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Abstract
Representativeness and quality of collected meteorological data impact accuracy and precision of climate, hydrological,

and biogeochemical analyses and predictions. We developed a comprehensive Quality Assurance (QA) and Quality

Control (QC) statistical framework, consisting of three major phases: Phase I—Preliminary data exploration, i.e., pro-

cessing of raw datasets, with the challenging problems of time formatting and combining datasets of different lengths and

different time intervals; Phase II—QA of the datasets, including detecting and flagging of duplicates, outliers, and extreme

data; and Phase III—the development of time series of a desired frequency, imputation of missing values, visualization and

a final statistical summary. The paper includes two use cases based on the time series data collected at the Billy Barr

meteorological station (East River Watershed, Colorado), and the Barro Colorado Island (BCI, Panama) meteorological

station. The developed statistical framework is suitable for both real-time and post-data-collection QA/QC analysis of

meteorological datasets.
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1 Introduction

Motivation Quality Assurance (QA) and Quality Control

(QC) procedures are commonly used to verify and control

environmental monitoring activities to ensure the resulting

data provide a representative evaluation of environmental

conditions, which are then used for ecohydrological mod-

eling and model validation (van der Heijde and Elnawawy,

1992; QA Guide, 2013). Meteorological data are com-

monly used as forcing factors in climate, hydrological, and

other terrestrial models. Thus, effective QA/QC methods

are critical for ensuring the high-level of trust in collected

data, because representativeness and quality of field col-

lected time series data may dramatically impact the accu-

racy and precision of climate, hydrological, and

biogeochemical predictions. Examples of meteorological

data collected in real time by automated, streaming sensors

are temperature, barometric pressure, solar radiation,

rainfall, relative humidity, wind speed and wind direction,

evapotranspiration, runoff, and soil moisture content.

Collected time series data are commonly processed and

structured in a unique way, distinct for each type of

observations and instrumentation. Although most modern

data loggers faithfully record time series data, collected

data are usually irregular, and subject to several types of

errors: errors of commission, such as incorrect or inaccu-

rate data entered, mistyped data, and malfunctioning of

instrumentation, as well as errors of omission, because data

or metadata are not properly recorded, for example, due to

inadequate documentation, human errors, or anomalies in

the field data collection. Collected time series datasets

could also be incomplete or imperfect due to different time

frequency of measurements, different units of measure-

ments in the same time series, periodic malfunctioning of

sensors or changes due to calibration, abnormal values, and

data gaps. QA/QC statistical methods are used to ensure
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consistency in preparation of monitoring data, based on

field observations, as inputs for data analysis, modeling,

prediction, and decision making. Generally, an application

of QA methods is proactive, including the collection of

metadata and data maintenance, followed by applying QC

methods to improve the quality of data and to provide

annotations of the data after the execution of a QC process.

The rigorous QA/QC statistical analysis of field collected

datasets is a necessary attribute required for the develop-

ment of consistent and reliable datasets with a specific and

aligned time frequency, which are used for modeling and

predictions.

General definitions The QA is defined as ‘‘part of

quality management focused on providing confidence that

quality requirements will be fulfilled,’’ and the QC is

defined as ‘‘part of quality management focused on ful-

filling quality requirements’’ (ISO, 2015). In particular,

the goal of QA is to improve the development and testing

processes of the monitoring equipment and sensors to

prevent defects or unreliable information arising during the

product development lifecycle and its usage. The QA of

datasets requires the application of technical and analytical

procedures for ensuring the quality in conducting research,

and providing confidence that quality requirements will be

fulfilled, such as selection of appropriate types of sensors,

calibration protocols, software, etc. The QC is performed

using a system of routine statistical/numerical activities

implemented by the data management team to assess and

control the quality of data. Despite the worldwide appli-

cation of various QA/QC approaches and methods, there

are multiple challenging QA/QC problems due to specific

features of types of instrumentation and types of collected

data, such as duplicates of time stamps and collected data,

data gaps, spikes, outliers, abnormal data, etc.

The goal of the current paper is to present an application

of a rigorous QA/QC statistical approach for addressing

challenging problems of the QA/QC of meteorological and

hydrological time series datasets. This approach can be

used for both real-time and post-data collection datasets.

Two use cases are used to demonstrate the application of

the developed approach for solving challenging QA/QC

problems of meteorological time series data.

The structure of the paper is as follows. Section 2 pro-

vides a literature review of selected QA/QC approaches

and methods. Section 3 includes a flowchart of the QA/QC

framework, a description of preliminary data exploration,

including the datasets and time formatting. Section 4

provides examples of the QA analysis of meteorological

data, including the challenging problems of the detection

and flagging of extremes and outliers, and Sect. 5 includes

examples of the QC analysis of time series, such as

imputation of missing data, creation of time series of a

desired time frequency, and time series visualization and

statistics. Section 6 includes conclusions and directions of

future research.

2 Literature review of QA/QC workflows

Over the past 50–60 years, the data collection and usage of

meteorological and hydrological observational data have

been changed due to automation of monitoring equipment

and sensors, so that scientists have been collecting

tremendous amounts of data in real time. Currently, the

datasets from different sources are retrieved from a few

seconds intervals up to a few hours’ periods. There are

multiple publications describing the QA/QC procedures

implemented in different countries. For example, the Guide

on the Global Data-processing System (Guide WMO-No.

305, 2001) is the authoritative reference on all matters

related to quality control issues. Recommended minimum

standards of quality control at the level of the observing

station and at that of the NMC (National Meteorological

Centre) are given in the Manual on the Global Data-pro-

cessing and Forecasting System, WMO No. 485 (WMO,

2019).

The report D1.41 (2014), entitled ‘‘User guide contain-

ing quality assessment of Arctic weather station and buoy

data’’ includes a selected compilation of Arctic Meteoro-

logical Station data from Canada, Finland, Greenland,

Iceland, Norway, Russia, and Sweden, as well as buoy data

from the International Arctic Buoy Program (IABP) (http://

iabp.apl.washington.edu/index.html). All available data

from weather stations and data buoys over the Arctic are

quality controlled by their original facilities and made

available to other project participants. Station data from

each source are reprocessed to the standard data format

suitable to be used in the ACCESS databank.

Rissanen et al. (2000) provided a survey of different

methods used in quality control in the Nordic countries on

behalf of the National meteorological services in Denmark,

Finland, Iceland, Norway, and Sweden. They emphasized

that collecting new data using modern observation

methodology and use of data raise new needs for quality

assurance and control of collected data. For example,

Rissanen et al. (2000) emphasized that data quality flagging

is of most importance when using the data, and should be

implemented on all levels of the QA/QC.

According to the recommendations of the ASOS Guide

(1998) of the National Weather Service of NOAA, there

are three cascading levels of quality control, focusing on

different temporal and spatial scales. Level 1 is performed

on-site, in real-time before observations are transmitted.

Level 2 is performed at a Weather Forecast Office (WFO)

for a designated area, usually within two hours after the

scheduled observation transmission time. Level 3 is
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performed centrally on all ASOS METAR stations, usually

about two hours after the scheduled transmission time.

Publications by Shafer et al. (2000) and Fiebrich and

Crawford (2001) described the automated QC that is per-

formed on Mesonet and ARS (Agricultural Research Ser-

vice of the United States Department of Agriculture)

stations (https://www.mesonet.org/index.php/quality_assur

ance/quality_assurance). Four components compose the

Mesonet’s QA system: (1) laboratory calibration and test-

ing, (2) onsite intercomparison, (3) automated QA, and (4)

manual QA. Automated QA software is used to evaluate

the data received from remote stations, followed by the

daily review by a meteorologist, trained in state-of-the-art

QA procedures, to examine the suspicious observations

detected by other components of the QA system. The

Mesonet infrastructure was successfully applied at the

OKCNET to perform spatial, step, and persistence tests

(McPherson et al. 2007) every minute, and only good and

suspect data are delivered in real-time to users. As a result,

millions of QA computations are completed on nearly

640,000 unique observations collected daily by OKCNET.

To date 97.85% of all OKCNET observations have passed

the QA routines as ‘good’ while the remaining 2.15% have

been categorized as ‘suspect’, ‘warning’ or ‘failure’.

(Basara et al. 2011). The success of OKCNET is contingent

upon the quality of the observations collected, continued

funding and an increasing number and diversity of end

users (http://okc.mesonet.org).

Fiebrich and Crawford (2001) showed that automated

QA software, which is supposed to generate QA quality

flags of each observation, may fail, resulting in flagging

some good observations as erroneous. They showed

examples of special problems for automated QA software

such as: cold air pooling and ‘‘inversion poking,’’ meso-

highs and mesolows, heat bursts, snowfall and snow cover,

as well as microclimatic effects produced by variations in

vegetation. Range and temporal test thresholds of OKC-

NET data are used for the automated quality assurance

checks (Basara et al. 2011). Meek and Hatfield (1994)

presented a series of algorithms similar to the Mesonet’s

range, step, and persistence tests, as well as a system of QA

flags. Wade (1987) and Fiebrich and Crawford (2001)

discussed an approach to a comparison of data from dif-

ferent meteorological stations, based on an evaluation of

the standard deviation of observations. Individual quality

flags were used to rate the stationarity of the data and to

test for development of the turbulent flow field with inte-

gral turbulence characteristics (normalized standard devi-

ations). The combination of these two ratings yielded the

overall quality of the measurement. Basara et al. (2011)

presented a QA/QC approach of time series meteorological

data based on the commonly observed range of data and

maximum steps allowed between consecutive 5 min

observations. The QA/QC methods and guidelines for

workflow are being developed by the AQUACOSM (Net-

work of Leading European AQUAtic MesoCOSM Facili-

ties Connecting Mountains to Oceans from the Arctic to the

Mediterranean.)

Another example of a sophisticated set of QA/QC tests

and flags is AmeriFlux’s QA/QC processing pipeline

(https://ameriflux.lbl.gov/data/qaqc-tests/). Figure 1 illus-

trates a flowchart of the QA/QC procedure of the Ameri-

Flux collected data, indicating that immediately after a

flux-met data file is uploaded, it follows one of the paths to

an Overall Status/Action.

Thus, a critical review of existing QA/QC approaches

shows that there is no common approach to the QA/QC

analysis of meteorological and hydrological data, because

different organizations apply different methods depending

on the types of data and goals of the further application of

QA/QC-ed data.

3 QA/QC approach and a numerical code

3.1 Flowchart and datasets

Our QA/QC process consists of three major phases: Phase

I—Preliminary data exploration, i.e., processing of raw

datasets, with the most challenging problems of time for-

matting and combining datasets of different length and

different time intervals; Phase II—QA of the datasets,

including detecting and flagging of duplicates, outliers, and

bad (extreme) data; and Phase III—Imputation of missing

values and the development of time series of a desired

frequency, visualization and a statistical summary.

Numerical analysis is performed using the R programming

language, which is widely used for statistical computing

and graphics supported by the R Foundation for Statistical

Computing (R Core Team, 2021).

A flowchart of the developed QA/QC framework is

shown in Fig. 2. The flowchart shows in red the most

challenging problems of the QA/QC analysis addressed in

this paper. The challenging problems of the Phase I ‘‘Data

Exploration’’ include (a) combining individual datasets

collected at different sensors with different time duration

and time frequency into a single list of files, which is a

vectorized function (it can also be achieved by direct

concatenation without requiring loops or vectors), and

(b) checking the format of dates and converting them to a

suitable format for further data analysis. The challenging

problems of the Phase II ‘‘QA of data’’ include (a) detect-

ing and flagging outliers and bad/extreme data, and (b) vi-

sualization of these data. The challenging problems of the

Phase III ‘‘QC of data’’ include imputation of missing data,

and (b) creation of the time series of a desired time
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frequency, including imputation of additional missing data

generated during the development of the time series of the

desired frequency. The R codes for the whole QA/QC

process involving the three phases were developed and

tested based on the post-data-collection analysis of mete-

orological datasets.

In this paper, we demonstrate a QA/QC framework

using univariate time series statistical data analysis. The

developed QA/QC statistical methods are also appropriate

for real-time and post-data-collection QA/QC analysis (all

three phases) of meteorological or hydrological datasets.

Note that the real time assessment of data quality is rec-

ommended to conduct during Phase I (Preliminary data

exploration) and Phase II (QA of data), and the post-data-

collection analysis includes QC of data.

3.2 Preliminary data exploration

3.2.1 Datasets

Two meteorological datasets representing different end-

member ecosystems were analyzed as use cases in this

Fig. 1 Flow chart illustrating the QA/QC procedure of the AmeriFlux collected data, showing that after a flux-met data file is uploaded, it follows

one of the three paths to an Overall Status and Action. ( Source https://ameriflux.lbl.gov/data/format-qaqc-report/)

Fig. 2 Flow chart of the QA/QC framework. (Note the core of both xts and zoo packages in R is a simple R matrix with the index that contains

the information to treat the data as a time series.)
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study to demonstrate the utility and effectiveness of our

workflow. The Billy Barr dataset represents the moun-

tainous, snow-dominated East River watershed, Colorado,

USA (Hubbard et al. 2018). The Billy Barr dataset consists

of time series data of the following variables: Solar Radi-

ation, Wind Speed, Wind Direction, Relative Humidity,

Temperature, and Precipitation (downloaded from the

website https://eastriver.pafbeta.subsurfaceinsights.com/).

The Barro Colorado Island (BCI) dataset from a tropical

forest in Panama consists of time series data of Solar

Radiation, Wind Speed, Relative Humidity, Temperature,

and Precipitation (downloaded from the Smithsonian

Tropical Research Institute’s BCI’s website https://bio

geodb.stri.si.edu/physical_monitoring/research/

barrocolorado).

The challenging problems of these datasets are that

meteorological parameters were recorded with different

time frequency and for different periods of time. Moreover,

the timestamps are different for different variables, which

create a problem of combining the QA/QC-ed datasets into

a single file for further data analysis and modeling. The

time series plots of original time series datasets are shown

in Supplementary Information SI-1 in Figures SI-1.1a,b.

Figure SI-1.1c shows graphs of time series of meteoro-

logical variables for a three-year period from 2018 to 2020

for the BCI station, which were analyzed in this paper.

Tables SI-1.1 and SI-1.2 provide summaries of the total

number of the data points of meteorological variables along

with other statistical parameters of the original datasets.

Figures SI-1.2a,b show time series graphs of the time

intervals of measurements of the original Billy Barr and

BCI datasets. The values of time difference of zero indicate

the presence of duplicates, the negative values indicate that

the time stamps are not ordered, and a scatter of points is

indicative of the irregular time series data. Because the

Billy Barr datasets include several time series data in a

single file, but the BCI datasets include time series in

separate files with different types of information, the pre-

liminary data exploration and preparation of datasets in

Phase I were provided differently.

3.2.2 Time formatting and time consistency check

It’s common to gather some basic information about the

datasets, such as its dimensions, data types and distribution,

number of missing data, etc. These can be done using the R

functions str(), summary() and is.na()of the

base R library, as well as a function desctable() of the

library desctable, which were used in this study.

The time format of the Billy Barr meteorological station

is given in the format yyyy/mm/dd H:M:S, which is

easily converted to the as.POSIXct(%Y-%m-%d

%H:%M:%S), representing calendar dates and times

(POSIX stands for Portable Operating System for Unix).

However, the original time formats of the BCI datasets are

given as a string of characters, using a different order of

days, months, and years, such as yyyy/mm/dd, or mm/

dd/yyyy, or dd/mm/yyyy, which could have been

caused by collecting data using new instrumentation, dat-

aloggers, or datalogger programs. Therefore, the first step

of the preliminary data exploration is to convert the

timestamps to the as.POSIXct time format.

Other problems encountered during the time formatting

are the presence of missing timestamps, marked as NAs,

duplicates of timestamps, and a non-consecutive order of

timestamps. For example, Figure S1-1.2b demonstrates

negative values of calculated time intervals of raw data,

which indicates breaking the temporal order, i.e., a non-

consecutive order of timestamps. These datasets require be

sorted/ordered. The time difference (i.e., time interval) is

determined using the function diff.POSIXt().

The time consistency check includes the evaluation of

the persistence of the time stamps, duplication of times-

tamps, and the variability of the times intervals. The time

stamps are usually given in the format of the local time,

while the final dataset is designed to give time stamps in

both a local time format and the Coordinated Univer-

sal Time (UTC) format, an international standard 24-h

timekeeping system. Therefore, the final results of the QA/

QC analysis include the timestamp vectors given in both

local time (Mountain Times Zone for the Billy Barr station,

and Eastern Time Zone for the BCI station), and the UTC

format.

4 QA analysis of datasets

4.1 Terminology

Identifying and distinguishing outliers and extreme data in

datasets, as well as the difference between them, are among

probably one of the most difficult parts of data cleanup.

The QA procedure includes detecting and flagging of

(a) duplicates of dates and variables, (b) missing data,

given as NAs or shown using non-physical values (such

as - 999, - 9999, or similar), and (c) outliers and bad

data.

The terms ’’outlier,‘‘ ‘‘bad data,’’ and ’’anomaly‘‘ do not

have common technical definitions in the data mining and

statistics literature. For example, Hawkins (1980) defined

an outlier as ‘‘an observation which deviates so much from

the other observations as to arouse suspicions that it was

generated by a different mechanism.’’ Outliers are also

referred to as abnormalities, discordants, deviants, or

anomalies in the data mining and statistics literature (Ag-

garwal, 2017). Bad data are usually caused by
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measurements or input errors, data corruption, but the

apparent outliers can be true observations (Kuhn and

Johnson, 2013).

Extreme data, which could be bad data (or anomalies),

may emerge in time series datasets depending upon the

type and a length of the time series. Bad data can appear as

(a) a single bad data point, or individual spike, when only

one of the measurements in the entire time series will have

a large error, or (b) multiple bad data points (or multiple

spikes) in time series, when numerous measurements will

be in error. For strongly correlated measurements, their

errors may significantly affect the estimated value of each

other, causing the good measurements to look in error.

Multiple bad data can generally be grouped into: non-in-

teracting, with weak relationship between the residuals,

which are not significantly affected by each other; and

interacting with either a strong correlation between the

good and the bad data, or non-conforming, so that it is

difficult to recognize the corrupted data and distinguish

them from the clean measurements. Other types of spurious

data are a level shift, i.e., sudden jumps or unusual events,

and a slow drift.

Dealing with these types of data requires the application

of different approaches. For example, in the case of a slow

drift, i.e., a linear trend of the time series, a linear regres-

sion model can be used, and the linear trend can then be

subtracted. Then, the apparently bad segment of the time

series can be replaced with its residuals. Removing the

trend can also be done using a nonparameteric method,

such as removing the trend using the first difference

function diff().

4.2 Detection and flagging of duplicates

The duplicated()function can be used to determine

which elements of a vector or data frame are duplicates of

other elements, and returns a logical vector indicating

which elements (rows) are duplicates. The other option is

to use the function anyDuplicated () that is an effi-

cient shortcut for duplicated(). The distinct()

function of the dplyr package in R can be used to

eliminate duplicated rows. All duplicated rows are flagged

with 1.

4.3 Detection and flagging of extremes
and outliers

Conventional approaches developed for random (noisy)

datasets with no apparent long-term drift are not applicable

for meteorological and hydrological datasets. Criteria for

the evaluation of outliers and anomalies are supposed to be

different for different scientific and practical applications,

because apparent outliers or bad data points may contain

valuable information about the process or the data gather-

ing process. The first step in the evaluation of outliers and

bad data is to assess whether the data are within a rea-

sonable range (natural overall, seasonal, and instrumental).

For example, solar radiation has to be only positive values

with the zeros at the night time; rainfall is also only posi-

tive values, with zeros at the time of no precipitation,

relative humidity is expected to not exceed 100%, and

wind direction varies from 0 to 360�.
There are multiple approaches to the detection of out-

liers, which are noticeably different in value from the

others of the time series. (Barnett, 1978). Here are a few

examples of the outlier detection techniques: distance-

based outlier detection (Hautamaki et al. 2004), general-

ized dispersion-based outlier detection (Ben-Gal, 2005),

depth based outlier detection (Johnson et al. 1998), density-

based outlier detection (Ester et al. 1996), a hierarchical

cluster analysis, and a Hampel filter that uses a sliding

window to go over the data vector, and it calculates the

median and the standard deviation expressed as the median

absolute deviation (Hampel, 1974; Suomela, 2014). The

Hampel approach is based on calculations of the distance

from the median in terms of the median absolute deviation

(MAD) for symmetrically distributed variables, such as

temperature or wind speed, and assigning different dis-

tances in case of the unsymmetric distribution, for exam-

ple, solar radiation, precipitation, or relative humidity.

For long-term meteorological and hydrological data,

which exhibit seasonal fluctuations and a long-term trend,

we used the runquantile function of the R package

‘‘caTools’’, which is the moving (i.e., rolling) window

calculating quantiles over a vector of the variable. Taking

into account the seasonal fluctuations of meteorological

parameters, the 6-month moving window was used. The

probabilities of 0.999 and 0.001 were selected for the upper

and lower extreme values, and 0.975 and 0.025 for the

upper and lower outlier values. The selection of the rolling

window length and associated thresholds is usually the

user’s dependent process, i.e., it is determined by the out-

lier detections’ goals (e.g., Klein Tank and Können, 2003;

Yu et al. 2014). Figures 3a,b show time series graphs

depicting outliers and bad data for the rolling window of

six months, and statistics of the outliers and extremes are

summarized in Tables 1 and 2. To demonstrate the effect of

using different lengths of the rolling window, we present

the statistical results of calculations of the outliers and

extreme values of precipitation at Billy Barr for the rolling

windows of 15 and 30 days in Tables SI-1.3 and SI-1.4.

The flagging vectors are combined with the original data

sets in the final QA files (given as a series of the CSV or

Excel workbook files) to link data-quality flagging with the

original data. This approach is used to indicate data quality

of the original data, assuming that the original
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measurements still contain some value. The ‘flags’’ are

generally indicative of underlying problems. The flags may

also be used to distinguish between unchecked and checked

data, or extremes, which are suspected of being bad or

faulty.

5 QC analysis of datasets

5.1 Dealing with duplicate values and extremes

The rows with duplicated Dates/Times can be either

extracted or the corresponding values can be aggregated in

a single row for a given Date/Time stamp. In the current R

code, we extracted rows with duplicated Date/Time

stamps, using a function duplicated. We also extracted

the rows, in which extremes were identified. The extraction

of these rows creates the gaps in time series data. We have

conducted imputation of these gaps.

5.2 Imputation of missing values

5.2.1 General approach to imputation of missing values

Missing data, or missing values, occur when no data values

are stored for the variable in an observation. Missingness

mechanisms and patterns are different for different sites

and types of meteorological parameters. Bad data are also

usually marked as missing data. Missing time series data-

sets can be caused by multiple reasons, and missing values

and missing time intervals could occur either at random or

not at random, i.e., at specific time periods over the course

of the year. Imputation of missing data is a challenging

problem, because the gap filling techniques are not generic

and they are special for different types of meteorological

and hydrological variables. Generally speaking, there are

three main approaches to handle missing data: (1) Impu-

tation—where values are filled in the place of missing data,

(2) omission—where samples with invalid data are dis-

carded from further analysis, and (3) analysis—by directly

applying methods unaffected by the missing values.

Imputing missing data can be conducted using a univariate

or multivariate statistical analysis. There are multiple

methods of imputating missing values. In the current paper,

examples of using imputation of missing data into a uni-

variate time series by means of the imputeTS package

are shown. The imputeTS package provides a univariate

time series imputation, and includes several different

imputation algorithms. The package can also be used to

visualize distribution of missing values, visualize distri-

bution of NA gapsizes, and visualize imputed values.

Examples of the visualization of gap imputation are shown

in Sect. 5.4. The statistics of the gap sizes in the BCI

dataset is given in Table 3.

The application of multivariate imputation of missing

values for groundwater levels can be found in the paper by

Dwivedi et al. 2021, and for precipitation–in the paper by

Mital et al. 2020.

bFig. 3 a Time series of the Billy Barr meteorological variables

showing the potential outliers and extreme values (calculated using a

rolling window of 6 months). Note that the precipitation plot is shown

using the semi-logarithmic plot (log-y axis) to more clearly display

potential outliers and extreme values. b Time series of the BCI

meteorological variables showing the potential outliers and extreme

values (calculated using a rolling window of 6 months)

Table 1 Number and

percentage of extremes and

outliers in the Billy Barr dataset

(based on the data shown in

Fig. 3a)

Variables Extremes no Extremes% Outliers no Outliers %

Solar radiation 12 0.08 252 1.6

Wind speed 18 0.11 362 2.3

Wind direction 253 0.11 378 2.4

Temperature 22 0.14 451 2.87

Relative humidity 15 0.1 324 0.02

Barometric pressure 28 0.18 662 4.21

Precipitation 18 0.11 18 0.11

Table 2 Number and

percentage of extremes and

outliers in the BCI dataset

(based on the data shown in

Fig. 3b)

Variables Extremes no Extremes % Outliers no Outliers %

Solar radiation 28 0.11 591 2.25

Wind speed 24 0.09 460 1.75

Relative humidity 28 0.11 558 0.02

Temperature 42 0.16 1068 4.06

Precipitation 25 0.1 25 0.1
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5.2.2 Imputation using the library imputeTs

Imputation was conducted using the na_seadec ()

function (Seasonally Decomposed Missing Value Imputa-

tion) of the ImputeTS package in R, with a the time

series frequency of 365, and using the algorithm ’’in-

terpolation.‘‘ The function statsNA is used to print

statistics of missing values.

5.3 Time series of the desired time frequency

Creation of datasets of the desired time frequency can be

provided using the package highfrequency in R. The

function aggregateTS() returns an aggregated time

series, can handle irregularly spaced timeseries, given as

ts, zoo or an xts objects, and returns a regularly spaced

time series of the desired frequency. This function is

applied over each time interval and provides the mean

value for assigned period (for example, ’’seconds,‘‘ ’’min-

utes,‘‘ ’’hours,‘‘ ’’days,‘‘ ’’weeks.‘‘ There is also an option

to determine whether empty intervals should be dropped.

The function returns NA in case of an empty interval.

Application of the aggregateTS function for the BCI

time series generates a certain number of NAs. Note that

the final results of the QA/QC analysis are given not for

particular time stamps, but for the time periods for which

the data were averaged during preparation of the datasets of

the desired frequency. For both sites, the time intervals of

the QA/QC-ed datasets are 1 hour. The visualization of the

results is demonstrated below in Sect. 5.4.

5.4 Visualization and statistics

A function ggplot_na_distribution() can be

used to provide a graphical presentation of the gap filled

intervals. The results of using this function to visualize

missing intervals are shown in Figure SI-1.3 for the Billy

Barr station, and in Figure SI-1.4–for the BCI station.

Examples of the visualization of occurrences of NA gap

sizes of temperature at both stations are shown in Fig. 4.

The visualization of imputation of mission data, plotted

using the function ggplot_na_imputations(), is

shown in Figs. 5 and 6.

The visualization of the missing values per interval can

be plotted using the function

ggplot_na_intervals().

The Billy Barr’s and BCI’s QA/QC Data Profiling

Reports were developed using the package DataEx-

plorer, and are given in SI-2. These reports contain the

following types of statistical parameters and the results of

the statistical analysis:

• Basic statistics

• Raw counts

• Percentages

• Data structure

• Missing data profile

• Univariate distribution

• Histogram

• QQ plot

• Correlation analysis

• Principal component analysis

The visualization of the data also includes the Box-plot

presentation of the correlation between the meteorological

variables, which is shown in Figure SI-1.6.

5.5 Comparison of the original and QA/QC-ed
datasets

A graphical comparison of the cumulative probability

distribution functions for the original and QA/QC-ed

datasets is shown in Fig. 7. A quantitative comparison of

the original and QA/QC-ed datasets is performed using the

Lepage test (Lepage, 1971; Hollander et al. 2014), which is

a distribution-free, nonparametric, test for assessing jointly

the location (central tendency) and scale (variability) of

Table 3 The statistics of the gap

sizes in the BCI dataset
SR WS WD Ta RH BP Precip

length_series 15,724 15,724 15,724 15,724 15,724 15,724 15,724

number_NAs 89 90 91 89 89 91 93

number_na_gaps 21 22 23 21 21 22 25

average_size_na_gaps 4.2 4.1 4.0 4.2 4.2 4.1 3.7

percentage_NAs 0.57% 0.57% 0.58% 0.57% 0.57% 0.58% 0.59%

longest_na_gap 40 40 40 40 40 40 40

most_frequent_na_gap 1 1 1 1 1 1 1
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Fig. 4 Examples of the visualization of occurrences of NA gap sizes of temperature at both stations: left–Billy Barr station, and right–BCI station

Fig. 5 Visualization of missing values replacements—Billy Barr station
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datasets of different lengths. Calculations are provided

using the R package NSM3. Figure 8 and Table SI-1.5 show

a set of calculated C statistics and p-values for different

variables, indicating that the null hypothesis that the two

samples were drawn from the same distribution can be

rejected for precipitation, wind direction, wind speed, and

solar radiation, as the p-values are less than 0.05. These

results illustrate how the meteorological datasets changed

after gap filling, removing the extreme values, and creating

the desired frequency (1 hour) time series datasets.

Fig. 6 Visualization of missing values replacements—BCI station
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6 Conclusions

Numerical modeling commonly requires consistent data-

sets with a specific and aligned time frequency for different

variables. However, the collected time series datasets are

often irregular and characterized by different time fre-

quency of measurements, different units of measurements

in the same time series, time stamps duplicates, periodic

malfunctioning or failure of sensors or changes due to

calibration, and missing data. Irregular datasets are also

common when the data are multi-modal, with inputs

coming from different sources, which are not synchronized

with each other, resulting in the non-uniform input data.

The other cause of irregularity is due to removing outliers

or abnormal values. Moreover, different meteorological

parameters from the same meteorological station, repre-

senting the same time period, are sometimes collected at

different time intervals.

The article presents a framework to perform the entire

QA/QC process in the R programming environment. The

developed QA/QC workflow includes three consecutive

phases: Phase I—Preliminary data exploration, i.e., pro-

cessing of raw datasets, with the challenging problems of

time formatting and combining datasets of different lengths

and different time intervals; Phase II—QA analysis of the

datasets, including detecting and flagging of duplicates,

outliers, and extreme data; and Phase III—imputation of

missing values and the development of time series of a

desired frequency, visualization and a statistical summary.

The developed QA/QC statistical framework and methods

are suitable for both real-time (QA analysis during Phases I

and II) and post-data-collection QC analysis (Phase III) of

meteorological and hydrological datasets. The developed

Fig. 7 Comparison of

cumulative probability

distribution functions of the

original and QA/QC-ed datasets

(Billy Barr station)

Fig. 8 Graphical presentation of the results of the Lepage test,

demonstrating that the null hypothesis that the original and QA/QC-

ed data are drawn from the same distribution can be rejected at the p-

values of 0.05 for precipitation, wind speed, wind direction, and solar

radiation
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approach allows scientists to obtain QA/QC-ed time series

datasets of meteorological drivers with desired time steps.

Various criteria and metrics are applied to ensure consis-

tency in the preparation of datasets: time frequency of

measurements, descriptive statistics (i.e., max, min, stan-

dard deviation, outliers and extremes). The application of

the developed framework and methods is demonstrated

using two use cases from opposite ends of the meteoro-

logical spectrum—the Billy Barr meteorological station

(East River Watershed, Colorado) and the Barro Colorado

Island (Panama) meteorological station.
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