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Abstract
We propose a way to model the underdetection of infected and removed individuals in a compartmental model for

estimating the COVID-19 epidemic. The proposed approach is demonstrated on a stochastic SIR model, specified as a

system of stochastic differential equations, to analyse data from the Italian COVID-19 epidemic. We find that a correct

assessment of the amount of underdetection is important to obtain reliable estimates of the critical model parameters. The

adaptation of the model in each time interval between relevant government decrees implementing contagion mitigation

measures provides short-term predictions and a continuously updated assessment of the basic reproduction number.

Keywords Susceptible-infected-removed � Underdetection � State-space SDE � Identifiability � Infection fatality rate �
Basic reproduction number

1 Introduction

In early 2020 the outbreak of SARS-CoV-2 started in

Wuhan, China and spread to several other countries,

causing the respiratory disease named COVID-19. At the

end of January 2020, WHO (World Health Organisation)

declared the outbreak to be a Public Health Emergency of

International Concern, the highest level of alarm (WHO

World Health Organization 2020a).

One of the many challenges of the COVID-19 pandemic

is the estimation of the fraction of infected people with

mild or no symptoms that escape testing and tracing, as it

has been estimated that asymptomatic persons account for

approximately 40%–45% of SARS-CoV-2 infections and

can transmit the virus to others for an extended period

(Oran and Topol 2021). Therefore, the greater the

underdetection (or underreporting) rate is, the more diffi-

cult it is to understand the real dynamics of the epidemic.

This can affect both government actions and individual

behaviour, reducing the adherence of people to contain-

ment measures, for instance, if the epidemic is perceived as

less severe than it is described. There are two main causes

of underdetection, namely the specificity of the SARS-

CoV-2 virus inducing asymptomatic or mildly symp-

tomatic cases which are hardly monitored or detected in

large populations, and the emergency preparedness of

national health systems in making available, and carrying

out, the necessary amount of tests, as recommended by

WHO (2020b), to both control the spread of the pandemic

and determine the level of community transmission.

Moreover, it has been estimated that, at the beginning of

the epidemic, even the number of symptomatic cases was

largely under-ascertained (Russell et al. 2020; Pullano

et al. 2021). In an epidemiological approach, seropreva-

lence studies, where the host immune response to SARS-

CoV-2 infection is measured in blood samples as a proxy

for previous infections, have been implemented worldwide

to enable estimates of the true extent of infection (Byam-

basuren et al. 2021). However, these studies are time- and

resource-intensive and the resulting estimates can be

affected by a high, often overlooked, uncertainty (Brown

and Walensky 2020). In addition to seroprevalence studies,

underreporting assessments have been carried out, for

instance, from the number of reported deaths (Flaxman

et al. 2020; Phipps et al. 2020) comparing the case fatality

rate (CFR) to an estimate of the key parameter, infection

fatality rate (IFR) (Sánchez-Romero et al. 2021); from

exported cases and air travel volume (Tuite et al. 2020);
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from epidemiological and population data using deter-

ministic models (Krantz and Rao 2020); by post-stratifi-

cation sampling techniques (Bassi et al. 2021) or by also

using information on testing and countries characteristics

(Kuster and Overgaard 2021). Depending on different

approaches, countries and analysis period considered, the

estimated fraction of underdetected infections can vary

remarkably (Noh and Danuser 2021). Underdetection,

however, should not only be estimated as a fixed fraction,

but its dynamic nature should also be considered in any

modelling approach aiming at understanding the dynamics

of the epidemic and forecasting its short-term development,

since the estimation of the true number of infected

(symptomatic, mild and asymptomatic cases) is funda-

mental to decide the implementation or lifting of contain-

ment measures and their subsequent evaluation.

In this work we propose to couple a stochastic com-

partmental model for the description of the dynamics of the

transmission of SARS-CoV-2 with an observation equation

that relates the actual numbers of infected and removed to

the observed ones. The proposed approach is illustrated on

the Italian data.

Since the onset of the pandemic, the popular SIR model,

introduced about 10 years after the 1918 influenza pan-

demic (Kermack and McKendrick 1927) has been widely

applied. A recent systematic review found that about 46%

of the studies resulting from a search of the keywords

related to SARS-CoV-2, and its modelling and prediction

over the time period from 1st January 2020 to 30th

November 2020, were based on a simple compartmental

model, namely SIR and SEIR, both as deterministic or

stochastic models (Gnanvi et al. 2021). Moreover, as a

parsimonious model able to allowing measurement and

forecast of the impact of non-pharmacological interven-

tions such as social distancing, the SIR model still main-

tains a primary role in the analysis of the early phase of

COVID-19 outbreak (Bertozzi et al. 2020; Carletti et al.

2020). Then, we considered a simple SIR model to

exemplify the proposed approach to deal with underde-

tection in a compartmental model. A few other approaches

have been found in literature. In Calafiore et al. (2020) the

initial number of susceptible individuals, as well as the

proportionality factor relating the detected number of

positives with the actual (and unknown) number of infected

individuals, were included among the parameters of a

SIRD model. A Poisson model was used in Hong and Li

(2020) to link the reported numbers of infected and

removed to the true numbers of infected and removed as

described by a time-varying SIR. The SIR model has also

been extended by introducing several different compart-

ments (Wang et al. 2020) in an attempt to capture the

whole complexity of the pandemic. Some extended SIR

models, in particular, include the compartment of

asymptomatic or some other distinction between detected

and undetected infected (Giordano et al. 2020; Deo and

Grover 2021; Gatto et al. 2020; Liu et al. 2021) to take into

account underreporting. However, in previous work (Bilge

et al. 2015) it was shown that, while the parameters of the

SIR model can be uniquely determined from the temporal

evolution of the normalised curve of removed individuals,

the same is not true for more complex models. Thus, the

SEIR and other models should not be used in the absence

of additional information that could be obtained from

clinical studies. The lack of clinical information had a

significant impact on the early modeling of Italian data,

given that Italy was the third country in the world and the

first in the Western world to incur the pandemic (Berardi

et al. 2020). Moreover, in Italy as in other countries, at the

beginning of the epidemic underdetection was very high

due to limited testing capacity and inadequate availability

of both personal protective equipment and ventilators that

forced the Italian government to restrict testing to people

with severe cases and priority risk groups (Bosa et al.

2021).

The article is organised as follows. In Sect. 2 we

introduce the stochastic SIR model, and we propose to

model the fraction of reported cases as a random variable

with a beta distribution and suggest a way to parameterise

the beta distribution that relies on the infection fatality rate

and its crude estimate, the case fatality rate. In Sect. 3 we

suggest a method to compare the simulated and the

observed epidemic dynamics using the model estimated via

the Rao-Blackwellised particle filter (RBPF) algorithm

reported in ‘‘Appendix 1’’ (Doucet et al. 2000). We also

present a way to obtain short-term forecast on the

dynamics. In Sect. 4, we apply the filtering algorithm to a

simulated dataset to assess its behaviour and to introduce

notation and terminology to be used later. We also make a

few considerations on the problems arising in parameter

estimation. In Sect. 5 we apply our method to the Italian

data of both the first and the second infection wave,

obtaining a good fit, along with a forecast that could be

valid only in the short-term. We also consider the problem

of assigning the correct observation error distribution using

available information on the infection fatality rate and

compare the simulated dynamics to the result of a sample

serological survey carried out by Istat (Italian national

statistical office) and the Italian Ministry of Health between

May and July 2020. This comparison indicates that our

model, when properly calibrated, provides a realistic

assessment of the state of the epidemic. A section with

some final remarks concludes the article.
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2 Stochastic SIR model with underdetection

Consider a population and denote by St the fraction of

susceptible individuals at time t, by It the fraction of

infected individuals and by Rt the fraction of removed

individuals (survivors and dead). We suppose that the

population is closed, then St þ It þ Rt ¼ 1 for every time t.

The deterministic SIR model can be written

dSt
dt

¼ �bItSt

dIt
dt

¼ bItSt � cIt

dRt

dt
¼ cIt

8
>>>>>><

>>>>>>:

ð1Þ

where b is the disease transmission rate, that is, the fraction

of all contacts, between infected and susceptible people,

that become infectious per unit of time and per individual

in the population, and c is the removal rate. The parameters

b and c allow us to approximate the basic reproduction

number R0 (or ratio, also called basic reproductive number

or ratio) that can be thought of as the expected number of

infected people generated by an infected individual in a

population where all individuals are susceptible to infec-

tion. Despite its conceptual simplicity, R0 is usually esti-

mated with complex mathematical models developed using

various sets of assumptions (Delamater et al. 2019). In the

above SIR model it holds

R0 ¼
b
c
;

where the parameters b and c are unknown and have to be

estimated. We suppose that these parameters are subject to

uncertainty and change in time as follows

bt ¼ b0 þ rwð1Þ
t ct ¼ c0 þ gwð2Þ

t ð2Þ

with w
ð1Þ
t and w

ð2Þ
t independent Wiener noises. That is, bt is

supposed normally distributed with mean b0 and variance

r2t and ct is normally distributed with mean c0 and vari-

ance g2t. For alternative ways to introduce stochasticity,

see Ganyani et al. (2021). The parameters r and g mea-

suring the noise intensity are assumed known and suffi-

ciently small to obtain positive bt and ct with probability

approximately equal to one. Substituting the expression (2)

for b and c in system (1), we obtain the following

stochastic SIR model:

dSt ¼ �b0ItStdt � rItStdw
ð1Þ
t

dIt ¼ b0ItSt � c0Itð Þdt þ rItStdw
ð1Þ
t � gItdw

ð2Þ
t

dRt ¼ c0Itdt þ gItdw
ð2Þ
t

8
>><

>>:

ð3Þ

The introduction of noise in the parameters b and c no

longer grants the condition St þ It þ Rt ¼ 1. We can

enforce it by replacing St by 1� It � Rt in the second and

third equations and removing the first equation to obtain

the reduced system

dIt ¼ b0Itð1� It � RtÞ � c0Itð Þdt þ rItð1� It � RtÞdwð1Þ
t � gItdw

ð2Þ
t

dRt ¼ c0Itdt þ gItdw
ð2Þ
t

(

ð4Þ

Denoting by Xt ¼ It;Rtð ÞT the state vector, by Wt ¼

w
ð1Þ
t ;w

ð2Þ
t

� �T
the vector of independent Wiener processes

and by h0 ¼ b0; c0ð ÞT the parameter vector, we can rewrite

the system (4) in vectorial form:

dXt ¼ h Xtð Þh0dt þ g Xtð ÞdWt ð5Þ

where

h Xtð Þ ¼
Itð1� It � RtÞ � It

0 It

� �

;

g Xtð Þ ¼
rItð1� It � RtÞ � gIt

0 gIt

� �

:

ð6Þ

We call Xt the state of the system, which for COVID-19 is

unobservable, and introduce Yt to denote what can actually

be observed, in accordance with the terminology derived

from state-space modelling.

We suppose that each component of the observation

vector Ytþ1 is given by the product of the corresponding

component of Xtþ1 and a random variable:

Yt;1

Yt;2

� �

¼
Ut;1Xt;1

Ut;2Xt;2

� �

ð7Þ

where Ut;1 and Ut;2 are independent and identically beta

distributed random variables with shape parameters a and

b. (In the following, by U, Y and X with no subscript we

mean scalar random variables distributed as Ut;i, Yt;i, and

Xt;i, respectively, i ¼ 1; 2). The observation error in SIR

models has been considered in other frameworks using

different formulations (see, for example, Stocks et al.

(2021)). Finally, we assume that the initial distribution of

h0 is Gaussian with mean l0 and covariance matrix R0.

2.1 Assigning parameters of the observation
error distribution

The choice of a and b at the beginning of a new epidemic,

in the absence of epidemiological information, is very

critical and we propose to refer to the infection fatality

ratio (IFR), the ratio of COVID-19 deaths to total infec-

tions of SARS-CoV-2, including asymptomatic and undi-

agnosed infections. The IFR is a fundamental quantity to

estimate the severity of the epidemic, but it can only be
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known at the end of the epidemic and after testing the

entire population. An accurate estimation is therefore

challenging in general and especially for COVID-19

(Mallapaty 2020), and the case fatality ratio (CFR), the

ratio of COVID-19 deaths to confirmed cases, is usually

considered as a rough estimate. By definition, the CFR is

greater than the IFR. At any time t an estimate CFRt of the

CFR and an estimate IFRt of the IFR are related by the

simple relationship

CFRt ¼
Dt

Robs;t
¼ Dt

Rt
� Rt

Robs;t
¼ IFRt �

Rt

Robs;t
ð8Þ

where Dt denotes all deaths by time t and Robs ¼ Y2 ¼
U2X2 (Ghani et al. 2005).

Since by (8)

Robs;t ¼
IFRt

CFRt
� Rt ; ð9Þ

the ratio IFRt=CFRt can be regarded as the underreporting

factor that we have modelled as the U beta random variable

introduced earlier.

Given estimates IFRt as t ¼ 1; . . .; T and the corre-

sponding observed sequence of CFRt, we would obtain a

sample u1 ¼ IFR1=CFR1; . . .; uT ¼ IFRT=CFRT and an

estimate of a and b by any established method. Using the

method of moments, for example, and considering an

estimate IFR of the IFR to substitute IFRt, we would get

â ¼ �u
�uð1� �uÞ

s2u
� 1

� �

¼ �u1=CFR
�u1=CFRð1� IFR �u1=CFRÞ

s2
1=CFR

� IFR

( )

b̂ ¼ ð1� �uÞ �uð1� �uÞ
s2u

� 1

� �

¼
1� IFR �u1=CFR

IFR

�u1=CFRð1� IFR �u1=CFRÞ
s2
1=CFR

� IFR

( )

ð10Þ

where �u and s2u are the sample mean and variance of

ðu1; . . .; uTÞ and �u1=CFR and s21=CFR are the sample mean and

variance of 1=CFR1; . . .; 1=CFRT . These equations show

that the choice of IFR affects both parameters.

The fatality ratio approach has the advantage that the

IFR is a pure number and information on its value can be

gathered from different populations. Then, in practice, we

may estimate the sample mean and variance of

1=CFR1; . . .; 1=CFRT from the observed fatality and

removal data, and assign â and b̂ for a selected IFR. If a

range of values is available for the IFR from another

source, such as a confidence or a credibility interval, we

may repeat the analysis with the IFR varying within the

interval and evaluate the sensitivity of the results.

3 Parameter estimation, filtering,
forecasting, and goodness-of-fit

To estimate the parameter h0 we propose a Rao-Black-

wellised particle filter (RBPF) algorithm based on the Euler

discretisation of the stochastic system (5):

Xtþ1 ¼ Xt þ hðXtÞh0Dt þ gðXtÞDWt; t ¼ 0; 1; 2; . . .

ð11Þ

where we also use t for discrete time to save notation. The

RBPF algorithm is described in ‘‘Appendix 1’’. This

algorithm allows us to jointly calculate, at each time step,

the estimated parameter and the state of the system using a

noisy observation of the state as input.

To visualise how well the SIR model fits the observa-

tions, we need a way to compare the simulated trajectories

with the observed data. We have supposed that the obser-

vations are smaller than the true value of the state X;

therefore we have to scale them by a factor that makes

them comparable to the filtered state. A scaling factor is

suggested by constructing a prediction interval of the state

X at each observation time. Note that from (7) the random

variable Y/X is a pivotal quantity with beta distribution and

we may state that

1� q ¼P uq
2
� Y

X
� u1�q

2

� �

¼P
Y

u1�q
2

�X� Y

uq
2

 ! ð12Þ

where uq
2
and u1�q

2
are the q

2
and the 1� q

2
percentiles of the

beta distribution of U. Then, the corresponding prediction

interval for X, after observing y, is

y

u1�q
2

;
y

uq
2

 !

ð13Þ

and a natural scaling factor for a point prediction of X is the

median of U, yielding that the simulated trajectories of the

model can be compared to the observed data by scaling

them as y=u0:5. The feature of (13) is that it does not

depend on the SIR modelling assumption, but only on the

observation error assumption, and, therefore, it offers a

way to see how well the SIR dynamic follows the (trans-

formed) data.

The model can also be used to predict the future beha-

viour of the epidemic. Let y1:t be the time series of

observations up to time t; for a fixed initial state x0, the

RBPF algorithm provides a sample x
ðiÞ
0:t, i ¼ 1; . . .;M, to
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approximate the posterior distribution of the state

pðx0:tjy1:tÞ. Furthermore, the conditional distributions of h0
given x0:t, pðh0jx0:tÞ, is Gaussian with mean lt ¼ Eðh0jx0:tÞ
and covariance matrix Rt ¼ Covðh0jx0:tÞ. The RBPF algo-

rithm produces a sample ðlðiÞt ;RðiÞ
t Þ of conditional mean

vectors and covariance matrices given x
ðiÞ
0:t. To forecast Xtþk

given y1:t, we aim at computing EðXtþkjy1:tÞ. If we fix h0
and x0:t, and run model (11) for k time steps, we obtain a

value for Xtþk as a function fkðx0:t; h0; nÞ, in which n
indicates the sequence of increments DWs,

s ¼ t þ 1; . . .; t þ k. Using fkðx0:t; h0; nÞ, the conditional

expectation is

EðXtþkjy1:tÞ ¼
Z

fkðx0:t; h0; nÞpðnÞpðh0jx0:tÞ

pðx0:tjy1:tÞ dndh0dx0:t
ð14Þ

where conditional independence of h0 on y1:t given x0:t
allows for substitution of pðh0jx0:t; y1:tÞ by pðh0jx0:tÞ. Then,
if for each i we draw hðiÞ0 from pðh0jxðiÞ0:tÞ and nðiÞ from the

distribution of the Wiener process increment, the predictive

expectation of Xtþk is approximated by

EðXtþkjy1:tÞ ’
1

M

XM

i¼1

fkðxðiÞ0:t; h
ðiÞ
0 ; nðiÞÞ : ð15Þ

4 Model assessment with synthetic data

To check the convergence of the method and describe how

to apply the estimation method we fix a parameter value

and simulate the observations (or data).

We start from an initial condition of 1% infected and

0.1% removed. We simulate data for the parameters b0 ¼
0:3 and c0 ¼ 0:1. The parameters r and g in (2) are 0.03

and 0.01, respectively.

To represent the initial phase of the epidemic, we run

model (4) to generate 67 daily step states (circles in Fig. 1).

Then, we use Eq. (7) with a ¼ 10 and b ¼ 40, meaning

u0:5 ¼ 19:6%, for the beta distribution of the observation

error obtaining the observations (asterisks in Fig. 1). The

first 60 data will be used for the estimation procedure and

the other 7 to check the goodness of the forecast.

We apply the RBPF algorithm described in ‘‘Ap-

pendix 1’’ with 200,000 particles and with a time step of

1/24 day. The choice of considering hourly observations

while having daily ones is motivated by the need to

improve the precision of the algorithm. For this purpose we

imputed new hourly observations by linear interpolation

between two consecutive daily observations (asterisks in

Fig. 1). The imputed observations are no longer indepen-

dently distributed conditionally on the states; however this

approximate procedure keeps the effective sample size of

the RBPF algorithm at large values with no appreciable

difference in results.

The initial guess for the parameter h0 ¼ ðb0; c0ÞT is

l0 ¼ ð0:5; 0:5ÞT and the prior covariance matrix

R0 ¼ diagð0:05; 0:02Þ. The mean trajectories of infected

and removed people over all the particles obtained by

running the RBPF algorithm are represented with solid

lines in the left panel of Fig. 2 where the circles represent

simulated states before the introduction of the observation

error. The susceptible individuals are obtained as St ¼
1� It � Rt and then the goodness of fit is a consequence of

the fit for the other two compartments.

We denote the filtered or forecasted states as Ît and R̂t,

where the value of t determines whether we are filtering or

forecasting, that is, if our observation period ends at time s,

then Ît and R̂t are forecasts when t[ s; otherwise they are

filtered states. From the RBPF we get the filtered states

and, using (15), we get a forecast of the dynamics. Ît and R̂t

are compared to the true states in the left panel of Fig. 2,

where we see that both the fit up to day 60 and the forecast

on days 61-67 are satisfactory. In particular, the forecast

well represents the state trend.

In real cases the true states (circles in Fig. 1) are

unobserved, and we can only compare the filtered states to

the observations, taking into account underdetection.

Therefore, starting from the observations (asterisks in

Fig. 1), we compute the daily prediction intervals for

infected It and removed Rt, as in (13) with q ¼ 0:025. In

the right panel of Fig. 2 the prediction intervals are rep-

resented by vertical lines, while the thin solid lines repre-

sent the ratio between the observations and the median of

Fig. 1 True states (circles) obtained from Eq. (4) and observations

(asterisks) obtained from true states applying formula (7), where Ut;1

and Ut;2 have a beta distribution with parameters a ¼ 10 and b ¼ 40,

meaning u0:5 ¼ 19:6
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the distribution of the observation error (which we may call

the adjusted observations). The width of the prediction

intervals reflects the dispersion of the observation error

distribution for which q0:025 ¼ 0:10 and q0:975 ¼ 0:32. The

true states (circles in Fig. 2) are inside the intervals and

cross the adjusted observations (thin lines), then, if the

adjusted observations and the filtered state (thick lines)

agree with each other, this is a necessary condition for the

filtered state to follow the unknown true state.

We denote the estimates of b0 and c0 with information

up to time t by b̂t and ĉt, see (21). Their time behaviour is

shown in the top panel of Fig. 3. The behaviour of R̂0ðtÞ,
the estimated basic reproduction number (22), is displayed

in the bottom panel of Fig. 3 and it can be seen that it well

approaches the true R0.

Before considering the application to a real case, we

would like to remark two aspects regarding the parameter

estimation in stochastic systems: sample variability and

identifiability. When considering a stochastic SIR model,

the filtered states and the estimated parameters are affected

by the variability in the data generated from system (4). As

a consequence, for some datasets, the estimated parame-

ters, although giving a good fit of the dynamics, can be far

from the values used for generating the observations,

keeping however the ratio b̂t=ĉt close to the true value of

R0. The second aspects is the identifiability. The stochastic

SIR models considered here are structurally identifiable

(Bellman and Åström 1970; Piazzola et al. 2021), but the

parameters can be practically non identifiable, that is there

might be two different pairs of parameters giving a satis-

factory fit of the dynamics. It is then fundamental to

suitably choose the beta distribution of the observation

error in the collection of infected and removed people to

avoid practical nonidentifiability. Assessment of sample

variability and identifiability is carefully discussed in

‘‘Appendix 2’’.

5 The Italian data

In this section we apply the proposed approach to analyse

the data of the first wave of COVID-19 in Italy, and we

show how our analysis can capture the start of the second

Fig. 2 Application of the RBPF algorithm. Left panel: trajectories of

infected (red line) and removed (green line) compared with the true

state (circles). The dynamics up to day 60 are the filtered states, while

the dynamics from day 61 to day 67 are forecasts. Right panel: true

states (circles), filtered state and forecast (thick lines) and adjusted

observations (thin line) with 95% prediction intervals (13). The thick

lines up to day 60 are the filtered states, while those from day 61 to

day 67 are forecasts. The thin lines are the observations divided by

u0:5, the median of the observation error distribution

Fig. 3 Top panel: behaviour of b̂t (blue) and ĉt (red) obtained from

(21). Bottom panel: behaviour of R̂0ðtÞ obtained from (22) (blue line)

and value of true R0 ¼ b0=c0 ¼ 0:3=0:1 (red line)
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wave of the epidemic. Data were collected by Protezione

Civile (Civil Protection Department) from 24th February

2020 (Morettini et al. 2020). We consider the data for the

entire Italy up to 26th November 2020. Available data are

the number of infected, dead, and recovered individuals.

Removed people can be obtained by adding up dead and

recovered people. In Italy, all deaths of people infected

with SARS-CoV-2 have been classified as due to COVID-

19 (Riccardo et al. 2020). The infected and removed

individuals in Italy from 24th February to 26th November

are represented in Fig. 4. The total resident population as

of 31st December 2019 is 60,244,639 people, as certified

by Istat.

To deal with underdetection we consider observations as

generated by (7), where we recall that Ut;1 and Ut;2 are

independently beta distributed with common shape

parameters a and b.

As we can see from Fig. 4, the first wave officially began

on 24th February and lasted until mid-summer, when the

number of infected people started to rise again, as in the rest

of Europe (Bontempi 2020). The second wave is distin-

guished from the first also by the increased test capacity

(https://www.covid19healthsystem.org/countries/italy/livin

ghit.aspx?Section=1.5%20Testing&Type=Section, last

access 17th July 2021). Hence we consider the two waves as

different models, with respect to both the SIR parameters

and the observation error distribution parameters and we

conventionally set the start of the second wave on 1st

August.

For Italy, we may use an indirect method to indicate a

plausible value of the IFR taking advantage of a sero-

prevalence survey targeting IgG antibodies conducted from

May to July by Istat, the Italian national statistical office,

and the Italian Ministry of Health. Preliminary results

obtained from 64,660 people were presented in early

August (Istituto Nazionale di Statistica 2020). According to

them, almost 1.5 million people in Italy or 2.5% of the

population had developed coronavirus antibodies, a fig-

ure six times larger than official numbers reported. In short,

the idea is to compare the 2.5% figure of people who

developed antibodies to the healed people (who have

antibodies) estimated from the filtered state R̂t in an

appropriate time interval. The infected compartment may

also contain seropositive individuals; however, the fraction

of people in this compartment had become small when

Istat’s survey started, so we consider only the removed

compartment. The reasoning behind this comparison is that

if the assumed IFR is correct, then the observation error

distribution derived from (10) is correct and the filtered

states are realistic and they should be in agreement with the

Istat survey result.

To be more specific, let Rt ¼ Ht þ Dt, where Ht and Dt

are the fractions (over the population) of healed and dead

people by time t, respectively. Healed people can be

seronegative if IgG antibodies are no longer in their sys-

tem, but we can safely assume that a person enters the

healed record soon so s/he can be considered as seroposi-

tive when they do. Now, Ht includes all healed individuals

since the start of the epidemic, hence a fraction of Ht can

be seronegative, depending on the duration d of seroposi-

tivity. Hence we should compare 2.5% to Ht � Ht�d, where

Ht�d ¼ 0 if t � d\1. The true values of Ht are unknown.

We may recover them from R̂t and the available data on the

fraction of deaths as Ĥt ¼ R̂t � Dt=u0:5. Since Istat’s sur-

vey was carried out between 25th May and 15th July 2020,

we compare 2.5% to

�H ¼ 1

52

X15July

t¼25May

ðĤt � Ĥt�dÞ : ð16Þ

The duration of IgG antibodies is still today largely deba-

ted, (Röltgen et al. 2020; Scozzari et al. 2021) and here we

consider three months as a plausible value of d (Duysburgh

et al. 2021). This procedure rests on several assumptions

and we only regard it as a way to check for gross deviations

of our model from reality.

5.1 State and parameter estimation

We run the RBPF algorithm with 20,000 particles, time

discretisation step of 1/24 day as done for the synthetic

data, starting from the first day with at least 100 removed

(1st March). The initial values are ðb0; c0ÞT ¼ l0 ¼
ð0:3; 0:1ÞT and R0 ¼ diagð0:002; 0:001Þ. Moreover r ¼
0:03 and g ¼ 0:01.

Fig. 4 Infected (red asterisks) and removed (green asterisks) in Italy

from 24th February (time 0) to 26th November 2020. Data from

Protezione Civile
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The Centre for Evidence-Based Medicine (CEBM) at

the University of Oxford bases its timely updates of IFR

point estimate on a continuously evolving meta-analysis

based on CFR data. The IFR point estimate is then obtained

by halving the lower bound of the 95% prediction interval

of the CFR and the current estimate sets the IFR at 0.51%

(Oke and Heneghan 2020). In Brazeau et al. (2020) low

and high income countries were discussed separately; in a

typical high income country, with a higher concentration of

elderly individuals, an overall IFR of 1.15% (0.78–1.79

95% prediction interval) is estimated. An estimate of 1.3%

has been obtained using data from the closed population of

passengers in the Diamond Princess cruise ship (Russell

et al. 2020). The meta-analysis carried out by Meyerowitz-

Katz and Merone (2020) of published research data on

COVID-19 infection fatality rates, with last search on 16/

06/2020, has indicated a point estimate of IFR of 0.68%

(0.53%–0.82%) with high heterogeneity, and suggested

that in many populations the IFR would be [ 1% if excess

mortality was taken into account.

For the first wave, we then computed a and b from (10) for

a range of IFR values from 0.1%–6%, where the minimum

value is the lowest we found in the relevant literature, besides

having been suggested as lower bound of IFR in Europe by

CEBM. The maximum value is still inspired by CEBM and

the considerations in Meyerowitz-Katz and Merone (2020).

Indeed, in Italy an estimated initial CFR of about 11–19%

has been reported (De Natale et al. 2020; Tosi et al. 2020;

Riccardo et al. 2020). This suggested to consider IFR=6% as

a possible maximum initial value, accounting for the lack of

knowledge at the beginning of the first wave. Moving too far

from the highest value gives a large discrepancy between

Istat’s 2.5% estimated seropositivity in the population and

(16). Then we present here results for IFR ¼ 4:5% (on 31st

March 2020), for which �H ¼ 2:4%. The parameters of the

corresponding beta density are a ¼ 11:9 and b ¼ 93:17,

meaning a median underdetection value u0:5 ¼ 11:1% (95%

range: 6–18%). This result is in line with Gatto et al. (2020),

and is more optimistic than the estimated 4% in Kuster and

Overgaard (2021) while noticeably lower than the estimated

40% inLiu et al. (2021). These differences are also due to the

time interval considered. The initial condition for It (Rt), for

each trajectory, is given by the normalised number of

infected (removed) people collected by Protezione Civile on

1st March divided by the median of this beta distribution to

take into account the underdetection on 1st March data.

To account for government actions, we split the first

wave into subintervals considering the DPCMs1 with the

greatest impact on social organisation allowing for 10 days

for the DPCM to have an effect on the epidemic (that is,

change points are the DPCM dates plus 10 days). In par-

ticular, we considered the following DPCM dates: 11th

March, 22nd March, 26th April and 3rd June, so that the

change points are on 21st March, 1st April, 3rd May and

13th June.

For each time interval, except the first, we used the

filtered state x̂t (20) at the end of the previous interval as

initial state and the values of b̂t and ĉt at the end of the

previous interval as starting parameters. Then the discon-

tinuity in the update was determined only by the initial

covariance matrix. From a preliminary study on a single

interval we found small values for the matrix R. Then we

took R0 ¼ diagð0:002; 0:001Þ for all the time intervals.

This choice also allowed us to avoid big jumps in the

trajectories of the parameters at the change points. The

dynamics of the five different SIR models are represented

as a whole dynamics in Fig. 5. The filtered states of

infected and removed individuals are represented with

thick lines in Fig. 5 where also the prediction intervals for

both infected and removed are reported. The prediction

intervals are computed from (13) and the thin lines in

Fig. 5 represent the adjusted observations obtained con-

sidering the ratio between the observations and the median

u0:5 ¼ 11:1% of the observation error distribution.

The trajectories b̂t, ĉt and R̂0ðtÞ show jumps at the

change points (Fig. 6), which are not very pronounced due

to the choice of a small R0. After a few steps from each

jump, the trajectories stabilise following a regular trend.

The dynamics of infected individuals fits very well the

observed infected divided by u0:5 ¼ 11:1%. At the begin-

ning of the epidemic, R̂0ðtÞ is higher than 3. This reflects

both the uncertainty in the Italian data and the recognised

high value of R0 describing the early temporal spread of

SARS-CoV-2 at global and local levels, (Katul et al. 2020;

Linka et al. 2020; Yu et al. 2021). Values around 3 at the

end of March (around day 30) reflect the current estimates

for that period, before the effects of the general stay-at-

home recommendation (22nd March), reinforcing the

national lockdown (11th March), are felt (Gatto et al. 2020;

D’Arienzo and Coniglio 2020; Allieta et al. 2021). After

day 66 (corresponding to 26th April), b̂t is smaller than ĉt,

so R̂0ðtÞ\1. This result is in agreement with the effective

reproduction number published for the first time by Istituto

Superiore di Sanità (Italian National Institute of Health,

ISS) on 30th April (Istituto Superiore Sanità 2020a): the

effective reproduction numbers were reported for every

Italian region (except for two because of bad quality data)

and they were all smaller than one. It is worth pointing out

that our simulation study showed that the method is cap-

able of estimating the basic reproduction number with

greater accuracy and precision than the infection and

1 DPCM: Italian acronym for government decrees. For a summary of

the DPCMs related to the COVID-19 emergency. see http://www.

governo.it/it/coronavirus-misure-del-governo.
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removal rate parameters (see ‘‘Appendix 2.1’’), which is

relevant to public health decisions.

We then analysed the forecast of the infected and

removed dynamics for the first wave, computed as in (15).

We considered observations up to 20 days after the second

or third change points, and we tried to forecast the

dynamics for the seven following days (Fig. 7).

It can be observed from Fig. 7 that the forecast is sat-

isfactory 20 days after the third change point, that is when

the estimate of bt has approximately reached a constant

value, and it is less precise when bt has a decreasing trend

(see Fig. 6).

We then focused on the second wave, starting on 1st

August and we considered three change points 10 days

after the following measures: on 1st September (partial

opening of museums and stadiums, and increased occu-

pancy in public transportation); on 21st October (curfew in

Lombardy, the most affected region); on 3rd November

(DPCM establishing red, orange and yellow scenarios to

classify regions from highest to lowest risk and introducing

tiered restrictions). We run the RBPF algorithm, with l0 ¼
ð0:05; 0:03ÞT as initial value for ðb0; c0ÞT and

R0 ¼ diagð0:002; 0:001Þ. Moreover, r ¼ 0:03 and

g ¼ 0:01. The state is formed by infected individuals and

newly removed individuals since 1st August, that is, the

difference between the removed at each time and the

removed on 31st July.

For the second wave the underdetection error of infected

and removed people is smaller, because of an increase in

resources for taking swab tests. For this reason it is

appropriate to recalculate the parameters of the beta

observation error distribution from (10) only with data

since 1st August. Unfortunately, we lacked a benchmark

such as the serological survey during the first wave, and

therefore we present the results obtained by considering

four different IFR values: 1:15%, 1:3%, 1:5%, 1:75%

according to the most recent studies. The beta densities

obtained for these values (on 31st August 2020) are rep-

resented in Fig. 8 and compared with the beta density used

for the first wave. We excluded smaller values of IFR

because the corresponding observation error beta distribu-

tions were located on small values, like for the first wave.

It can be seen from Fig. 8 that both mean and variance

of the beta distribution increase as the IFR increases. The

corresponding dynamics are shown in Fig. 9. The nor-

malised numbers of individuals decrease as the IFR

increases, because the observations are divided by the

median of the beta distribution which is increasing with the

IFR. The width of the prediction intervals also decreases as

the IFR increases. The filtered dynamics well reconstruct

the behaviour of the adjusted data in all the cases. The

estimated parameters b̂t and ĉt are very similar for the

different cases and only the parameters obtained using

IFR ¼ 1:3% are reported in Fig. 10 with the corresponding

R̂0ðtÞ.
We observed a large jump in R̂0ðtÞ on the date of the

second change point, 10 days after the curfew in Lom-

bardy, followed by a slow decrease, indicating that this

measure did not produce the desired effect. Then it was

followed by the measure of 3rd November that allowed

R̂0ðtÞ to accelerate its decrease, approaching one, in

Fig. 5 Filtered states for infected (thick red line) and removed (thick

green line) from five different SIRs in the intervals [0, 20], [20, 31],

[31, 66], [66, 104], [104, 160]. Parameters of the beta observation

error distribution are a ¼ 11:9 and b ¼ 93:17. The prediction

intervals are computed from (13) with q ¼ 0:025. The thin lines are

the observed infected (red) and removed (green) divided by

u0:5 ¼ 11:1%. Time 0 is 1st March 2020

Fig. 6 Top panel: plots of b̂t and ĉt from (21). Bottom panel: plot of

R̂0ðtÞ from (22). Time 0 is 1st March 2020
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agreement with what the ISS reported in its 25th November

bulletin (Istituto Superiore Sanità 2020b).

6 Concluding remarks

In this work we have proposed to explicitly model the

underdetection of SARS-CoV-2 infected and removed

subjects by introducing a beta distribution for the obser-

vation error in a SIR model. In particular, a piecewise

stochastic SIR model with change points has been fitted to

the COVID-19 data in Italy from 1st March to 26th

November 2020, using the dates of the measures taken by

the government to control the epidemic to define the

change points. This strategy allowed us to estimate the

actual dynamics of the epidemic by correcting the observed

data. The stochastic SIR model, coupled with the RBPF

algorithm to estimate the parameters, has improved the

description of the dynamics that can be obtained using a

piecewise deterministic SIR model with maximum likeli-

hood estimation of parameters, as shown in ‘‘Appendix 3’’.

By particle filtering and parameter learning algorithm, the

model can produce short-term predictions of the population

in each compartment and continuously updated estimates

of key quantities such as the basic reproduction number, on

which decision makers can act. We have obtained a rather

large basic reproduction number in the initial phase of the

first wave, progressively decreasing in the following pha-

ses, in line with the current literature.

The adaptation of a simple SIR model to the Italian data

at the beginning of the epidemic has been here supported

by the lack of clinical information. However, even as more

specific information emerged, the appropriateness of using

simple models has not been entirely questioned. From

about 9,000 laboratory-confirmed cases reported outside

Hubei in mainland China from mid-January to mid-Fe-

bruary 2020, a mean incubation period of 5.2 days

(1.8–12.4) and an almost coinciding mean serial interval at

5.1 days (1.3–11.6) were estimated (Zhang et al. 2020).

This means that the infection can occur in the presymp-

tomatic phase. Moreover, an analysis of the first 6,000

laboratory confirmed cases in Italy showed that the viral

load does not significantly differ with the type of symptoms

(Cereda et al. 2020), so isolation of infected persons should

Fig. 7 Dynamics of infected and removed individuals with forecasts

during an increasing phase (left panel) or a decreasing phase (right

panel). The forecasts start 20 days after the second change point (left

panel) and 20 days after the third change point (right panel). Forecasts

of infected and removed individuals are highlighted with different

colours

Fig. 8 Beta distributions of the observation error for different values

of IFR: 1:15% (light blue dashed line), 1:3% (red dotted line), 1:5%
(green continuous line), 1:75% (magenta dashed-dotted line). For

comparison also the beta density used for the first wave is reported

(blue continuous line)
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be performed regardless of symptoms (Lee et al. 2020). All

these results together suggest that the specification of many

compartments among the infected may also not help clarify

the dynamics.

The stochastic SIR model might be used to evaluate the

effect of mitigation measures by extending the predictions

to a horizon of several weeks beyond the date of the next

government decree, as an answer to the question: ‘‘what

would have been the mid-term evolution of the epidemic if

this specific measure had not been taken?’’. But, given the

complexity of the phenomenon, which is only partially

captured by the model, great caution is required in doing

so. One possible way out is to enrich the model by adding

compartments, but, as our model identifiability study has

shown (‘‘Appendix 2.2’’), solid prior information or data

relevant to the required additional parameters are needed to

obtain meaningful results. Indeed, in our simulation study

we have obtained that the model describes reliable

dynamics provided the parameters of the observational

error, assumed as known, are correctly assigned

(‘‘Appendix 2.1’’).

With respect to prior information, our approach to the

selection of the observation error distribution depends on

an estimate of the IFR. For the first wave we have chosen

larger values than for the second wave (up to 6% against a

maximum of 1.75%), which is in agreement with an ISS

report (Fabiani et al. 2020), published after we finished our

analysis, where the monthly standardised CFR has been

calculated. When standardised with respect to the age and

sex structure of the Italian population, the CFR is close to

9% in February-March 2020 and close to 4.5% in April.

Then it falls to around 1% in June and July and increases to

above 2% in October.

Fig. 9 Filtered states for infected (thick red line) and removed (thick

green line) in the second wave for different IFR: 1:15% (top left),

1:3% (top right), 1:5% (bottom left), 1:75% (bottom right). The

prediction intervals are computed from (13) with q ¼ 0:025. The thin

lines are the observed infected (red) and removed (green) divided by

u0:5. Forecast of infected and removed individuals are highlighted

with different colors. Time 160 is 1st August
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Appendix 1: RBPF algorithm

To estimate the parameter h0 ¼ b0; c0ð ÞT and the state Xt

we propose to apply a Rao-Blackwellised particle filter

(RBPF) algorithm. We consider the Euler discretisation of

the stochastic system (5) reported in Eq. (11). Since the

system is linear in h0, we can apply the Kalman filter.

Suppose that h0 ¼ b0; c0ð ÞT has a Gaussian prior distribu-

tion with mean l0 and covariance matrix R0, then the

distribution of h0, given x0:tþ1 ¼ x0; x1; :::; xtþ1ð Þ after t þ 1

time steps, as t ¼ 0; 1; 2; . . ., is Gaussian with mean ltþ1

and covariance matrix Rtþ1 given by

ltþ1 ¼ lt þ STtþ1 xtþ1 � xt � h xtð ÞltDt½ �
Rtþ1 ¼ Rt � STtþ1h xtð ÞRtDt

STtþ1 ¼ Rth
T xtð ÞDt h xtð ÞRth

T xtð ÞðDtÞ2 þ gðxtÞgTðxtÞDt
h i�1

8
>><

>>:

ð17Þ

The distribution of Xtþ1 given x0:t is Gaussian with mean

Btþ1 and covariance matrix Gtþ1 given by

Btþ1 ¼ xt þ h xtð ÞltDt
Gtþ1 ¼ h xtð ÞRth

T xtð ÞðDtÞ2 þ gðxtÞgTðxtÞDt:

�

ð18Þ

Recalling that the observations are obtained multiplying

the state Xt for the beta-distributed observation error term,

as defined in Eq. (7), the RBPF algorithm can be sum-

marised as follows:

Step 1

• At time t ¼ 0, we draw M initial values x
ðiÞ
0 ; i ¼

1; 2; :::;M of X0 from its prior distribution p x0ð Þ or,

alternatively, we put x0 equal to the initial observation.

• We consider a Gaussian prior distribution N l0;R0ð Þ
for the parameter h0, where l0 is a vector of initial

parameters, and R0 is a diagonal covariance matrix.

• To obtain candidate values of the state at importance

sampling steps, we use the distribution implied by the

state-transition Eq. (11) after marginalising it with

respect to h0. At step one, a value for ~X
ðiÞ
1 , conditional

on x
ðiÞ
0 , is sampled from a Gaussian distribution with

mean B
ðiÞ
1 and covariance matrix G

ðiÞ
1 , for i ¼ 1; . . .;M,

given by (18) with k ¼ 0.

• Denoting by y1 ¼ ðy1;1; y1;2Þ the observation at time

k ¼ 1, we compute weights for each particle from the

likelihood at ~x
ðiÞ
1 ¼ ð~xðiÞ1;1; ~x

ðiÞ
1;2Þ

~v
ðiÞ
1 ¼ Lð~xðiÞ1 ; y1Þ ¼ pðy1;1j~xðiÞ1;1Þ � pðy1;2j~xðiÞ1;2Þ

where

p yjxð Þ ¼
y
x

	 
a�1
1� y

x

	 
b�1

B a; bð Þ
1

x
I½0;x�ðyÞ: ð19Þ

In order to resample the particles, we need to normalise

the weights:

v
ðiÞ
1 ¼ ~v

ðiÞ
1

PM
i¼1 ~v

ðiÞ
1

:

• We update the posterior distribution of h0 given

~x
ðiÞ
1 ; x

ðiÞ
0

n o
by taking one step of the Kalman filter of

Eq. (17), obtaining the new mean vector ~lðiÞ1 and

covariance matrix ~R
ðiÞ
1 .

• We resample M particles from a discrete distribution

with support ~x
ðiÞ
1 ; ~lðiÞ1 ; ~R

ðiÞ
1

� �n o

i¼1;...;M
and correspond-

ing probabilities v
ðiÞ
1

n o

i¼1;...;M
. We denote by

x
ðiÞ
1 ; lðiÞ1 ;RðiÞ

1

� �n o

i¼1;...;M
the resampled particles.

At time t� 1, we assume the sample

x
ðiÞ
t ; lðiÞt ;RðiÞ

t

� �n o

i¼1;...;M
is available.

Step t þ 1

• For i ¼ 1; . . .;M, sample candidate particles ~x
ðiÞ
tþ1 from a

Gaussian distribution with mean B
ðiÞ
tþ1 and covariance

matrix G
ðiÞ
tþ1, given by (18).

• Compute the weights ~v
ðiÞ
tþ1 for each particle as the

product of two distributions with density (19). Nor-

malise the weights:

Fig. 10 Top panel: plots of b̂t and ĉt from (21). Bottom panel: plot of

R̂0ðtÞ from (22). The IFR is 1:3%. Time 0 is 1st August
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v
ðiÞ
tþ1 ¼

~v
ðiÞ
tþ1

PM
i¼1 ~v

ðiÞ
tþ1

:

• Update the posterior distribution of h0 given x
ðiÞ
0:tþ1,

which is a Gaussian distribution with mean ~lðiÞtþ1 and

covariance matrix ~R
ðiÞ
tþ1 given by Eq. (17).

• Resample M particles using the probabilities

v
ðiÞ
tþ1

n o

i¼1;...;M
and denote the resampled particles by

x
ðiÞ
tþ1; l

ðiÞ
tþ1;R

ðiÞ
tþ1

� �n o

i¼1;...;M
.

Particles x
ðiÞ
t ; lðiÞt ;RðiÞ

t

� �n o

i¼1;...;M
are a sample from the

distribution of interest. In detail, the x
ðiÞ
t ’s are a sample

from pðxtjy1:tÞ and, by keeping track of the resampling

history, the entire sample x
ðiÞ
0:t, i ¼ 1; . . .;M is potentially

available, hence a sample from pðx0:tjy1:tÞ. The mean of x
ðiÞ
t

over the particles approximates Eðxtjy1:tÞ and we call it the

filtered state:

x̂t ¼
1

M

XM

i¼1

x
ðiÞ
t : ð20Þ

The lðiÞt ’s and RðiÞ
t ’s are a sample of conditional means and

covariance matrices, that is, Eðh0jxðiÞ0:tÞ and Covðh0jxðiÞ0:tÞ.
Therefore, an estimate of Eðh0jy1:tÞ is

ðb̂t; ĉtÞT ¼ ĥt ¼
1

M

XM

i¼1

lðiÞt ð21Þ

and, by sampling M values from M Gaussian distributions

NðlðiÞt ;RðiÞ
t Þ, i ¼ 1; . . .;M, we produce a sample

ðhð1Þt ; . . .; hðMÞ
t Þ from pðh0jy1:tÞ.

The basic reproduction number is defined as

R0 ¼ b0=c0, therefore an estimate based on y1:t is

Eðb0=c0jy1:tÞ, which is computed as

R̂0ðtÞ ¼
1

M

XM

i¼1

bðiÞt
cðiÞt

ð22Þ

where ðbðiÞt ; cðiÞt ÞT ¼ hðiÞt . If the variances on the diagonal of

RðiÞ
t are small, the additional sampling from the NðlðiÞt ;RðiÞ

t Þ
may be unnecessary and the following approximation

might be used, corresponding to degenerate conditional

distributions:

R̂0ðtÞ ¼
1

M

XM

i¼1

lðiÞ1;t

lðiÞ2;t
: ð23Þ

R̂0ðtÞ can be regarded as our best estimate of the basic

reproduction number in the light of the observed data.

Appendix 2: Numerical simulations

Appendix 2.1: Assessment of sample variability

We have analysed the variability of the filtered states and

the estimated parameters due to the variability of the data

generated from the system (4), in order to get an

Fig. 11 Left panel: behaviour of Î t=It for 100 different simulations. Right panel: behaviour of R̂t=Rt for 100 different simulations
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impression of how far they can get from the true values,

even if the true random underreporting error distribution is

used. We have used the same parameters of Sect. 4, that is,

ðb0; c0Þ ¼ ð0:3; 0:1Þ, r ¼ 0:01, g ¼ 0:03, initial values

l0 ¼ ð0:5; 0:5ÞT and R0 ¼ diagð0:05; 0:02Þ and initial state

X0 ¼ ð1%; 0:1%Þ.
We generated 500 dynamics from the system (4), from

which we obtained 500 trajectories of observed infected

and removed people. Then, we run the RBPF algorithm on

each simulated dataset, with a time step of 1/24 day and for

200,000 particles. For every simulations we computed the

trajectories Ît=It and R̂t=Rt, where we recall that Ît and R̂t

are the estimated infected and removed individuals filtered

by the RBPF algorithm, while It and Rt are the true states

for the corresponding simulation. For a clear representa-

tion, in Fig. 11 we show one in every five trajectories of

Ît=It (left panel) and R̂t=Rt (right panel).

In both panels of Fig. 11, after a transient phase with

larger dispersion, Ît=It and R̂t=Rt end up fluctuating around

1, with a stable dispersion in the left panel and a decreasing

dispersion in the right panel. Then we considered the sum

of the root mean square error (RMSE) between Ît and It and

of the RMSE between R̂t and Rt for all the trajectories, as a

measure of distance between the estimate and the truth.

Among all the trajectories we represented the one with the

smallest and the one with the largest distance in the left and

in the right panels of Fig. 12, respectively. The latter pic-

ture shows that the fit may be very unsatisfactory.

Finally, we report the scatter plot of all the pairs ðb̂t; ĉtÞ
obtained in the 500 simulations (Fig. 13) at t ¼ 60. We

observe that they are dispersed around the true value of the

parameter (0.3, 0.1). The pair corresponding to the trajec-

tory of minimum distance (green dot) is closer to the true

parameter (red dot) than the pair estimated from the tra-

jectory of maximum distance (yellow dot).

An interesting feature of Fig. 13 is that the ratio b̂t=ĉt
shows a smaller variability than b̂t and ĉt, around a straight

line with slope close to 3, the true value of R0.

Fig. 12 Left panel: dynamics of filtered states Î t and R̂t (continuous

lines) in the case of minimum sum of root mean square error between

filtered states and true states (circles). Right panel: dynamics of

filtered states Ît and R̂t (continuous lines) in the case of maximum

sum of root mean square error between filtered states and true states

(circles)

Fig. 13 Scatter plot of the parameters ðĉ60; b̂60Þ obtained for the

different simulations. The red dot represents the true pair (0.1, 0.3).

The green dot represents the pair of parameters relative to the filtered

state trajectory with minimum distance from the true states (left panel

of Fig. 12). The yellow dot represents the pair of parameters

corresponding to the filtered state trajectory with maximum distance

from the true states (right panel of Fig. 12). The line is the least

squares fit of b̂60 against ĉ60 (slope 2.78)
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Appendix 2.2: Identifiability

A statistical model, belonging to a parametric family, is

said to be identifiable if, for any two different values of

parameters, there exists at least a measurable set in the

sample space that is not assigned the same probability by

the two members of the family, that is, given h01 6¼ h02,
there exists at least one set B such that

PrðY1:t 2 B; h01Þ 6¼ PrðY1:t2 B; h02Þ ; ð24Þ

where Y1:t denotes a finite-length trajectory of observations

from (7). For a deterministic model, this property is called

structural identifiability, which holds if there exists a map

from the parameter to the output h0 7!y1:tðh0Þ which is

injective, that is, given h01 6¼ h02, the two models yðh01Þ
and yðh02Þ describe different output trajectories. By a dif-

ferential algebra approach, Piazzola et al. (2021) have

shown that the following deterministic SIR model with its

output

dIt
dt

¼ b0ItðN � It � RtÞ � c0It

dRt

dt
¼ c0It

y1;t ¼
1

K
It

y2;t ¼
1

K
Rt

8
>>>>>>>>>><

>>>>>>>>>>:

ð25Þ

defined for a non-normalised population of size N, is

structurally identifiable with respect to the unknown

parameters b0, c0 and K. The parameter K[ 1 accounts for

underreporting of infected and removed and has the same

function as the U random variables in (7). Then, after

adding noise to the output, the authors in Piazzola et al.

(2021) went on to show that, despite structural identifia-

bility, the parameters may not be practically identifiable,

that is, a good or acceptable agreement between observa-

tions and fit is displayed for different values of the

parameters when observations end before reaching the

peak.

The way randomness has been included into this prob-

lem via model (11)-(7) is different from Piazzola et al.

(2021), but we have also observed practical identifiability.

The identifiability problem was also discussed in Ganyani

et al. (2021) for stochastic SIR models. We generated state

trajectories composed by 30 daily values using model (4)

with parameters b0 ¼ 0:1 and c0 ¼ 0:03. Then, to obtain

the actual observations, we multiplied each value by a

Fig. 14 Comparison between the two beta densities used to model the

observation error

Fig. 15 Left panel: behaviour of Î t=It for 100 different simulations. Right panel: behaviour of R̂t=Rt for 100 different simulations
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number drawn from a beta distribution with parameters

a ¼ 10 and b ¼ 40 (blue line in Fig. 14). After running the

RBPF algorithm using the same beta distribution we

obtained results analogous to those in the previous sections,

that is, a satisfactory fit of the observed dynamics and a

good estimate of the parameters b0 and c0.
Then we run the RBPF algorithm assuming an obser-

vation error with beta distribution with a mean larger than

the truth, with parameters a ¼ 10 and b ¼ 30 (red line in

Fig. 14). We compared the filtered states with both the true

ones and the observed data. First, we considered 500

simulations and looked at the ratio between the filtered

state and the state. For a clear representation, in Fig. 15 we

show one in five trajectories for both infected and removed

individuals. These ratios are, generally, less than 1,

denoting an underestimation of both infected and removed.

Then, we considered the ratio between the filtered states

and the adjusted observations. The results of one in five

trajectories are reported in Fig. 16 for both infected and

removed individuals. These ratios fluctuate around 1,

Fig. 16 Left panel: behaviour of Ît=ðyt;1=mÞ for 100 different simulations, where m is the true median of the observation error distribution. Right

panel: behaviour of Î t=ðyt;2=mÞ for 100 different simulations

Fig. 17 Left panel: case of minimum sum of root mean square error

between true and filtered state, dynamics of Ît and R̂t (continuous

lines) and adjusted observations (thin line with asterisks). Right panel:

case of maximum sum of root mean square error between true and

filtered state, dynamics of Î t and R̂t (continuous lines) and adjusted

observations (thin line with asterisks)
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denoting a satisfactory fit to the observed data. Fig. 17

shows the dynamics of two simulations: the dynamics with

minimum distance of the filtered state from the true state

(intended as the minimum sum of the root mean square

errors over the two components), in the left panel, and the

dynamics with maximum distance, in the right panel. Both

trajectories fit the (scaled) observed data reasonably well.

Even if the filtered states follow the adjusted observa-

tions, the values of the estimated parameters are not cor-

rect, as shown in Fig. 18. In fact, the pairs of estimated

parameters in the 100 simulations are not equally dispersed

around the true value (red point) but are placed mainly

below the true value, denoting a bad estimation for b0. The
estimation of c0 is better.

It follows that it is very important to suitably choose the

beta distribution of the observation error (as we have done

in Sect. 5) in the collection of infected and removed people

to avoid practical nonidentifiability.

Appendix 3: A comparison with the SIR
deterministic model

We considered for comparison the model (1) combined

with the observation equations (7), that is, when the state

dynamics is completely deterministic. We repeated part of

the analysis done with the stochastic SIR model on the first

wave data, using the same observation error distribution

and the same time partition based on DPCMs, and esti-

mated ðb; cÞ via maximum likelihood. The piecewise

deterministic SIR model, see Fig. 19, follows the scaled

observations but it is rather less flexible than its stochastic

counterpart (see Fig. 5).

Fig. 18 Scatter plot of the parameters ðĉ60; b̂60Þ, obtained for the

different simulations, with wrong parameters a and b in the

observation error distribution. The red dot represents the true pair

(0.03, 0.1). The green dot is the estimate corresponding to minimum

distance case (left panel of Fig. 17). The yellow dot is the case

corresponding to the maximum distance case (right panel of Fig. 17)

Fig. 19 First wave: piecewise deterministic SIR simulations with ML

parameter estimates and adjusted observations and seven-day forecast

(left) until 15th May; parameter estimates ðb̂; ĉÞ in each phase (right)

are (0.21, 0.04), (0.08, 0.03), (0.04, 0.03), ð1:6� 10�8; 0:05Þ. Cut

dates correspond to 10 days after the government decrees on 11th

March, 22nd March, 26th April. Time 0 is 1st March
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Istituto Superiore di Sanità (2020b) Epidemia COVID-19. Aggiorna-

mento nazionale 25 novembre 2020 – ore 16:00. https://www.

epicentro.iss.it/coronavirus/bollettino/Bollettino-sorveglianza-

integrata-COVID-19_25-novembre-2020.pdf. [Online; accessed

28-June-2021; in Italian]

Katul GG, Mrad A, Bonetti S, Manoli G, Parolari AJ (2020) Global

convergence of COVID-19 basic reproduction number and

estimation from early-time SIR dynamics. PLoS ONE

15(9):e0239800

154 Stochastic Environmental Research and Risk Assessment (2022) 36:137–155

123

https://doi.org/10.1017/S1744133121000141
https://doi.org/10.25561/83545
https://doi.org/10.25561/83545
https://doi.org/10.1109/CDC42340.2020.9304142
https://doi.org/10.1109/CDC42340.2020.9304142
http://arxiv.org/abs/2003.09320
https://www.epicentro.iss.it/coronavirus/bollettino/Bollettino-sorveglianza-integrata-COVID-19_28-aprile-2020.pdf
https://www.epicentro.iss.it/coronavirus/bollettino/Bollettino-sorveglianza-integrata-COVID-19_28-aprile-2020.pdf
https://www.epicentro.iss.it/coronavirus/bollettino/Bollettino-sorveglianza-integrata-COVID-19_28-aprile-2020.pdf
https://www.epicentro.iss.it/coronavirus/bollettino/Bollettino-sorveglianza-integrata-COVID-19_25-novembre-2020.pdf
https://www.epicentro.iss.it/coronavirus/bollettino/Bollettino-sorveglianza-integrata-COVID-19_25-novembre-2020.pdf
https://www.epicentro.iss.it/coronavirus/bollettino/Bollettino-sorveglianza-integrata-COVID-19_25-novembre-2020.pdf


Kermack WO, McKendrick AG (1927) A contribution to the

mathematical theory of epidemics. Proc R Soc Lond Ser A

115(772):700–721

Krantz SG, Rao ASS (2020) Level of underreporting including

underdiagnosis before the first peak of COVID-19 in various

countries: preliminary retrospective results based on wavelets

and deterministic modeling. Infect Control Hosp Epidemiol

41(7):857–859

Kuster AC, Overgaard HJ (2021) A novel comprehensive metric to

assess effectiveness of COVID-19 testing: Inter-country com-

parison and association with geography, government, and policy

response. PLoS ONE 16(3):e0248176

Lee S, Kim T, Lee E, Lee C, Kim H, Rhee H, Park SY, Son H-J, Yu

S, Park JW et al (2020) Clinical course and molecular viral

shedding among asymptomatic and symptomatic patients with

SARS-CoV-2 infection in a community treatment center in the

Republic of Korea. JAMA Intern Med 180(11):1447–1452

Linka K, Peirlinck M, Kuhl E (2020) The reproduction number of

COVID-19 and its correlation with public health interventions.

Comput Mech 66(4):1035–1050

Liu Z, Magal P, Webb G (2021) Predicting the number of reported

and unreported cases for the COVID-19 epidemics in China,

South Korea, Italy, France, Germany and United Kingdom.

J Theor Biol 509:110501

Mallapaty S (2020) How deadly is the coronavirus? Scientists are

close to an answer. Nature 582:467–468

Meyerowitz-Katz G, Merone L (2020) A systematic review and meta-

analysis of published research data on COVID-19 infectionfa-

tality rates. Int J Infect Dis 101:138–148

Morettini M, Sbrollini A, Marcantoni I, Burattini L (2020) Covid-19

in Italy: dataset of the Italian civil protection department. Data

Brief 30:105526

Noh J, Danuser G (2021) Estimation of the fraction of COVID-19

infected people in US states and countries worldwide. PLoS

ONE 16(2):e0246772

Oke J, Heneghan C (2020) Global Covid-19 case fatality rates. https://

www.cebm.net/covid-19/global-covid-19-case-fatalityrates.

[Online; accessed 28 June 2021]

Oran DP, Topol EJ (2021) Prevalence of asymptomatic SARS-CoV-2

infection. Ann Intern Med 174(2):286–287

Phipps SJ, Grafton RQ, Kompas T (2020) Robust estimates of the true

(population) infection rate for COVID-19: a backcasting

approach. Royal Soc Open Sci 7(11):200909

Piazzola C, Tamellini L, Tempone R (2021) A note on tools for

prediction under uncertainty and identifiability of SIR-like

dynamical systems for epidemiology. Math Biosci 332:108514

Pullano G, Di Domenico L, Sabbatini CE, Valdano E, Turbelin C,

Debin M, Guerrisi C, Kengne-Kuetche C, Souty C, Hanslik T

et al (2021) Underdetection of cases of COVID-19 in France

threatens epidemic control. Nature 590(7844):134–139

Riccardo F, Ajelli M, Andrianou XD, Bella A, Del Manso M, Fabiani

M, Bellino S, Boros S, Urdiales AM, Marziano V et al (2020)

Epidemiological characteristics of COVID-19 cases and esti-

mates of the reproductive numbers 1 month into the epidemic,

Italy, 28 January to 31 March 2020. Euro Surveill

25(49):2000790
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