;K:

�

Then, denote the time series of interest and the vector of

ðK þ 3Þ unknown parameters by Y ¼ ðY1; . . .; YnÞ and

h ¼ ðx;w;/; as; dÞ>, respectively.
Then, the log-likelihood function for the FCAR model

with ai� � 0 is
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LðYjhÞ¼
Xn

t¼1

ltðYjhÞ

¼

Pn

t¼1

log d
kYtt =Yt!
DðktÞ

þð1�dÞ aYtIfYt 6¼Kgþ 1�
XK�1

i¼0

ai

 !
IfYt¼Kg

 ! !
; if i� 6¼K;

Pn

t¼1

log d
kYtt =Yt!
DðktÞ

þð1�dÞ aYtIfYt 6¼ðK�1Þgþ 1�
XK�2

i¼0

ai

 !
IfYt¼K�1g

 ! !
; if i� ¼K:

8
>>>>><

>>>>>:

For simplicity of exposition, we rearrange h into three parts

such that h¼ðh>1 ;h>2 ;h3Þ
>
, where h1¼ðx;w;/Þ>, h2¼a>s

and h3¼d. For each m¼1;2 and 3, the conditional pos-

terior for hm is proportional to the log-likelihood function

multiplied by the prior density of hm,

PðhmjY; h �mÞ / LðYjhÞPðhmÞ; ð3:1Þ

where h �m is the vector of all unknown parameters except

hm, and PðhmÞ is the prior density.

The choices of priors are not unique, but usually non-

informative ones are appropriate, see Chen et al. (2016)

and Xu et al. (2020). Specially, for m ¼ 1; 2 and 3, we use

indicator functions Ifhm2Xmg as uniform priors for hm, where

X1 : x;/;w[ 0 and /þ w\1;

X2 : (the sum of each element of asÞ� 1 and (each element of asÞ	 1;

X3 : 0	 d\1:

These generate flat priors on the parameters under required

constraints. The non-standard posterior distributions (3.1)

prompt us to adopt MCMC methods to fulfill computa-

tional inference, where the MC samples for groups of

parameters are sampled successively from their conditional

posterior distributions. To draw samples from the condi-

tional posterior distributions with faster convergence and

better mixing, we apply the random-walk Metropolis-

Hastings in the first M iterations and the independent-ker-

nel Metropolis-Hastings in the subsequent N �M itera-

tions. We complete the parameter estimation of the FCAR

model along the lines described above and refer to Chen

et al. (2016) for details.

4 Simulations

To examine the effectiveness of the proposed MCMC

methods, we investigate the finite sample performance by

Monte Carlo simulations in this section. The following

three data generating processes (DGPs) of various sample

sizes (T ¼ 300; 500; 1000) are considered:

• DGP 1: Yt follows the FCAR model with K ¼ 5, a1 ¼ 0

and

ðx;w;/; a0; a2; a3; a4; dÞ
¼ ð0:3; 0:35; 0:2; 0:1; 0:55; 0:15; 0:1; 0:6Þ;

• DGP 1: Yt follows the FCAR model with K ¼ 5, a2 ¼ 0

and

ðx;w;/; a0; a1; a3; a4; dÞ
¼ ð0:3; 0:35; 0:2; 0:1; 0:55; 0:15; 0:1; 0:6Þ;

• DGP 3: Yt follows the FCAR model with K ¼ 5, a1 ¼ 0

and

ðx;w;/; a0; a2; a3; a4; dÞ
¼ ð0:3; 0:35; 0:2; 0:1; 0:55; 0:15; 0:1; 0:7Þ:

We simulate 500 replications from each of the three DGPs.

The sample of iterations in the random-walk Metropolis-

Hastings is selected as M ¼ 10;000 and the total sample of

iterations is N ¼ 30;000. Only N �M iterations of the

independent-kernel Metropolis-Hastings in every sample

period is used for inference. The simulation results of

DGPs 1, 2 and 3 are reported in Tables 1, 2 and 3,

respectively. The true value, the average posterior mean,

median, standard deviation (Std.), the posterior 2.5 and

97.5 percentiles are reported in each column from left to

right in tables, and the last two items constitute a 95%

credible interval (CI).

For all threeDGPs and three sample sizes, the biases of the

posterior means and the corresponding true values are rea-

sonably small, as are the biases of the posterior median and

the corresponding true values. This implies that both the

posterior mean and posterior median estimators are appli-

cable in the FCAR models. The standard deviations of the

intercept parameterx and d are acceptably larger than that of
other parameters. And as expected, all standard deviations

decrease as the sample size increases. Moreover, all true

values are covered by the 95% CI, and both the posterior 2.5

and 97.5 percentiles are closer to the true values with

increase of the sample size. All the above results indicate that

the Bayesian method is effectively applicable to the esti-

mation of unknown parameters in the FCAR model.

5 Empirical analysis

In this section, we study the daily air quality level data for

three major cities in China, including Beijing, Shanghai

and Guangzhou. The air quality level is quantized by

Chinese government into six categories: ‘0’ stands for

‘excellent’; ‘1’ stands for ‘good’; ‘2’ stands for ‘slightly

polluted’; ‘3’ stands for ‘moderately polluted’; ‘4’ stands

for ‘heavily polluted’ and ‘5’ stands for ‘severely polluted’.
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Naturally, the air quality level of each city forms a cate-

gorical time series.

Each sample set we considered covers 5 years of data

from January 1, 2016 to December 31, 2020, with a total of

1827 observations. We have two concerns about this data

set. The first is the overall difference in the air quality of

three cities from 2016 to 2020. The second is how the air

quality of each city changes year by year. The distinction

between systemic and dynamic features is focused on

during the analysis. Systemic features we considered is the

systemic part of seasonal factors including suspended dust,

coal combustion, biomass burning and secondary particu-

late matter, while industrial dust, vehicle emissions and the

non-systemic part of seasonal factors are considered to be

dynamic.

In advance, we report the plots of the ordinal Cohen’s

jðhÞ of three cities in Fig. 1, which is a measure of serial

dependence in categorical time series defined in Weiß

(2020). The slow decay with increasing time lag h implies

that the data are consistent with the autoregressive structure

(2.3).

It must be emphasized that when facing with real data,

we cannot determine in advance which i� satisfying

ai� ¼ 0, otherwise the rationality of the model will be

weakened. Therefore, in the empirical analysis, for each

group of data, we will set ai� ¼ 0 in turn for i� ¼ 0; . . .; 5

and then generate 6 candidate models, from which the one

with the largest likelihood function will be selected as the

final model suitable for that group of data.

To study the first concern, we use the FCAR model to fit

1827 observations of each city, respectively, and summa-

rize results in Table 4, including the posterior mean,

standard deviation, the posterior 2.5 and 97.5 percentiles.

Based on these results, we elaborated the following three

conclusions:

(1) The order of size of the proportion parameter d in the

three models is that Beijing (0.7182)[Guangzhou

(0.5468)[ Shanghai (0.5088). This implies that the

Table 1 Summary of estimation results for DGP 1

True value Mean Median Std. 2:5% 97:5%

n ¼ 300

x 0.30 0.5837 0.5641 0.3044 0.0815 1.1805

w 0.35 0.4046 0.4053 0.2091 0.0395 0.7834

/ 0.20 0.1571 0.1513 0.0710 0.0348 0.3136

a0 0.10 0.2164 0.2164 0.1069 0.0228 0.4274

a2 0.55 0.5197 0.5207 0.0779 0.3645 0.6719

a3 0.15 0.0751 0.0686 0.0491 0.0044 0.1833

a4 0.10 0.0682 0.0653 0.0375 0.0070 0.1495

d 0.60 0.6568 0.6567 0.0673 0.5262 0.7876

n ¼ 500

x 0.30 0.4192 0.3889 0.2151 0.0872 0.8927

w 0.35 0.2992 0.2960 0.1530 0.0319 0.5992

/ 0.20 0.2458 0.2430 0.0680 0.1217 0.3865

a0 0.10 0.1483 0.1414 0.0866 0.0105 0.3293

a2 0.55 0.5600 0.5605 0.0590 0.4438 0.6723

a3 0.15 0.1189 0.1208 0.0439 0.0291 0.2019

a4 0.10 0.0550 0.0540 0.0229 0.0128 0.1026

d 0.60 0.6176 0.6160 0.0486 0.5260 0.7155

n ¼ 1000

x 0.30 0.3478 0.3402 0.1349 0.1103 0.6225

w 0.35 0.3458 0.3432 0.1368 0.0911 0.6164

/ 0.20 0.2213 0.2203 0.0444 0.1374 0.3118

a0 0.10 0.1645 0.1626 0.0791 0.0232 0.3247

a2 0.55 0.5550 0.5542 0.0508 0.4560 0.6552

a3 0.15 0.0872 0.0876 0.0301 0.0261 0.1469

a4 0.10 0.1004 0.1002 0.0207 0.0605 0.1409

d 0.60 0.6208 0.6208 0.0340 0.5542 0.6849

Table 2 Summary of estimation results for DGP 2

True value Mean Median Std. 2:5% 97:5%

n ¼ 300

x 0.40 0.4334 0.4076 0.2188 0.0906 0.9105

w 0.35 0.3768 0.3791 0.1868 0.0374 0.7162

/ 0.20 0.2355 0.2200 0.1029 0.0730 0.4751

a0 0.10 0.1850 0.1918 0.0931 0.0147 0.3470

a1 0.55 0.5326 0.5317 0.0592 0.4188 0.6530

a3 0.15 0.0966 0.0927 0.0441 0.0213 0.1933

a4 0.10 0.0805 0.0764 0.0344 0.0250 0.1583

d 0.60 0.5444 0.5451 0.0960 0.3652 0.7220

n ¼ 500

x 0.40 0.3550 0.3409 0.1351 0.1299 0.6518

w 0.35 0.3202 0.3215 0.1422 0.0497 0.5946

/ 0.20 0.2636 0.2563 0.0746 0.1377 0.4314

a0 0.10 0.1344 0.1303 0.0805 0.0075 0.2929

a1 0.55 0.5507 0.5499 0.0539 0.4470 0.6575

a3 0.15 0.1304 0.1281 0.0393 0.0600 0.2131

a4 0.10 0.0650 0.0626 0.0235 0.0259 0.1180

d 0.60 0.6037 0.6083 0.0707 0.4576 0.7295

n ¼ 1000

x 0.40 0.3414 0.3341 0.1046 0.1628 0.5652

w 0.35 0.3409 0.3405 0.1162 0.1123 0.5628

/ 0.20 0.2585 0.2542 0.0530 0.1664 0.3753

a0 0.10 0.0959 0.0896 0.0619 0.0048 0.2244

a1 0.55 0.5862 0.5856 0.0392 0.5113 0.6628

a3 0.15 0.1351 0.1344 0.0294 0.0797 0.1944

a4 0.10 0.0780 0.0768 0.0192 0.0437 0.1185

d 0.60 0.6103 0.6143 0.0495 0.5054 0.6962
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probability structure of Beijing’s daily air quality

level has the most changes over time and is relatively

unstable. Among the three cities, the probability

structure of Shanghai is relatively stable. Beijing’s

air quality is most heavily influenced by these

dynamics, including industrial dust, vehicle emis-

sions and the non-systemic part of seasonal factors.

(2) From the comparison of the values of the three sets

of parameters ais (i ¼ 1; 2; 3; 4; 5), it can be seen that

the overall air quality of Shanghai is better than that

of Beijing, but second to that of Guangzhou. The

reasonable principle is the more probability is

concentrated on ai with smaller i, the better air

quality in the city. It is well documented that soil

dust and road dust contribute the most to PM10 in the

urban atmosphere. In northern cities, the contribution

of soil dust and road dust to PM10 concentration is

higher than that in southern cities. In general, cities

in the North China Plain, including Beijing, are

polluted by dust emissions from industry, roads and

buildings because diffusion conditions are not as

good as those in the Northeast and Northwest (World

Bank 2012)

(3) For the time-varying part, wþ /[ 0:8 occurs in all

three cities, which is consistent with the expectation

that the air quality of the day should be influenced by

the previous day. The larger intercept term (0.3145)

indicates that Beijing is at a disadvantage among

these three cities.

(4) We compare FCAR model with two other models,

including the zero-one-inflated bounded Poisson

autoregressive (ZOIBPAR) model in Liu et al.

Table 3 Summary of estimation results for DGP 3

True value Mean Median Std. 2:5% 97:5%

n ¼ 300

x 0.40 0.5664 0.5551 0.2521 0.1334 1.0495

w 0.35 0.3590 0.3553 0.2019 0.0253 0.7351

/ 0.20 0.1504 0.1454 0.0655 0.0370 0.2945

a0 0.10 0.2310 0.2291 0.1249 0.0201 0.4760

a2 0.55 0.5111 0.5122 0.0991 0.3123 0.6999

a3 0.15 0.0617 0.0521 0.0462 0.0030 0.1719

a4 0.10 0.0623 0.0574 0.0372 0.0066 0.1495

d 0.60 0.7330 0.7332 0.0626 0.6109 0.8545

n ¼ 500

x 0.40 0.2965 0.2822 0.1253 0.0932 0.5813

w 0.35 0.3491 0.3526 0.1300 0.0878 0.5928

/ 0.20 0.2755 0.2741 0.0542 0.1731 0.3851

a0 0.10 0.0987 0.0802 0.0782 0.0036 0.2910

a2 0.55 0.5659 0.5689 0.0693 0.4237 0.6953

a3 0.15 0.1305 0.1310 0.0491 0.0319 0.2264

a4 0.10 0.1246 0.1219 0.0371 0.0595 0.2067

d 0.70 0.7427 0.7411 0.0453 0.6566 0.8342

n ¼ 1000

x 0.40 0.3359 0.3244 0.1144 0.1451 0.5902

w 0.35 0.3568 0.3614 0.1142 0.1201 0.5681

/ 0.20 0.2412 0.2399 0.0411 0.1640 0.3250

a0 0.10 0.1358 0.1261 0.0867 0.0072 0.3214

a2 0.55 0.5651 0.5672 0.0594 0.4455 0.6740

a3 0.15 0.1129 0.1140 0.0386 0.0345 0.1857

a4 0.10 0.0940 0.0929 0.0234 0.0519 0.1431

d 0.70 0.7242 0.7238 0.0338 0.6582 0.7911

Fig. 1 The ordinal Cohen’s jðhÞ of three cities with lags h ¼ 0; 1; . . .; 20
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(2022) and a special FCAR model with ai ¼ 0 for 8
i named the bounded Poisson autoregressive (BPAR)

model. In Table 5, it can be seen that FCAR model

performs best in terms of Akaike information

criterion (AIC) and Bayesian information criterion

(BIC), which implies that the inclusion of systematic

factors makes sense.

To check the adequacy of the specified model, we cal-

culate estimated standardized Pearson residuals et ¼
Yt�E½Yt jF t�1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½Yt jF t�1�

p and report the ACF plots of the residuals in

Fig. 2. Moreover, the Ljung-Box tests are also applied to

check whether or not the residuals appear to be white noise,

and the corresponding p-values are shown in Fig. 2. The

results in Fig. 2 demonstrate that the fitted FCAR models

are adequate.

Next, we fit the data of each city for each whole year

(2016–2020) by the FCAR model to characterize the

annual changes in air quality in the last 5 years. To elab-

orate more clearly, we show the results in Figs. 3, 4, 5 and

6, and obtain the following conclusions:

(1) Figure 3 shows ds of the three cities in the past

5 years. It can be seen that the ds in Beijing show a

decreasing trend, which implies that the influence of

systemic factors on air quality in Beijing is deepen-

ing. The ds in Guangzhou increases after 2017,

implying that the air quality in Guangzhou is

becoming more vulnerable to dynamic factors. The

change of ds in Shanghai is relatively mild.

(2) It is obvious that the value of a3 þ a4 þ a5 is

decreasing year by year in Fig. 4, which shows that

the air quality of Beijing is showing signs of

improvement. Based on a3 þ a4 þ a5 in Figs. 5 and

6, we can find that the air quality in Shanghai and

Guangzhou has always been better than that in

Beijing. From 2016 to 2019, a0 þ a1 of Shanghai is

rising, while a2 is declining. This indicates further

optimization of Shanghai’s air quality, but with a

slight rebound in 2020.

(3) Table 6 reports the posterior means and 95% CIs of

x̂; /̂ and ŵ, respectively. The year-on-year changes

of x̂ once again imply that although the air quality of

Beijing is the worst among the three cities, its air

quality is gradually improving. The slight changes of

x̂; /̂ and ŵ over the 5 years indicate that the internal

structure of the dynamic factors affecting air quality

in Guangzhou is stable. This reflects the efficiency of

Guangzhou’s pollution control policy, which is well

adaptive to changes in dynamic factors such as

vehicle emissions and industrial upgrading.

Table 4 Summary of estimation results for the FCAR Model

Beijing Shanghai Guangzhou

a5 ¼ 0 a4 ¼ 0 a4 ¼ 0

Mean Std. 2:5% 97:5% Mean Std. 2:5% 97:5% Mean Std. 2:5% 97:5%

x 0.3145 0.0493 0.2210 0.4148 x 0.0184 0.0137 0.0010 0.0525 x 0.0116 0.0091 0.0011 0.0341

w 0.0217 0.0187 0.0007 0.0723 w 0.0443 0.0316 0.0023 0.1229 w 0.0648 0.0253 0.0274 0.1124

/ 0.8283 0.0470 0.7298 0.9226 / 0.8170 0.0385 0.7327 0.8728 / 0.8030 0.0378 0.7398 0.8559

a0 0.0246 0.0196 0.0008 0.0729 a0 0.0065 0.0054 0.0002 0.0208 a0 0.0064 0.0048 0.0007 0.0194

a1 0.7453 0.0375 0.6705 0.8201 a1 0.8503 0.0177 0.8171 0.8824 a1 0.9033 0.0166 0.8690 0.9413

a2 0.2146 0.0337 0.1440 0.2764 a2 0.1358 0.0165 0.1072 0.1680 a2 0.0865 0.0157 0.0500 0.1216

a3 0.0111 0.0099 0.0005 0.0366 a3 0.0055 0.0034 0.0011 0.0134 a3 0.0027 0.0017 0.0002 0.0061

d 0.7182 0.0303 0.6570 0.7776 d 0.5088 0.0173 0.4746 0.5430 d 0.5468 0.0135 0.5284 0.5752

Table 5 AICs and BICs for

models considered
Beijing Shanghai Guangzhou

AIC BIC AIC BIC AIC BIC

FCAR 4645.645 4669.984 3640.476 3684.559 3423.746 3467.829

ZOIBPAR 4648.157 4675.709 3682.964 3710.516 3455.721 3483.273

BPAR 4748.518 4761.049 4067.796 4080.327 3872.581 3885.113
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Fig. 2 The ACF plots of residuals (upper row) and the p-values of the Ljung-Box tests for residuals (lower row). a, d Beijing; b, e Shanghai; c,
f Guangzhou

Fig. 3 d̂s of three cities from 2016 to 2018. a Beijing; b Shanghai; c Guangzhou
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Fig. 4 âi of Beijing from 2016 to 2020, for i ¼ 0; . . .; 5

Fig. 5 âi of Shanghai from 2016 to 2020, for i ¼ 0; . . .; 5
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Fig. 6 âi of Guangzhou from 2016 to 2020, for i ¼ 0; . . .; 5

Table 6 Summary of estimation results for the CCAR Model

2016 2017 2018 2019 2020

Beijing x 0.4491 0.3980 0.2887 0.2905 0.1504

CIðxÞ (0.2474, 0.6793) (0.2094, 0.6139) (0.1226, 0.5013) (0.1008, 0.4889) (0.0123, 0.3382)

w 0.0240 0.0634 0.0781 0.0462 0.1053

CIðwÞ (0.0006, 0.0818) (0.0018, 0.1929) (0.0029, 0.2298) (0.0014, 0.1528) (0.0056, 0.2741)

/ 0.8529 0.7745 0.8047 0.7035 0.7078

CIð/Þ (0.6668, 0.9774) (0.5959, 0.9414) (0.6150, 0.9453) (0.5489, 0.8790) (0.5306, 0.8903)

Shanghai x 0.0644 0.0845 0.0639 0.0501 0.0551

CIðxÞ (0.0031, 0.1939) (0.0029, 0.2485) (0.0019, 0.1933) (0.0020, 0.1737) (0.0022, 0.1898)

w 0.0582 0.1240 0.1298 0.0924 0.0587

CIðwÞ (0.0018, 0.1957) (0.0043, 0.3156) (0.0074, 0.3242) (0.0039, 0.2756) (0.0022, 0.1875)

/ 0.8495 0.7577 0.6695 0.7411 0.6759

CIð/Þ (0.6853, 0.9711) (0.5690, 0.9460) (0.4862, 0.8522) (0.5697, 0.9068) (0.5040, 0.8557)

Guangzhou x 0.0602 0.0629 0.0617 0.0630 0.0242

CIðxÞ (0.0020, 0.2042) (0.0013, 0.2001) (0.0052, 0.2086) (0.0024, 0.1892) (0.0011, 0.0715)

w 0.0618 0.0983 0.0742 0.1396 0.0774

CIðwÞ (0.0019, 0.1877) (0.0041, 0.2664) (0.0027, 0.2367) (0.0137, 0.3212) (0.0056, 0.1839)

/ 0.7516 0.7496 0.6959 0.7470 0.7676

CIð/Þ (0.5890, 0.9133) (0.5647, 0.9298) (0.5406, 0.8851) (0.5618, 0.9100) (0.6175, 0.9117)
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