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Abstract
Evidence of global warming induced from the increasing concentration of greenhouse gases in the atmosphere suggests

more frequent warm days and heat waves. The concept of an extreme heat event (EHE), defined locally based on

exceedance of a suitable local threshold, enables us to capture the notion of a period of persistent extremely high

temperatures. Modeling for extreme heat events is customarily implemented using time series of temperatures collected at

a set of locations. Since spatial dependence is anticipated in the occurrence of EHE’s, a joint model for the time series,

incorporating spatial dependence is needed. Recent work by Schliep et al. (J R Stat Soc Ser A Stat Soc 184(3):1070–1092,

2021) develops a space-time model based on a point-referenced collection of temperature time series that enables the

prediction of both the incidence and characteristics of EHE’s occurring at any location in a study region. The contribution

here is to introduce a formal definition of the notion of the spatial extent of an extreme heat event and then to employ

output from the Schliep et al. (J R Stat Soc Ser A Stat Soc 184(3):1070–1092, 2021) modeling work to illustrate the notion.

For a specified region and a given day, the definition takes the form of a block average of indicator functions over the

region. Our risk assessment examines extents for the Comunidad Autónoma de Aragón in northeastern Spain. We calculate

daily, seasonal and decadal averages of the extents for two subregions in this comunidad. We generalize our definition to

capture extents of persistence of extreme heat and make comparisons across decades to reveal evidence of increasing extent

over time.
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1 Introduction

There is strong evidence of global warming due to the

increasing concentration of greenhouse gases in the atmo-

sphere (Lai and Dzombak 2019). This global warming

suggests more frequent warm days, more frequent and

persistent heat waves (Lemonsu et al. 2014; Alexander

2016) as well as events that break previous records by

much larger margins (Fischer et al. 2021; Cebrián et al.

2021). The analysis of heat waves is particularly important

due to the potential for serious anthropogenic, environ-

mental, and economic impacts (Amengual et al. 2014;

Campbell et al. 2018). Extreme heat raises significant

health concerns in humans as it can result in death, change

the range or niche for plants and animals, and lead to heat-

driven peaks in electricity demands or lost crop income.

A challenge in analyzing heat waves stems from on-

going debate over its exact definition. According to the

World Meteorological Office (WMO), a period persisting

at least three consecutive days of marked unusual hot

weather (maximum, minimum and daily average temper-

ature) over a region with thermal conditions above given

thresholds based on local climatological conditions can be

considered a heat wave. This definition suggests that
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Zaragoza, Zaragoza, Spain

2 Dpto. Métodos Estadı́sticos, EINA, Universidad de Zaragoza,

Zaragoza, Spain

3 Department of Statistical Science, Duke University, Durham,

NC, USA

4 Department of Statistics, University of Missouri, Columbia,

MO, USA

5 Facultad de Economı́a y Empresa, Universidad de Zaragoza,

Zaragoza, Spain

123

Stochastic Environmental Research and Risk Assessment (2022) 36:2737–2751
https://doi.org/10.1007/s00477-021-02157-z(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-9052-9674
http://orcid.org/0000-0002-0174-789X
http://orcid.org/0000-0003-3859-0248
http://orcid.org/0000-0003-2617-4167
http://crossmark.crossref.org/dialog/?doi=10.1007/s00477-021-02157-z&amp;domain=pdf
https://doi.org/10.1007/s00477-021-02157-z


analyses of heat waves require temperature series at a daily

scale, but offers no operational guidance with regard to the

various choices of implementation. Khaliq et al. (2005)

and Reich et al. (2014) used only maximum temperature,

while Keellings and Waylen (2014) and, more recently,

Abaurrea et al. (2018) considered both maximum and

minimum temperatures.

While there is lack of agreement on heat wave definition

in the literature (Perkins and Alexander 2013; Smith et al.

2013), the concept of an extreme heat event (EHE) is

explicitly defined, capturing the notion of a period (number

of consecutive days) of persistent extremely high temper-

atures. Specifically, EHE’s are defined locally and are

based on exceedance of a suitable local threshold. That is,

useful thresholds should be based on local conditions; in

the sequel, we adopt the 95th percentile of local daily

maximum temperatures, derived using a ten year period. In

the context of persistence of exceedance, it is evident that

we need to model daily max temperatures since an EHE is

defined at a given location as a run of consecutive daily

temperature observations exceeding the given threshold for

that location. Additionally, daily modeling enables

assessment of important behaviors describing the nature of

an EHE such as the duration, average exceedance, and

maximum exceedance above the threshold. As a result, we

define extent in terms of incidence of exceedance on a

given day, developed from a daily max temperature model

that is able to adequately represent both the central part and

the upper tail of the temperature distribution. It is not a

model only for the tails or observations above a threshold,

i.e., left-truncated data (peaks over thresholds models) or

for the extremes (generalized extreme value distribution

models). Such modeling addresses different objectives.

Modeling for extreme heat events is customarily

implemented using time series of temperatures over a

window of time collected at particular locations. However,

spatial aspects of this phenomenon are also of interest and

should be introduced into the modeling process, particu-

larly with interest in predicting EHE behavior at locations

without available time series of temperatures. Since spatial

dependence is anticipated in the occurrence of EHE’s, a

joint model for time series at different locations that

incorporates spatial dependence is needed.

Recent work by Schliep et al. (2021) develops a space-

time model based on a point-referenced collection of

temperature time series that enables the prediction of both

the incidence and the characteristics of the EHE’s occur-

ring at any location in the region. Specifically, it offers

direct spatial modeling for daily maximum temperatures

which can then be used to characterize the EHE’s. The

challenge is that, while the bulk of the distribution, i.e.,

where most of the data is observed, is not extreme, the

main interest for the model lies in the upper tail when

attempting to characterize EHE’s (Keellings and Waylen

2015; Shaby et al. 2016). To address this, a specification

incorporating thresholding is introduced, i.e., a model

which switches between two observed states, one that

defines extreme heat days (those above the temperature

threshold) and the other that defines non-extreme heat days

(those below the temperature threshold). Again, these

thresholds are obtained locally and assumed fixed. Impor-

tantly, this two-state structure allows temporal dependence

of the observations but also permits the parameters con-

trolling the effects of covariates and the spatial dependence

to differ between the two states. We briefly review details

of this modeling in Sect. 2.4.

With regard to risk assessment, the contribution of this

work is to formalize the notion of the spatial ‘‘extent’’ of an

extreme heat event and then to illustrate it using output

from the Schliep et al. (2021) modeling work. Interest in

characterizing the extent of heat waves is clear. For

example, Lhotka and Kyselý (2015) proposed an extremity

index that captures joint effects of spatial extent, temper-

ature and duration of heat waves. Keellings and Morad-

khani (2020) also developed a spatial metric combining

heat wave frequency, magnitude, duration and areal extent

to analyze the evolution of heat waves across the United

States. Rebetez et al. (2009) compared the heatwave extent

in Europe in 2003 and 2006. Khan et al. (2019) found an

increase of 1.36% of the affected area having both maxi-

mum and minimum temperature above the 95th percentile

per decade in Pakistan. Lyon et al. (2019) projected the

increase in the spatial extent of contiguous US summerheat

waves using the CMIP5 archive under RCP4.5 and RCP8.5

scenarios. They found a substantial increase in spatial

extent climate model employing projections for

2031–2055. However, all this work analyzes the extent

using descriptive approaches and using observed or gridded

data with no formal inference from probabilistic modeling.

Some more formal definitions related to the concept of

area under extreme conditions have been introduced in the

statistical literature. For example, French and Sain (2013)

present a method for constructing confidence regions for

Gaussian processes that contain the true exceedance

regions with some predefined probability. Extending this

methodology, Hazra and Huser (2021) obtain confidence

regions that contain joint threshold exceedances of surface

sea temperatures in the Red Sea, using a semiparametric

Bayesian spatial mixed-effects linear model. Bolin and

Lindgren (2015) consider excursion sets, which are sets of

points in an area where a spatial function is above a given

threshold. Sommerfeld et al. (2018) develop confidence

regions for these spatial excursion sets with an application

to climate and Romero-Béjar et al. (2018) develop quan-

tile-based spatiotemporal risk assessment of exceedances

using this concept. Zhong et al. (2020) analyze spatial
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extent of heatwaves using a model based on max-infinitely

divisible processes for annual temperature maxima. How-

ever, to our knowledge, the notion of the extent of an EHE

has not been explicitly defined as a stochastic object. So,

we take this up both conceptually and practically. Given a

threshold surface over a specified region, for a given day,

the extent of an EHE over the region is the proportion of

the area of the region whose daily max temperature for the

day is above the associated threshold surface. In the sequel

we adopt a static threshold surface in order to assess

change in extent over time. With different intentions, time-

varying thresholds could be employed.

The basic idea is an extension of the so-called spatial

cumulative distribution function (cdf) following the work

of Lahiri et al. (1999) and Short et al. (2005). It is also

discussed in Section 15.3 of Banerjee et al. (2014). The

extent arises as a stochastic integral, i.e., an integral over a

realization of a stochastic process. It is a random object as

well as a conceptual object in the sense that it can not be

observed and it can not be calculated in closed form.

However, its moment properties can be calculated and

approximate realizations can be obtained through Monte

Carlo integration.

Attractively, we can study extents employing realiza-

tions from any spatio-temporal model fitted for daily max

temperatures. Here, we adopt the model from Schliep et al.

(2021) and do not do any additional modeling work. We

can provide extents directly from the output of that model

fitting. In different words, assessment of extent of an EHE

is a post model fitting activity.

The region over which we study extents is the Comu-

nidad Autónoma de Aragón region in northeastern Spain,

located in the Ebro basin (85,362 km2). The Ebro river

flows from the NW to the SE through a valley bordered by

the Pyrenees and the Cantabrian Range in the north and the

Iberian System in the southwest. The maximum elevation

is approximately 3400 m in the Pyrenees, 2600 m in the

Cantabrian Range and Iberian System, and between

200-400 m in the central valley. In general, the area is

characterized by a Mediterranean-continental dry climate

with irregular rainfall, and a large temperature range.

However, several climate subareas can be distinguished

due to the heterogeneous orography and other influences,

such as the Mediterranean sea to the east, and the conti-

nental conditions of the Iberian central plateau in the

southwest. Zaragoza, the largest city in the region, is

located in the central part of the valley, and experiences

more extreme temperatures and drier conditions.

Our data are observational series from AEMET (the

Spanish Meteorological Office). Only long term series with

limited missing observations were considered, resulting in

daily maximum temperatures for 18 sites across and around

the Comunidad Autónoma de Aragón region for the years

1953-2015. The names and locations of the 18 sites are

shown spatially in Fig. 1. Data from the years 1953-1962

were used to obtain the location-specific thresholds for

extreme heat events; the data for the years 1963-2015 were

used in the modeling. Specifically, thresholds were com-

puted as the 95th percentile of daily maximum temperature

for the months June, July, and August during the 10 years

1953-1962. Again, our objective is to see change in extent

over time which requires a fixed qðsÞ threshold surface.

While we could use fixed thresholds associated with any

time window, using thresholds prior to the start of our

modeling, using data not employed in our fitting, seemed to

provide a sensible baseline.

The format of the paper is as follows. In Sect. 2, we

present the details of the spatial extent and briefly review

the Schliep et al. (2021) model. Section 3 shows the rich

scope of extents we can calculate and compare. Section 4

provides a brief summary and future work.

2 Formalizing extent of extreme heat

2.1 The definition of extent

The definition of the spatial cdf (Lahiri et al. 1999) is

attached to a realization of a stochastic process taking

values in R, Z ¼ fZðsÞ : s 2 Dg, over a region D and, for a

given w, is

FZðwÞ ¼
1

jDj

Z
D
1ðZðsÞ�wÞds

where jDj is the area of D. That is, it is the proportion of

the realization over D that lies below w. It behaves like a

cdf in the sense that it is nondecreasing and goes to 0 as

w ! �1 and 1 as w ! 1. However, since it is a function

of the process realization, it is a random variable and arises

as a stochastic integral. It differs from the marginal cdf

associated with the variable ZðsÞ at location s, PðZðsÞ�wÞ
which is a constant (as a feature of the distribution of ZðsÞÞ.
Like stochastic integrals in general, it can not be calculated

explicitly (but it can be approximated using Monte Carlo

integration). However, some distributional properties, e.g.,

mean and variance, can be calculated.

To define the object of interest here, a spatial extent, let

YtðsÞ denote the daily max temp for day t at location s.

Suppose we consider a subregion B � D of the study

domain. Then, for a given w, the extent of the EHE in

subregion B on day t is:

Exttðw;BÞ ¼
1

jBj

Z
B

1ðYtðsÞ � qðsÞ�wÞds: ð1Þ
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Here, qðsÞ is the threshold surface over B. That is, it is the

proportion of B which is experiencing extreme heat at least

w degrees above or below (according to the sign of w)

associated local thresholds on day t. In fact, it is referred to

as a block average (Banerjee et al. 2014) in this case of

indicator functions. Evidently, we can choose B as we

wish. In Section 3 we consider two subregions of interest

for comparison but, with interest in extent at a larger spatial

scale, we might also consider the case where B ¼ D.

Regardless, since extent captures proportion of incidence

within a region, a larger region does not imply a larger

extent. However, an alternative definition of extent would

specify a region where extent is anticipated to be high (or

low) and then calculate the extent in order to provide

quantification. EHE is applicable to the extent when w ¼ 0

and is probably of greatest interest but below, Sect. 3.4, we

also look at the extent of more (w[ 0) or less (w\0)

extreme heat events.

The posterior predictive distribution for Exttðw;BÞ is

needed for inference. We use a Monte Carlo integration to

obtain an approximate realization of it by computing:

gExttðw;BÞ ¼ 1

m

Xm
j¼1

1ðYtðsjÞ � qðsjÞ�wÞ: ð2Þ

Here, for a selected set of m locations in B with an asso-

ciated set of thresholds, fqðsjÞ; j ¼ 1; 2; . . .;mg, fYtðsjÞ; j ¼
1; 2; . . .;mg is a posterior predictive realization of daily

max temperatures for day t at the locations, sj. If we have a

collection of these realizations, then we can obtain poste-

rior samples of gExttðw;BÞ for any choices of w. In this way,
with arbitrarily many posterior predictive realizations, we

can learn arbitrarily well about the posterior predictive

distribution for Exttðw;BÞ.
To compute (2), given t, we need a realization

fYtðsjÞ; j ¼ 1; 2; . . .;mg. To consider arbitrary days within

arbitrary years within arbitrary decades, we need a poste-

rior predictive realization of a 50 year daily max time

series (1966-2015) for each sj. Employing the output of the

model fitting of Schliep et al. (2021), we can obtain such

posterior predictive realizations using composition sam-

pling (Banerjee et al. 2014, Chapter 6). Below, we obtain a

collection of 500 such realizations, enabling a posterior

predictive distribution for Exttðw;BÞ through gExttðw;BÞ.
These samples yield an empirical summary of the posterior

predictive distribution for Exttðw;BÞ, hence, posterior

inference regarding any features of Exttðw;BÞ that are of

interest.
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Fig. 1 Location of the stations

in the Iberian Peninsula (upper
left), names and elevation of the

locations (upper right), level
curves of elevation (bottom left)
and thresholds defining local

extreme temperatures (bottom
right). Pyrenees (B1) is the area

over the upper horizontal line

and Ebro valley (B2) the area

between the two horizontal lines
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Note that to compute (2) we first need to create the qðsjÞ.
In the sequel, upon a regular gridding of B to fairly fine

resolution, we obtained the centroids of the grid cells as our

sj’s. Then, gathering elevations for these centroids from a

digital terrain map (DTM), we kriged the qðsjÞ. That is,
using the thresholds for the observed sites with their

associated elevations, we employed a standard kriging

model for the thresholds at the sj using their associated

DTM elevations. Furthermore, we identified an additional

37 stations which had temperature data available between

1953-1962, yielding a total of 55 stations from which we

developed the qðsÞ surface. In Figure OR.1 in the Online

Resource we show the resulting qðsÞ surface along with the

55 stations. Fancier kriging could be imagined but here and

illustratively, we confine ourselves to the above. Further-

more, we treat all of the kriged qðsjÞ as fixed in imple-

menting the Monte Carlo integrations.

As a last remark, it is possible to create an empirical

extent, employing the form in (2) but using only the

available observed sites that are within B. With only 18

stations, only a few will be in B, yielding a single estimate

that can assume only a few discrete values and with no

uncertainty. In implementing the Monte Carlo integrations

for (2) below, we employ m � 6000 – 8000, yielding much

smoother extents and with replication enabling us to see the

distribution.

2.2 Some technical details: a digression

Here, we offer some theoretical insight into the distribution

of a spatial extent by calculating the first and second

moments under an illustrative Gaussian spatial first order

autoregression model, a simplified version of the model

that we work with in Sect. 2.4. In particular, consider the

model

YtðsÞ¼ltðsÞþgðsÞþqðYt�1ðsÞ�ðlt�1ðsÞþgðsÞÞÞþ�tðsÞ

where ltðsÞ is a spatio-temporal drift term. Specific choices

are adopted in Sect. 2.4. Here, gðsÞ is a mean 0 Gaussian

process with covariance covðgðsÞ; gðs0ÞÞ ¼ r2hðs� s0Þ
providing local spatial adjustment to the drift terms as well

as spatial dependence across locations. The �tðsÞ are pure

errors, independent and identically distributed as Nð0; s2Þ.
Let ZtðsÞ ¼ YtðsÞ � ltðsÞ so

ZtðsÞ ¼ qZt�1ðsÞ þ ð1� qÞgðsÞ þ �tðsÞ. Marginalizing over

gðsÞ, we obtain

ZtðsÞ j Zt�1ðsÞ�NðqZt�1ðsÞ; ð1� qÞ2r2 þ s2Þ:

In fact, the joint distribution of ðZtðsÞ; Ztðs0ÞÞ given

ðZt�1ðsÞ; Zt�1ðs0ÞÞ is bivariate normal with mean

qZt�1ðsÞ
qZt�1ðs0Þ

� �
and covariance matrix

ð1� qÞ2r2 þ s2 ð1� qÞ2r2hðs� s0Þ
ð1� qÞ2r2hðs� s0Þ ð1� qÞ2r2 þ s2

 !
:

Implementing the customary marginalization over Zt�1ðsÞ,
at equilibrium (t large), we have ZtðsÞ�Nð0;/2ðq; r2; s2ÞÞ
where /2ðq; r2; s2Þ ¼ ð1�qÞ2r2þs2

1�q2 . So,

YtðsÞ�NðltðsÞ;/2ðq;r2; s2ÞÞ. Similarly, we can obtain

covðZtðsÞ; Ztðs0ÞÞ ¼ ð1�qÞ2r2hðs�s0Þ
1�q2 and hence, the distribu-

tion, ½YtðsÞ; Ytðs0Þ	.
Returning to (1), E Exttðw;BÞð Þ ¼

E
1

jBj

Z
B

1ðYtðsÞ � qðsÞ�wÞds
� �

¼ 1

jBj

Z
B

E 1ðYtðsÞ � qðsÞ�wÞð Þds:

However,

E 1ðYtðsÞ � qðsÞ�wÞð Þ ¼PðYtðsÞ� qðsÞ þ wÞ 
 ptðs;wÞ

¼ U
ltðsÞ � ðqðsÞ þ wÞ

/ðq; r2; s2Þ

� �
:

So,

E Exttðw;BÞð Þ ¼ 1

jBj

Z
B

U
ltðsÞ � ðqðsÞ þ wÞ

/ðq; r2; s2Þ

� �
ds: ð3Þ

Monte Carlo approximation to (3) is straightforward.

Next, we obtain varðExttðw;BÞÞ. Let

gðYtðsÞÞ ¼ 1ðYtðsÞ � qðsÞ�wÞ. Then, by familiar calcula-

tion for block averages (see Banerjee et al.

2014, Chapter 7),

varðExttðw;BÞÞ ¼
1

jBj

Z
B

varðgðYtðsÞÞÞds

þ 1

jBj2
Z
B

Z
B

covðgðYtðsÞÞ; gðYtðs0ÞÞÞds0ds:

However, var gðYtðsÞÞð Þ ¼ ptðs;wÞð1� ptðs;wÞÞ. Similarly,

covðgðYtðsÞÞ; gðYtðs0ÞÞÞ ¼ ptðs; s0;wÞ � ptðs;wÞptðs0;wÞ

where

ptðs; s0;wÞ ¼ PðYtðsÞ� qðsÞ þ w; Ytðs0Þ � qðs0Þ þ wÞ

, a double integral over the bivariate normal distribution for

YtðsÞ and Ytðs0Þ given above. So,

varðExttðw;BÞÞ ¼
1

jBj

Z
B

ptðs;wÞð1� ptðs;wÞÞds

þ 1

jBj2
Z
B

Z
B

ptðs; s0;wÞ � ptðs;wÞptðs0;wÞds0ds:
ð4Þ

Monte Carlo integration for (4) can also be implemented.
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2.3 Elaborating extents

In climate applications, such as attempting to assess the

effect of global warming on extreme temperatures, the

main interest is not usually to characterize the distribution

of the extent in a given day Exttðw;BÞ but rather to char-

acterize the behavior of the extent across years or changes

in its seasonal pattern. To this end, it is convenient to

analyze the distribution of different averages of the daily

extent over a given period of time, such as seasons or years.

In defining average extents, we will use two time indexes,

one for the day within year l and one for the year t,

Extt;lðw;BÞ ¼
1

jBj

Z
B

1ðYt;lðsÞ � qðsÞ�wÞds:

Then, we can average the daily extent over a period of days

within the year, L, and over a period of years, T, as

Avt2T ;l2LExtt;lðw;BÞ ¼
1

nTnL

X
t2T

X
l2L

Extt;lðw;BÞ

where nT and nL are the number of observations in the

periods T and L respectively.

In the analysis of EHE, we consider: (i) decadal aver-

ages for a given day l and decade D,

Avt2DExtt;lðw;BÞ ¼ 1
10

P
t2D Extt;lðw;BÞ, (ii) the average

extent over the summer months JJA for a given year t,

Avl2JJAExtt;lðw;BÞ ¼ 1
92

P
l2JJA Extt;lðw;BÞ, and (iii) the

average extent over the summer months and a decade,

Avt2D;l2JJAExtt;lðw;BÞ ¼ 1
920

P
t2D
P

l2JJA Extt;lðw;BÞ: In

calculating these quantities, we replace all integrals by

their Monte Carlo approximations, obtaining the values

Avt2T ;l2LgExtt;lðw;BÞ. Further, using 500 posterior predic-

tive samples of realizations of gExtt;lðw;BÞ, we obtain 500

samples of Avt2T ;l2LgExtt;lðw;BÞ to supply an empirical

summary of the posterior distribution of

Avt2T ;l2LExtt;lðw;BÞ. In the cases where the average is

carried out only over one time index, a bigger size sample

is obtained if the distribution is the same in a given period

of time. For example, if the distribution of

Avl2JJAExtt;lðw;BÞ is taken to be the same for all the years

in a decade, t 2 D, we can obtain a sample of 5000 real-

izations of Avl2JJAgExtt;lðw;BÞ, 500 for each of the 10 years

t 2 D, to consider empirically the posterior distribution of

Avl2JJAExtt;lðw;BÞ in D. When it is assumed that the dis-

tribution of the ten years in D is the same, we modify

notation to AvDl2JJAExtt;lðw;BÞ, and AvDl2JJAgExtt;lðw;BÞ.
Persistence: In the context of global warming, a rele-

vant feature in the analysis of extreme temperatures is

persistence. We consider persistence as arising when the

probability of being in an extreme heat state at day lþ 1 is

higher if we were in an extreme heat state at day l than if

we were not. To analyze this feature spatially through the

extent, we consider the proportion of B at w degrees above

threshold, for both of two consecutive days, l and lþ 1,

denoted by 2Extt;lðw;BÞ and defined as

2Extt;lðw;BÞ ¼
1

jBj

Z
B

1ðYt;lðsÞ � qðsÞ�wÞ

1ðYt;lþ1ðsÞ � qðsÞ�wÞds:

More generally, rExtt;lðw;BÞ denotes an r-day EHE, that is

an EHE persisting for r consecutive days starting at day l,

with analogous definition. It is immediate that

rExtt;lðw;BÞ� r�1Extt;lðw;BÞ� . . .�Extt;lðw;BÞ:

This accords with the fact that the extents of two-day

EHE’s will be smaller than the extents of one-day EHE’s.

Again, we will use a Monte Carlo integration to obtain a

realization, e.g., for the r ¼ 2 case:

2gExtt;lðw;BÞ ¼ 1

m

Xm
j¼1

1ðYt;lðsÞ � qðsÞ�wÞ 1ðYt;lþ1ðsÞ � qðsÞ�wÞ:

In the analysis for our dataset/study area we confine our-

selves to r ¼ 1 and r ¼ 2 since the probability of observing

runs with r� 3 is too small to show useful extents.

As with the daily extents, we are usually more interested

in the average of rExtt;lðw;BÞ over a time window of l’s,

t’s, or both. These averages are defined as above but with
2Extt;lðw;BÞ. Monte Carlo integrations for these averages

are analogous to those for averages of Extt;lðw;BÞ; we only
have to substitute rExtt;lðw;BÞ with rgExtt;lðw;BÞ.

Useful displays: Displays we will develop for extent

and persistence include the following. First, we will con-

sider different subregions of Aragón in order to make

comparison between regions. To do this we will examine

evolution of extent or persistence across the JJA season.

We do this averaged over a decade in order to enable

decadal comparison. Further, with posterior predictive

samples of extents for each day l within each year t, we will

supply the entire posterior predictive distribution of some

of these extents and persistences. We will also develop

‘‘time to’’ displays, showing the time to the first day in year

t with extent or persistence greater than or equal to a

specified v. Lastly, we will examine how extents and per-

sistences vary over choices of w since there can be interest

in different specification of local thresholds for extreme

heat.

2.4 Reviewing the daily max temperature model

Returning to the notation at the start of this section, let

YtðsÞ denote the daily maximum temperature at day t and

location s. Schliep et al. (2021) propose a two-state model
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where the state for a given day defines whether or not the

location is experiencing an extreme heat event. Given a

threshold, qðsÞ at location s, let UtðsÞ 2 f0; 1g denote the

state at time t for location s where a value of 0 denotes the

below threshold state and a 1 denotes the above threshold

state. So, UtðsÞ is a spatial binary time series process

reflecting times of transition or state-switching. It is

observed for each t at a monitored site but is latent else-

where. With regard to extents, we note that

Exttð0;BÞ ¼ 1
jBj
R
B UtðsÞds.

UtðsÞ is a Markov process where the state UtðsÞ depends
only on the previous state Ut�1ðsÞ. Then, the distribution of

YtðsÞ is specified explicitly given UtðsÞ and, given the

threshold, UtðsÞ is a binary function of YtðsÞ. Furthermore,

the transition probabilities between states are allowed to be

a function of previous temperature. This specification

ensures transition probabilities to be ‘‘local’’, i.e., to vary

with location and to depend upon the previous day’s

maximum temperature at that location. The opposite would

be expected if the maximum temperature of the previous

day resulted in a non-extreme heat state.

The joint distribution for temperature and state is

specified in a first order Markov fashion explicitly as fol-

lows. Given Yt�2ðsÞ, and thus, Ut�2ðsÞ, for two consecutive

time points, t � 1 and t, the joint distribution

½Ut�1ðsÞ; Yt�1ðsÞ;UtðsÞ; YtðsÞ	 is written as

½YtðsÞjUtðsÞ; Yt�1ðsÞ	½UtðsÞjYt�1ðsÞ	½Yt�1ðsÞjUt�1ðsÞ;Yt�2ðsÞ	
½Ut�1ðsÞjYt�2ðsÞ	:

This formulation requires three model specifications: (i)

½YtðsÞjUtðsÞ ¼ 0;Yt�1ðsÞ	, (ii) ½YtðsÞjUtðsÞ ¼ 1; Yt�1ðsÞ	,
and (iii) ½UtðsÞjYt�1ðsÞ	. With qðsÞ denoting the threshold

(quantile) for location s, truncated distributions are needed

for (i) and (ii), i.e., ½YtðsÞ ¼ y	1ðy\qðsÞÞ and

½YtðsÞ ¼ y	1ðy� qðsÞÞ, respectively. For (i), a truncated

normal distribution is adopted, with autoregressive

centering,

TN l0t ðsÞ � q0ðYt�1ðsÞ � l0t�1ðsÞÞ; r2;0ðsÞ
� �

Ið�1; qðsÞÞ:

Details for l0t ðsÞ are given below.

For (ii), a truncated t-distribution is adopted, with

autoregressive centering,

Tt l1t ðsÞ � q1ðYt�1ðsÞ � l1t�1ðsÞÞ; r2;1ðsÞ
� �

IðqðsÞ;1Þ:

Details for l1t ðsÞ are given below. As an aside, unlike the

multivariate normal, the multivariate t-distribution captures

upper tail extreme dependence (Chan and Li 2008) which

may be desirable in looking at extreme heat events. Fur-

ther, with multivariate t-distributions in both time and

space, tail dependence is inherited in space as well.

Exploratory analysis of the observed data suggested a

smaller variance for the above threshold daily maximum

temperature distribution than for the below threshold daily

maximum temperature distribution. Further, spatially-

varying variances are introduced, expecting that variation

in say, Jaca (in the Pyrenees in the north of the region)

would be different from variation in say, Zaragoza (flat and

central in the region).

For (iii) a probit link is employed to define

U�1ðptðsÞÞ 
 U�1ðPðUtðsÞ ¼ 1jYt�1ðsÞÞÞ 
 gtðsÞ

with gtðsÞ given below. Putting (i), (ii), and (iii) together, a

mixture distribution for YtðsÞ results: (i) a truncated normal

distribution for the bulk of the distribution, (ii) a truncated

t-distribution for the upper tail of the distribution, and (iii)

mixture weights according to PðUtðsÞ ¼ 0Þ or

PðUtðsÞ ¼ 1Þ, respectively.
As for the specifics of ltðsÞ and gtðsÞ, compacting

notation, for lUtðsÞ
t ðsÞ, Schliep et al. (2021) consider

lUtðsÞ
t ðsÞ ¼ bUtðsÞ

0 þ bUtðsÞ
0 ðsÞ þ cUtðsÞ

½ t
365

	þ1
þ bUtðsÞ

1 elevðsÞ

þ bUtðsÞ
2 latðsÞ þ k1sinð2pt=365Þ þ k2cosð2pt=365Þ:

Here, bUtðsÞ
0 denotes a global (across the domain for our

dataset) intercept and bUtðsÞ
0 ðsÞ denotes a local spatial

intercept, i.e., providing local adjustment to the global

intercept. Each bUtðsÞ
0 ðsÞ is modeled as a mean 0 Gaussian

process with exponential covariance function. For cð1Þ½ t
365

	þ1
,

where ½ 	 denotes the greatest integer function, thus

counting years with this subscript and, as a result, the c’s
provide annual intercepts to allow for yearly shifts, i.e., for

hotter or colder years. The sin and cos terms are introduced

to capture annual seasonality with their coefficients

reflecting associated amplitudes. This seasonality is critical

to ensure that an annual daily maximum temperature tra-

jectory over the course of a year at a location will provide

sensible realizations. elevðsÞ is the elevation at s and latðsÞ
is the latitude. Finally, qUtðsÞ provides a centered AR(1)

specification, bringing in the previous day’s temperature,

Yt�1ðsÞ.
For gtðsÞ, Schliep et al. (2021) propose

gtðsÞ ¼/0 þ /0ðsÞ þ /1ðYt�1ðsÞ � qðsÞÞ

þ /2ððYt�1ðsÞ � qðsÞÞ1ðYt�1ðsÞ � qðsÞ� 0ÞÞ

þ /3sinð2pt=365Þ þ /4cosð2pt=365Þ:

Here, centering by the threshold yields more sensible

transition probabilities. The threshold, qðsÞ, can be moved

over to the intercept term in order to provide a spatially

varying offset. However, the inclusion of /0ðsÞ, modeled

as a Gaussian process, allows for a richer spatially-varying

intercept.
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We note that, as other common mixture models with a

‘‘cut point’’ to capture skewness, the unconditional density

obtained from this model is discontinuous at the threshold.

No continuity constraints are needed to smooth the density

since this discontinuity does not affect the calculation of

the extents over the threshold. This model was satisfacto-

rily validated using out-of-sample prediction of character-

istics of extreme values in three locations, see Section 5.2

in Schliep et al. (2021) and a summary in Section OR.2 in

the Online Resource.

3 Illustrative summaries

3.1 The data and subregions

We analyze the evolution of the extent over time in two

different areas around Aragón, a region located in north-

eastern Spain. The areas are quite different in topography

and temperature, see Fig. 1, where the elevation and the

thresholds that define a local EHE are shown.

• B1: Pyrenees, with latitude between 42.5N and 43N and

longitude between �1:9W and 0.7E. It is a mountainous

area with a high variability in elevation. The elevation

of the stations varies from 442 to 1645 m asl, but some

points in the area are over 3000 m. This leads to a high

variability in the thresholds qðsÞ, that vary from 25.5 to

36 �C. This region shows a high biodiversity, including

the last glaciers in Spain.

• B2: Central Ebro valley with latitude between 41.5N

and 42.5N and longitude between �1:9W and 0.7E.

This region is more homogeneous both in elevation,

ranging from 245 to 546 m, and in temperature. The

thresholds qðsÞ vary from 33.8 to 37 �C. This region is

the most populated in Aragón, and the most important

farming zones are located here.

With regard to computing extents over these regions, B1

was partitioned into 1km� 1km grid cells yielding, with

regard to (2), m ¼ 7881. B2, a much larger region, was

partitioned into 2km� 2km grid cells yielding, with regard

to (2), m ¼ 5841.

The following five observed decades D1: 1966-1975,

D2: 1976-1985, D3: 1986-1995, D4: 1996-2005 and D5:

2006-2015, are considered in most of the following anal-

ysis to quantify the evolution over time of the different

features related to the extent.

Altogether, the posterior predictive time series result in

very large data files from which extents and persistences

are computed. For instance, for B1, we have 50 years by 92

days by 7881 grid centroids by 500 replicates yielding

1:81263� 1010 points.

In the sequel we present some comparative analysis for

the regions B1 and B2. We present in the text the analysis

for both regions and displays for the Pyrenees (B1) region,

with analogous displays for the Ebro Valley (B2) region in

the Online Resource.

3.2 Analysis of the time evolution of the extent

To offer some quantification of global warming, we ana-

lyze the evolution of the extent of EHE’s across years. In

that regard, we also analyze persistence through the extent

of two-day EHE’s. We consider the averages of the extent

in the summer period JJA, Avl2JJAExtt;lð0;BÞ and

Avl2JJA
2Extt;lð0;BÞ. We also compare the evolution in the

regions B1 and B2.

Figure 2 shows the plot of the posterior mean of

Avl2JJAExtt;lð0;BÞ for B1 and B2 vs. year t. Both regions

show an increasing trend; the magnitude of the slope is

similar in both regions, although the mean extent in B2 is

approximately 1% higher than in B1. The analogous plot

for Avl2JJA
2Extt;lð0;BÞ is also shown in Figure 2. Similar

conclusions about the extent of two-day EHE’s are

obtained, although the magnitude is reduced almost to half,

the increase over time is slower, and the difference

between the mean extent in the two regions is reduced to

0.5%. These conclusions are in agreement with the analysis

of the raw empirical EHE extents using the observed series

of temperature, see Figure OR.4 in the Online Resource.

However, that figure reveals the limitations of the empiri-

cal extent. The plots in Figure OR.4 show the high vari-

ability of the empirical extent, and the impossibility of

inference to compare the two decades.

To study the entire distribution, we analyze

AvDl2JJAExtt;lð0;BÞ using the 5000 realizations

AvDl2JJAgExtt;lð0;BÞ. The boxplots of the distribution for each
decade in B1 are shown in Fig. 3, and Table 1 gives some

summary measures in the two regions. Apart from a small

dip in D4, an almost linear increase is observed. Similar

conclusions are obtained in B2. With regard to the evolu-

tion of the extent of two-day EHE’s, the boxplots of

AvDl2JJA
2Extt;lð0;BÞ in Fig. 3, and Table OR.1 in the Online

Resource, confirm that it is quite similar to the evolution of

the extent of EHE’s, but smaller and slower in magnitude.

To better illuminate the global increase of the extent in

the summer season, the posterior density for the first and

the last decades is shown in Fig. 3 and Figure OR.5, where

a shift of the central location and a slightly higher
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Fig. 3 Top: Boxplots of the
posterior density of

AvDl2JJAExtt;lð0;B1Þ (left) and of

the posterior density of

AvDl2JJA
2Extt;lð0;B1Þ (right) in

the five decades. Bottom:
Posterior density of

AvDl2JJAExtt;lð0;B1Þ in D1
(black) and D5 (red). Vertical
lines are the posterior means

Table 1 Posterior mean,

standard deviation, lower and

upper 0.05 quantiles of

AvDl2JJAExtt;lð0;BÞ for the five

decades in regions B1 and B2

Decades B1 B2

Mean SD p5 p95 Mean SD p5 p95

D1 0.087 0.012 0.068 0.107 0.080 0.012 0.060 0.098

D2 0.094 0.012 0.076 0.116 0.087 0.011 0.070 0.105

D3 0.104 0.014 0.082 0.126 0.097 0.014 0.076 0.118

D4 0.103 0.010 0.088 0.120 0.097 0.009 0.083 0.112

D5 0.110 0.016 0.086 0.137 0.105 0.016 0.080 0.128
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variability is observed. Table 2 summarizes the posterior

mean and 90% credible intervals (CI’s) of the difference

rDD5
D1ðBÞ ¼ AvD5l2JJA

rExtt;lð0;BÞ � AvD1l2JJA
rExtt;lð0;BÞ

for r ¼ 1; 2 (superscript r ¼ 1 is omitted for simplicity)

and B1 and B2. In both regions, the interval for the one-day

EHE’s contains zero, showing that it is possible that the

JJA average extent of one year in the last decade is lower

than in the first decade. However, it is unlikely according to

the posterior probability PðDD5
D1ðBÞ[ 0 j yÞ, which is 0.803

in B1 and 0.805 in B2. Similar conclusions are obtained for

the two-day EHE’s since Pð2DD5
D1ðBÞ[ 0 j yÞ are 0.815 in

B1 and 0.808 in B2.

Evidence of a significant increase over time in the

decadal average is much stronger. Summary measures of

the difference of the decadal average,

rDD5;D1ðBÞ ¼ Avt2D5;l2JJA
rExtt;lð0;BÞ

� Avt2D1;l2JJA
rExtt;lð0;BÞ

for r ¼ 1; 2 are also shown in Table 2. The CI’s for the

one-day EHE’s are narrower than the corresponding CI’s of

the yearly averages and do not include zero. The posterior

probabilities PðrDD5;D1ðBÞ[ 0 j yÞ are essentially 1 in both

regions for r ¼ 1; 2, indicating that the decadal average in

D5 is significantly higher than in D1 in all the cases.

Another question of interest is the comparison of the

increment of the extent between D1 and D5 in the two

regions under study. Fig. 2 shows that the trends in B1 and

B2 are quite parallel, and that the increase of the JJA

average extent between D1 and D5 is quite similar in both

regions. The posterior mean of the difference between B1

and B2 of the increase in the yearly average,

DD5
D1ðB1Þ � DD5

D1ðB2Þ, is �0:002 and the 90% CI is

ð�0:013; 0:009Þ while the CI of the decadal average,

DD5;D1ðB1Þ � DD5;D1ðB2Þ is ð�0:006; 0:002Þ. That means

that although there is a shift in the mean value of the

average extent in both regions, there is no evidence of a

significant difference in the increase of average extent, and

both regions show a similar evolution over time.

3.3 Evolution of the seasonal pattern
and the beginning of the summer

To analyze the evolution of the seasonal pattern in JJA of

the extent Extt;lð0;BÞ, l ¼ 1; . . .; 92, and 2Extt;lð0;BÞ, Fig. 4
shows the plot vs. day within year of the posterior mean of

Avt2DExtt;lð0;BÞ in D1 and D5 in region B1. The seasonal

pattern attains the maximum mean extent at the end of July

in all cases, and a similar increase of the mean across

decades, is observed in both regions. The analogous plot of

Avt2D
2Extt;lð0;BÞ, see Fig. 4, shows a smoother seasonal

pattern of the extent of the two-day EHE’s, and a smaller

increase between decades than in the extent of the one-day

EHE’s. The same conclusions are obtained in region B2,

and the corresponding plots are shown in Figure OR.6 in

the Online Resource.

The increase between decades is quantified in Table 3

that summarizes the posterior distribution of the monthly

averages AvDl2JnExtt;lð0;BÞ, AvDl2JlExtt;lð0;BÞ and

AvDl2AgExtt;lð0;BÞ, in D1 and D5. There is an increase in the

posterior mean in the three months with a similar seasonal

pattern in both regions: the highest absolute increase, more

than 3%, is observed in July and the lowest, around 1.4%,

in June. This increase is higher in the upper tail: almost 2%

in June and 4% in July. The posterior probability

PðAvD5l2JnExtt;lð0;BÞ[AvD1l2JnExtt;lð0;BÞ j yÞ is 0.813 in B1

and 0.818 in B2, and in July and August they are 0.805 and

0.804, in both regions.

3.3.1 Time to beginning of EHE’s

An important feature related to the seasonality is the

beginning of extreme temperatures in summer, and the

analysis of its change across years. To that end, we define

the variable Ltðv;BÞ, the number of days to the first day l

within the period JJA in year t with an extent higher or

equal to v, that is the first day l such that Extt;lð0;BÞ� v. If

no extent over v is observed in a year, we set Ltðv;BÞ ¼ 92.

Table 2 Posterior mean and

90% credible intervals of the

increase between D5 and D1 of

different averages of the

extents, in regions B1 and B2

B1 B2

Post. mean 90% CI Post. mean 90% CI

rDD5
D1ðBÞ ¼ AvD5l2JJA

rExtt;lð0;BÞ � AvD1l2JJA
rExtt;lð0;BÞ

One-day EHE’s (r ¼ 1) 0.023 ð�0:009; 0:061Þ 0.025 ð�0:010; 0:063Þ
Two-day EHE’s (r ¼ 2) 0.013 ð�0:006; 0:041Þ 0.014 ð�0:006; 0:041Þ
rDD5;D1ðBÞ ¼ Avt2D5;l2JJA

rExtt;lð0;BÞ � Avt2D1;l2JJA
rExtt;lð0;BÞ

One-day EHE’s (r ¼ 1) 0.023 (0.021, 0.026) 0.025 (0.023, 0.028)

Two-day EHE’s (r ¼ 2) 0.013 (0.007, 0.011) 0.014 (0.012, 0.016)
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Since extents over high thresholds are being analyzed,

large extents are very rarely observed so we only consider

here v ¼ 0:1. 2Ltðv;BÞ, the first day with an extent of the

two-day EHE’s higher or equal than v, is defined

analogously.

Figure 5 shows the posterior mean of Ltð0:1;BÞ vs. year
for B1 and B2, and the the analogous plot for 2Ltð0:1;BÞ. A
decreasing trend is observed in both variables and in both

regions. However, the decrease of the mean of 2Ltð0:1;BÞ
across years is much greater, almost 30 days, versus less

than 10, but with much higher variability. This variability

is likely due to the low incidence of the considered event.

Figure 6 shows the posterior density of the first day,

estimated in a decade, LDt ð0:1;BÞ, in D1 and D5 in B1; the
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Table 3 Posterior mean,

standard deviation and lower

and upper 0.05 quantiles of

Avl2JnExt
D
t;lð0;BÞ,

Avl2JlExt
D
t;lð0;BÞ and

Avl2AgExt
D
t;lð0;BÞ in D1 and D5,

in regions B1 and B2

B1 B2

Decade Month mean SD p5 p95 mean SD p5 p95

D1 June 0.042 0.007 0.030 0.053 0.036 0.007 0.024 0.046

D5 0.056 0.009 0.041 0.071 0.051 0.009 0.036 0.065

D1 July 0.126 0.016 0.099 0.152 0.117 0.016 0.091 0.142

D5 0.157 0.021 0.125 0.192 0.151 0.021 0.118 0.182

D1 August 0.092 0.013 0.072 0.114 0.085 0.013 0.065 0.105

D5 0.117 0.018 0.090 0.147 0.111 0.017 0.084 0.138
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analogous plot in B2 is shown in Figure OR.7 in the Online

Resource. Table 4 summarizes the posterior mean, standard

deviation and 90% CI for LDt ð0:1;BÞ, for the five decades in
the observed period. The mean of the first day between the

first and the last decade has decreased almost 7 days in B1

and 8 days in B2. The posterior probability

PðLD1t ð0:1;BÞ[ LD5t ð0:1;BÞ j yÞ, that is the probability that
the first day of the summer where more than 10% of the

region is under extreme temperatures occurs earlier in the

last decade, is 0.775 in B1 and 0.781 in B2.

A summary of 2LDt ð0:1;BÞ analogous to that in Table 4

is presented in Table OR.2 in the Online Resource. Since

the probability of a two-day EHE is quite low, it is likely

that in a year all the extents of two-day EHE’s are lower or

equal than 0.1 and, consequently, the event

Pð2LDt ð0:1;BÞ ¼ 92 j yÞ has a positive probability mass.

However, this posterior probability decreases over the

observed period. In B1, the percentage of years with

Ltð0:1;BÞ ¼ 92 is 0.77 in D1 and 0.31 in D5, and 0.88 and

0.36 in B2. Further evidence that LDt ð0:1;BÞ is decreasing is
that, conditionally to the fact that an extent higher than 0.1

occurs in a year, the posterior mean of 2LDt ð0:1;BÞ has

decreased more than 5 days between D1 and D5 in both

regions.

3.4 Behavior of extent across choices of w

The previous sections consider results for Extt;lðw;BÞ
only at w ¼ 0, that is the extent corresponding to the

threshold used to define an EHE. Here, we consider the

effect on extent by adjustment of the local thresholds to

lower extreme temperatures and to higher extreme tem-

peratures. To that end, we consider Extt;lðw;BÞ for a grid of

values over and under the threshold, w ¼
�1:5;�1:0;�0:5; 0:0; 0:5; 1:0; 1.5 �C.

To study the evolution across years and across threshold,

Fig. 7 shows the posterior mean of Avl2JJAExtt;lðw;B1Þ vs.

year for the grid of w values, and the corresponding linear

trends fitted to the means. An increasing trend is observed

for all the w values but the trend is stronger for smaller w’s.

More precisely, the ratio between the slope for w ¼ �1:5

and w ¼ 1:5 is 0:00106=0:00018 ¼ 5:8. The finding is that

the incidence of extents associated with more extreme

thresholds is increasing at a slower rate than that for less

extreme thresholds.

This increase over time is not only observed in the

mean, but in the entire distribution. As an example, we

consider the decadal average of July, where Fig. 8 shows

the posterior density of Avt2D;l2JlExtt;lðw;B1Þ across w for

D1 and D5; the analogous plot for B2 is shown in Fig-

ure OR.8 in the Online Resource. It is observed that the

Table 4 Posterior mean, standard deviation and lower and upper 0.05

quantiles of LDt ð0:1;BÞ in D1 and D2, in regions B1 and B2

B1 B2

Decade Mean SD p5 p95 Mean SD p5 p95

D1 35.230 4.848 29 43 38.214 6.560 31 48

D2 33.052 3.625 28 39 35.463 3.926 30 42

D3 30.252 3.705 25 37 32.146 4.001 27 39

D4 30.146 2.600 26 34 31.884 2.686 28 36

D5 28.490 3.748 23 35 30.067 4.068 25 37
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Fig. 7 Posterior mean of Avl2JJAExtt;lðw;B1Þ for w ¼
�1:5;�1:0;�0:5; 0:0; 0:5; 1:0; 1:5 �C and linear trends fitted to the

means
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Fig. 8 Posterior density of Avt2D;l2JlExtt;lðw;B1Þ for w ¼
�1:5;�1:0;�0:5; 0:0; 0:5; 1:0; 1.5 and D1 (solid line) and D5
(dashed line)
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shape of the distribution is very similar across w and across

decades but, in both cases, there are clear shifts that are not

homogeneous across w.

The different evolution across w is observed if we

compare the mean difference between decades. For

example, in B1, the posterior mean difference

E AvD5l2JlExtt;lðw;B1Þ � AvD1l2JlExtt;lðw;B1Þ j y
� �

is 5% for w ¼ �1:5, while for w ¼ 1:5 is 1%. The change

is also observed if we compare the mean differences

between the range of w values across decades. Again in B1,

the posterior mean difference

E AvDl2JlExtt;lð�1:5;B1Þ � AvDl2JlExtt;lð1:5;B1Þ j y
� �

is 18% in D5, while in D1 is 14%. These values together

with the counterparts for B2 are summarized in Table OR.3

in the Online Resource. The change in the entire distribu-

tion is quantified by the posterior probability of the extent

for a given w in the last decade being higher than in the

first,

P AvD5l2JlExtt;lðw;B1Þ[AvD1l2JlExtt;lðw;B1Þ j y
� �

:

Table 5 summarizes these posterior probabilities and shows

that there is a nonmonotonic decrease across w.

Figure 9 shows the posterior mean of the average

Avt2DExtt;lðw;B1Þ vs. day within year for D1 and D5 in

order to compare the seasonal behavior of the extent across

w; the analogous plot for B2 is shown in Figure OR.9 in the

Online Resource. It can be seen that the seasonal pattern is

smoother for larger w. In all the cases, the seasonal pattern

is more pronounced in the last decade but the changes

across w are not homogeneous, with stronger differences in

smaller w values. More precisely, the seasonal pattern for

w ¼ 1:5 in D5 is more pronounced than its counterpart in

D1, approaching that of w ¼ 1 in D1, with probability

P AvJJAt2D5Extt;lð1:5;B1Þ[AvJJAt2D1Extt;lð1:5;B1Þ j y
� �

, that is

essentially 1, and P AvJJAt2D5Extt;lð1:5;B1Þ[AvJJAt2D1
�

Extt;lð1;B1Þ j yÞ ¼ 0:18. For smaller w values, the differ-

ences are higher, with the posterior probabilities comparing

the previous averages in w ¼ �1:5 and w ¼ �1:5, and in

w ¼ �0:5 and w ¼ �1:5 equal to 1; in addition, the sea-

sonal pattern of w ¼ �1:5 in D1 is only slightly more

pronounced than the pattern in w ¼ �0:5 in D5.

4 Summary and future work

Notions of the spatial extent of heat waves and extreme

heat events have been considered informally and descrip-

tively in the climate community. Here we have introduced

a formal probabilistic definition for extents of extreme heat

events. For a specified region, for a given day, the defini-

tion of spatial extent takes the form of a block average over

the region. It is an average of indicator variables which

identify exceedance of a local threshold by the daily max

temperature surface for the day at each location within the

region. We demonstrate that extents can be calculated

through Monte Carlo integration and can be obtained for

realizations from arbitrary space-time autoregressive

models for daily max temperatures. Using a dataset of daily

max temperatures over 50 years, adopting a particular

choice of model, working within a Bayesian framework,

we obtained posterior predictive samples of daily temper-

ature time series on a fairly fine grid scale to implement the

Monte Carlo integrations.

With these samples, we calculated daily, seasonal and

decadal averages of the extents for two regions around the

Comunidad Autónoma de Aragón in Spain. We generalized

these extents to capture extents of persistence of extreme

heat. We made comparisons across decades to reveal evi-

dence of increasing extent over time. We also studied other

features related to the extent of EHE’s, for example, the

first day in the period JJA with an extent higher than a

given percentage, and the behaviour of extent across

choices of the threshold. Following our approach, other

extents yielding other comparisons may be developed

according to the interest of the user.

With regard to the regions under study, Pyrenees and

Ebro Valley, we found that a clear increase of the extent of

EHE’s across time is observed. For example, the posterior

probability of the yearly average extent across JJA in the

decade 2006–2015 being higher than in 1966-1975 is

higher than 0.8. It is also found that the first day of the

summer where the extent of EHE’s is higher than 10% has

decreased around seven days. The extent of EHE’s defined

with all the considered thresholds is increasing, but the

incidence of extents associated with more extreme thresh-

olds is increasing at a slower rate than that for less extreme

thresholds.

Future work will explore the temporal evolution of

geographic extent for different regions to enable compari-

son. It will also examine the challenges of working with

regions at larger spatial scales. Alternatively, with

Table 5 Posterior probabilities for a grid of w values, P AvD5l2JlExtt;l
�

ðw;BÞ[AvD1l2JlExtt;lðw;BÞ j yÞ, for regions B1 and B2

w -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

B1 0.808 0.806 0.804 0.805 0.817 0.779 0.732

B2 0.814 0.810 0.808 0.805 0.814 0.803 0.763
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suitable computing capability, we can consider investigat-

ing extents at higher spatial resolution than done here.

Further, while here we work with actual weather data,

another goal is to consider projection of future spatial

extent using future climate scenarios.
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