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Abstract
Wildlife-vehicle collisions on road networks represent a natural problem between human populations and the environment,

that affects wildlife management and raise a risk to the life and safety of car drivers. We propose a statistically principled

method for kernel smoothing of point pattern data on a linear network when the first-order intensity depends on covariates.

In particular, we present a consistent kernel estimator for the first-order intensity function that uses a convenient rela-

tionship between the intensity and the density of events location over the network, which also exploits the theoretical

relationship between the original point process on the network and its transformed process through the covariate. We derive

the asymptotic bias and variance of the estimator, and adapt some data-driven bandwidth selectors to estimate the optimal

bandwidth. The performance of the estimator is analysed through a simulation study under inhomogeneous scenarios. We

present a real data analysis on wildlife-vehicle collisions in a region of North-East of Spain.

Keywords Bandwidth selection � Covariates � First-order intensity � Kernel estimation � Linear network � Spatial point
pattern � Wildlife-vehicle accidents

Mathematics Subject Classification 62G05 � 62M30 � 62P12

1 Introduction

Spatial point processes are mathematical models that

describe the geometrical structure of patterns formed by

events, which are distributed randomly in number and

space. In the last decades we have seen an explosion in the

literature devoted to point processes, see Illian et al.

(2008), Diggle (2013) and Baddeley et al. (2015), however,

in most of the cases this literature has been devoted to

spatial point processes defined on the euclidean plane.

In spatial statistics, there are real problems such as the

location of traffic accidents in a geographical area or geo-

coded locations of crimes in the streets whose domain is,

by definition, restricted to a linear network. In recent years,

researchers are making an effort to deal with this particular

scenario and point patterns on linear networks and their

associated statistical analysis have gained a considerable

amount of interest. The study of points that occur, for

example, on a road network has become increasingly

popular during the last few decades; in particular street

crimes, see Ang et al. (2012), traffic accidents, see Yamada

and Thill (2004), Xie and Yan (2008), wildlife-vehicle

collisions, see Dı́az-Varela et al. (2011), Morelle et al.

(2013) or invasive plant species, see Spooner et al. (2004),

Deckers et al. (2005), amongst many others, are examples

of events occurring on a network structure. Note that in all

these examples, the events occur on line segments and they

are not expected to be located outside the corresponding

network. For instance, wildlife-vehicle collisions are

always constrained to lie along a linear network, and as

such the resulting point pattern depends on the spatial

configuration of such linear structures.
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The analysis of network data is challenging because of

geometrical complexities, unique methodological problems

derived from their particular structure, and also the huge

volume of data. Estimates of the spatially-varying fre-

quency of events on a network are needed for emergency

response planning, accident research, urban modelling and

other purposes.

In the analysis of spatial point patterns, see for example

Van Lieshout (2000), Diggle (2013), Baddeley et al.

(2015), exploratory investigation often starts with non-

parametric analysis of the spatial intensity of points. The

intensity function, which is a first-order moment charac-

teristic of the point process assumed to have generated the

data, reflects the abundance of points in different regions

and may be seen as a heat map for the events. For most

problems, it is more realistic to assume that the underlying

point process is inhomogeneous, i.e., driven by a varying

intensity function.

The technique which immediately comes to mind for

intensity estimation is kernel density estimation, see Sil-

verman (1986). For spatial point pattern data in two

dimensions, kernel estimates are conceptually simple, see

Diggle (1985), Bithell (1990), and very fast to compute

using the Fast Fourier Transform (FFT), see Silverman

(1982). However, for points on a network, kernel estima-

tion is mathematically intricate and computationally

expensive.

Thus far attention has mostly been paid to some non-

parametric intensity estimators and second-order summary

statistics, such as K- and pair correlation functions.

Regarding intensity estimation, initially several poorly

performing kernel-based intensity estimators were pro-

posed, see Borruso (2005), Borruso (2008), Xie and Yan

(2008). Later, other nonparametric kernel-based intensity

estimators were defined, see for example Okabe et al.

(2009), Okabe and Sugihara (2012), McSwiggan et al.

(2017), Moradi et al. (2018) which, although being statis-

tically well-defined, tend to be computationally expensive

on large networks. As an alternative to kernel estimation,

Moradi et al. (2019) introduced their so-called resample-

smoothed Voronoi intensity estimator, which is defined for

point processes on arbitrary spaces. Moreover, Rakshit

et al. (2019) proposed a fast kernel intensity estimator

based on a two-dimensional convolution which can be

computed rapidly even on large networks.

However, none of these approaches take into account

covariate information that is easily expected to have a

direct effect on the intensity function. For example, con-

sidering underlying causes such as orography, demography

and human mobility have an impact on the intensity and it

is quite common to encounter sharp boundaries between

high and low concentrations of events due to this covariate

effect. The classical kernel estimation approach is often

unsuitable in such cases and echoing (Barr and Schoenberg

2010), we argue that kernel-based approaches may be

unsatisfactory if they miss out covariate information. In

this line, Borrajo et al. (2020) consider kernel estimation of

the intensity under the presence of spatial covariates when

the point pattern lives in the Euclidean plane. However,

linear network point process versions have not yet

appeared in the literature. In this paper we tackle this

problem and propose a covariate-based kernel estimation

for point processes on linear networks, showing its

advantages on a wildlife-vehicle collision problem.

The paper is organised as follows. In Sect. 2 the prob-

lem and the data set that motivates the paper are presented.

In Sect. 3 we provide some definitions and preliminaries of

spatial point processes on linear networks needed for the

new methodological approach presented later on. Section 4

shows some theoretical results on kernel estimation in the

presence of spatial covariates related to the network

structure. Optimal bandwidth selection is detailed in

Sect. 5. Some simulated examples are presented in Sect. 6,

and the real data is analysed in Sect. 7. The paper ends with

a final discussion.

2 Wildlife-vehicle collisions on road
networks

Among the variety of events and related problems that can

occur on a linear structure, wildlife-vehicle collisions on

road networks represent a good example of such type of

data and a major safety issue. In particular, wildlife-vehicle

collisions are one of the main coexistence problems that

arise between human populations and the environment,

affecting wildlife management, the building of road

infrastructures and road safety in general terms. These

accidents mean a risk to the life and safety of car drivers,

property damage to vehicles, see Dı́az-Varela et al. (2011),

Bruinderink and Hazebroek (1996), and direct and indirect

damage to wildlife populations, see Coffin (2007).

For instance, in 2017 in Spain, wildlife-vehicle colli-

sions were the fourth external causes of death behind sui-

cides, drownings and accidental falls (Press release of the

INE, October 2018). Moreover, in 2018 there were 102299

traffic accidents with victims (1679 of them with fatalities),

of which at least 403 were caused by wildlife-vehicle

collisions (6 of them with fatalities), see Anuario Estadis-

tica DGT (2018). These numbers highlight the importance

and severity of wildlife-vehicle collisions. Sáez-de-Santa-

Marı́a and Telleria (2015) established that 8.9% of the

collisions that occurred in Spain between 2006 and 2011,

74600 collisions in total, are related to fauna, although their

spatial distribution is very irregular; wild boar (Sus scrofa)
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and roe deer (Capreolus capreolus), both with expanding

populations, caused 79% of the collisions.

Consequently, the evaluation and description of the

factors that affect these accidents on the road is a priority

for determining effective mitigation measures and eradi-

cation of this cause of accidents for decades, see Lord and

Mannering (2010). In this paper, we analyse a dataset

containing 6590 wildlife-vehicle collisions occurred in the

region of Catalonia, North-East of Spain, involving 11790

km of roads for three distinct road categories, namely,

highways, paved and unpaved roads during the period

2010�2014, see Fig. 1. Two covariates were considered to

analyse their effect on the spatial distribution: surface of

forests and the surface of crop fields, which can affect the

spatial distribution of the local wildlife and then also the

spatial distribution of the wildlife-vehicle collisions. Visual

inspection of this spatial structure reveals points forming

aggregations on the road network, thereby suggesting the

presence of hot-spots of wildlife-vehicle collisions proba-

bly due to a certain degree of inhomogeneity. The analysis

of this motivating real data problem is fully detailed in

Sect. 7.

3 Point processes on linear networks

This section provides a short overview of some concepts of

point processes on linear networks following the develop-

ments in Ang et al. (2012), Moradi et al. (2018), Moradi

et al. (2019). We need to introduce some notation and

concepts: let R2 denote the two-dimensional Euclidean

space, k � k the two-dimensional Euclidean norm, and all

subsets under consideration will be Borel sets in the cor-

responding space. Moreover,
R
d1u will be used to denote

integration with respect to arc length, and
R
dx will be used

to denote integration with respect to Lebesgue measure.

Linear networks are convenient tools for approximating

geometric graphs/spatial networks. The spatial statistical

literature usually defines a linear network as a finite union

of (non-disjoint) line segments. More specifically, we

define a linear network as a union

L ¼
[k

i¼1

li; 1� k\1;

of k line segments li ¼ ½ui; vi� ¼ ftui þ ð1� tÞvi :
0� t� 1g � R2, ui 6¼ vi 2 R2, with (arc) lengths

jlij ¼ kui � vik 2 ð0;1Þ, i ¼ 1; . . .; k, which are such that

any intersection li \ lj, j 6¼ i, is either empty or given by

line segment end points. We here restrict ourselves to

connected networks since disconnected ones may simply

be represented as unions of connected ones.

The end points of line segments are called nodes and the

degree of a node is the number of line segments sharing

this same node. A path between any two points x; y 2 L

along L is a sequence p ¼ ðx; p1; . . .; pP; yÞ where pi are

nodes of the linear network such that 9i = li ¼ ½pi; piþ1�. We

can then use as metric the shortest-path distance between

any two points x; y 2 L, dLðx; yÞ, defined as the length of

the shortest path in L between x and y.

The Borel sets on L are given by BðLÞ ¼ fA \ L : A �
R2g and they coincide with the r-algebra generated by

sL ¼ fA \ L : A is an open subset of R2g. Recall that A �
L will mean that A belongs to BðLÞ. We further endow L

with the Borel measure jAj ¼ mLðAÞ ¼
R
A d1u, A � L,

which represents integration with respect to arc length.

Note that the total network length is given by

jLj ¼
Pk

i¼1 jlij.
More formally, given some probability space ðX;A;{Þ,

a finite simple point process X ¼ fxigni¼1, 0� n\1, on a

linear network L is a random element in the measurable

space Nlf of finite point configurations

Fig. 1 Left and centre: location of the study area together with the location of 6590 road kills during the period 2010� 2014 and the underlying

road network in Catalonia (North-East of Spain), given in km. Right: a magnification of the central area of the study region (50 km � 50 km)
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x ¼ fx1; . . .; xng � L, 0� n\1; the associated r-algebra
is generated by the cardinality mappings

x 7!Nðx \ AÞ 2 f0; 1; . . .g, A � L, x 2 Nlf , and coincides

with the Borel r-algebra generated by a certain metric on

Nlf , see Daley and Vere-Jones (1988), p. 188 for details.

The intensity function kðuÞ of X gives the expected

number of points per unit length of network in the vicinity

of location u. Formally, X has intensity function kðuÞ,
u 2 L, if

E½NðX \ BÞ� ¼
Z

B

kðuÞ d1u; ð1Þ

for all measurable B � L, where NðX \ BÞ is the number of

points of X falling in B. We note that N stands for a random

quantity coming from the counting random variable, while

we denote by n the fixed number of points given a point

pattern. Campbell’s formula on a network states that

E
X

xi2X
hðxiÞ

" #

¼
Z

L

hðuÞkðuÞ d1u; ð2Þ

where h is any Borel-measurable real function on L such

that
R
L jhðuÞjkðuÞ d1u\1.

The literature on spatial point patterns on linear net-

works is not extensive yet, being this a relatively new topic.

Different examples of spatial point patterns on linear net-

works can be found in Ang et al. (2012), Okabe and

Sugihara (2012), McSwiggan et al. (2017), Moradi et al.

(2018, 2019), Rakshit et al. (2019).

4 Covariate-dependent kernel-based
intensity estimation

To analyse a point process we can take into account not

only the spatial information given by the location of the

events, but also some other external information that

commonly appears in the form of covariates.

In this framework of point processes with covariates, let

Z : L � W � R2 ! R be a spatial continuous covariate

that is exactly known in every point of W, and particularly

in every point of the network. Along this paper, and fol-

lowing Baddeley et al. (2012), we assume that the intensity

can be described from the known covariate through the

model

kðuÞ ¼ qðZðuÞÞ; u 2 L; ð3Þ

where q is an unknown function with no assumptions on it.

As Z is known, the only target for intensity estimation is

the function q.

Our aim here is to propose a kernel intensity estimator

for processes on linear networks under model (3). Fol-

lowing previous literature in the field of spatial point pro-

cesses with covariates, see Baddeley et al. (2012), Borrajo

et al. (2020), we work with the transformed univariate

point process, ZðXÞ, i.e., for any point pattern

fx1; . . .; xNðLÞg � L we compute Zi ¼ ZðxiÞ.
To exploit and adapt the ideas in Borrajo et al. (2020) to

the context of linear networks, we need to establish the

theoretical relationship between the original point process

X and the corresponding transformed one, ZðXÞ. First, we
have to prove that the transformed point process, ZðXÞ, is
indeed a point process. Second, we need to theoretically

derive the expression of the intensity function of the

transformed point process and its relationship with the

original one so that we can still estimate k.
The result establishing this relationship can not be

directly transferred from the spatial context to the network

domain, because of the different geometry of the support

and in the metrics (shortest path distance instead of

Euclidean one).

The following result characterises the transformed point

process from the one on the network through a spatial

covariate. The proof is included in the Appendix.

Theorem 1 Let X be a point process on a linear network

L � R2 with intensity function of the form

kðuÞ ¼ qðZðuÞÞ u 2 L, where Z : L � W � R2 ! R is a

differentiable function with non-zero gradient in every

point of its domain. Then, the transformed point process

ZðXÞ is a one-dimensional point process with intensity

function qgH, where gH ¼ ðGHÞ0 and GHðzÞ ¼
R
L 1fZðuÞ� zgd1u is the unnormalised version of the spatial

cumulative distribution function of the covariate. Fur-

thermore, if the original point process is Poisson, this

property is inherited and the transformed one is also

Poisson.

Hence, we have shown that ZðXÞ is a point process in R

with intensity given by qgH. This characterisation of the

intensity will be used to obtain a consistent kernel intensity

estimator, jointly with the existing convenient relationship

between the density and the intensity functions. The latter

has been previously applied in slightly different contexts,

see Cucala (2006), Fuentes-Santos et al. (2015), Borrajo

et al. (2020), but not yet transferred to the network domain.

Let us define the relative density

f ðzÞ ¼ qðzÞgHðzÞ
m

; ð4Þ

where m ¼
R
L kðuÞd1u using the integration with respect to

arc length as explained in Sect. 3.
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The kernel density estimate is structurally the same as

the one proposed by Borrajo et al. (2020), and takes the

form

f̂hðzÞ ¼ gHðzÞ 1
n

Xn

i¼1

1

gHðZiÞ
Kh z� Zið Þ1fn 6¼0g: ð5Þ

However the nature of the elements involved is quite dif-

ferent because of the linear network domain and the use of

the shortest path distance replacing the Euclidean norm.

This fact requires a different theoretical treatment and the

use of tools adapted to the network domain.

The global idea is to plug-in (5) and an estimate of m

into (4), and then obtain an estimate of q which can be used

in (3) to build an estimator of k as follows

k̂hðuÞ ¼
Xn

i¼1

1

gHðZiÞ
Kh ZðuÞ � Zið Þ: ð6Þ

We note that gHð�Þ is obtained using a classical one-di-

mensional kernel estimator over the transformed data, Zi,

with i ¼ 1; . . .; n. Following Borrajo et al. (2020), under a

Poisson assumption and using an infill structure asymptotic

framework (which means that the observation region

remains fixed while the sample size increases), we can

compute the mean squared error MSEðh; zÞ ¼ E½ff̂hðzÞ �
f ðzÞg2� of (5). Remark that in this scenario the bandwidth h

is considered as a function of the expected sample size, this

is, h 	 hðmÞ and its properties are shown when m ! 1 .

The following result, which is an adaptation of Borrajo

et al. (2020) to the network scenario, provides a close form

for the MSE(h, z).

Theorem 2 Let us assume some regularity conditions:

(A.1)
R
R
KðzÞdz ¼ 1;

R
R
zKðzÞdz ¼ 0 and

l2ðKÞ :¼
R
R
z2KðzÞdz\1.

(A.2) limm!1 h ¼ 0 and limm!1
AðmÞ
h ¼ 0, where

AðmÞ :¼ E 1
NðXÞ 1fNðXÞ6¼0g

h i
.

(A.3) G is three times differentiable.

(A.4) z is a continuity point of q.

Then under (A.1) to (A.4) we have that

E f̂hðzÞ
� �

¼ gHðzÞðKh 
 qÞðzÞ
m

1� e�mð Þ and

Var f̂hðzÞ
� �

¼AðmÞ ðg
HðzÞÞ2

m
K2
h 


q
gH

� �

ðzÞ

� ðAðmÞ þ e�2m � e�mÞðgHðzÞÞ2ðKh 
 qÞ2ðzÞ;

where 
 denotes the convolution between two functions.

Moreover, adding condition (A.5)

(A.5) q is three times differentiable

we have

MSEðh; zÞ ¼e�2mf 2ðzÞ þ ð1� e�mÞ2 h
4

4

q
00 ðzÞgHðzÞ

m

� �2

l22ðKÞ

� e�mð1� e�mÞh2l2ðKÞ
ðgHðzÞÞ2qðzÞq00 ðzÞ

m2

þ AðmÞ
h

f ðzÞRðKÞ þ oðh2ð1� e�mÞe�mÞ

þ oðh4ð1� e�mÞ2Þ þ o
AðmÞ
mh

� �

;

where RðKÞ ¼
R
R
K2ðzÞdz.

The proof is omitted as follows the same arguments as

the ones used in Borrajo et al. (2020). A direct conse-

quence of this result is that the mean integrated square error

MISEðhÞ ¼ E
R

f̂hðzÞ � f ðzÞ
� �2

dz, as well as its asymptotic

version, denoted by AMISE, can both be derived

MISEðhÞ ¼e�2mRðf Þ þ ð1� e�mÞ2 h
4

4
R

q
00
gH

m

� �

l22ðKÞ

� e�mð1� e�mÞh2l2ðKÞ
Z

R

gHðzÞq00 ðzÞf ðzÞ
m

dz

þ AðmÞ
h

RðKÞ þ oðh2ð1� e�mÞe�mÞ

þ oðh4ð1� e�mÞ2Þ þ o
AðmÞ
mh

� �

and

AMISEðhÞ ¼ð1� e�mÞ2 h
4

4
R

q
00
gH

m

� �

l22ðKÞ

þ AðmÞ
h

RðKÞ:

ð7Þ

Based on the asymptotic expression obtained in (7), the

optimal bandwidth value in this sense, which minimises the

AMISE, is given by

hAMISE ¼ AðmÞRðKÞ
l22ðKÞð1� e�mÞ2R q00gH

m

� 	

0

@

1

A

1=5

: ð8Þ

4.1 A note on covariates on networks

The use of the intensity estimator (6) on a linear network

needs a direct evaluation of a covariate over the linear
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network. In the linear network framework the inclusion of

covariates is not straightforward, indeed a distinction

between two different types of covariates needs to be done.

Assuming the linear network, included in the Euclidean

plane, is our current domain, and hence the ‘‘region’’ of

interest, a first approach is to use covariates which are just

defined on the linear network itself, i.e., their domain is this

union of linear segments. A second setup is to take into

account covariates that are defined in a spatial region of the

Euclidean plane containing the network and having an

impact on it (understanding the network as a subset of the

Euclidean plane, any spatial region containing its convex

hull).

We can have two types of covariates that can be related

to a linear network: internal and external. In this work we

only deal with the latter. This distinction affects the dis-

tribution of points on this structure, as well as the tools

required to analyse them.For instance, the percentage of

forest coverage is an external covariate that can affect

wildlife-vehicle collisions over a road crossing this region.

Moreover, examples of internal covariates include road

slope, road visibility and traffic road intensity among oth-

ers. For external covariates, as they are not defined over the

linear network, we need to approximate its effects on the

spatial distribution of points over this linear structure. A

tentative way to do so is to take the average value of this

covariate in a cirle of radius r centrered at every point of

the linear network. As such, the average effect of this

covariate is considered to analyse its effects on the distri-

bution of points on this linear structure.

5 Bandwidth selection methods

We note that there is no reference so far in the literature of

selectors adapted to the network case under the presence of

covariates. We thus recall here several bandwidth selection

procedures that have been used under model (3) for planar

spatial point processes in Borrajo et al. (2020) and adapt

them to the context of point processes on linear networks.

This adaptation is possible due to the inclusion of covari-

ates. In Borrajo et al. (2020) the authors show that the

bootstrap bandwidth selector generally outperforms the

others, however this is not necessary the case for linear

networks, whose specific structure may affect the perfor-

mance of the bandwidth selectors. Hence we include all the

available possibilities.

5.1 Rule-of-thumb

In the literature two different bandwidths assuming nor-

mality have been used. In Baddeley et al. (2012), the

authors propose to use Silverman’s bandwidth defined for

the classical kernel density estimator, see Silverman

(1986), directly applied to the transformed point pattern,

Z1; . . .; Zn, where n is the observed sample size for a

specific realisation. This bandwidth selector will be deno-

ted from now on as ĥSilv.

A more elaborated approach has been proposed in

Borrajo et al. (2020), based on the optimal bandwidth (8)

and assuming normality of the relative density. We adapt

this procedure by using our relative density 4 and by

estimating the corresponding quantities on the network

domain; the resulting selector will be denoted by ĥRT .

5.2 Bootstrap bandwidth

The bootstrap bandwidth presented in Borrajo et al. (2020)

is based on a consistent resampling bootstrap procedure

that the authors have defined for the transformed point

process under the Poisson assumption. This idea can be

directly applied to our transformed point process, and then

we can obtain the following bandwidth selector

ĥBoot ¼
Aðm̂ÞRðKÞ

l22ðKÞð1� e�m̂Þ2Rðq̂
00
b
gH

m̂ Þ

0

@

1

A

1=5

;

where the pilot bandwidth b is computed as an appropriate

rescaled version of the previously presented rule-of-thumb,

ĥRT . Numerical integration is required to compute the

values m̂, Aðm̂Þ and Rðq̂
00
b g

H

m̂ Þ.

5.3 Non-model-based approach

This is a recent bandwidth selector that has been initially

proposed in Cronie and van Lieshout (2018) for spatial

point processes and later in Borrajo et al. (2020) for spatial

point processes with covariates. The initial idea relies on

the fact that
R
D

1

k̂ðxÞ kðxÞdx ¼ jDj, which allows building a

discrepancy measure between the inverse of the kernel

intensity estimator by Diggle (1985) and the area of the

observation region, |D|. Minimising this discrepancy mea-

sure, a data-driven bandwidth selection procedure is

obtained. The adaptation to the context of network point

processes with covariates involves replacing Diggle’s

estimator by (6) and computing the same minimising cri-

teria, where now the measure of the region is the length of

the network, |L|

ĥNM ¼ arg min
h[ 0

TðhÞ � jLjð Þ;

where TðhÞ ¼
PN

i¼1 q̂hðZiÞ
�1

inside L, and |L| elsewhere.

Remark that this criterion does not aim to optimise the

bias-variance trade-off of the kernel intensity estimator and
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therefore does not guarantee to provide good intensity

estimates.

6 Simulation study

6.1 Setup

We present an illustration to show the use of the new kernel

intensity estimator and the bandwidth selection methods

under several point configurations defined over a linear

network in a square area of 50 � 50 km2 in the centre of

Catalonia (North-East of Spain), see Fig. 1. This linear

network involves 1267 km of roads for three distinct road

categories, namely, highways, paved and unpaved roads.

We consider inhomogeneous Poisson point processes with

intensity function given by

kðuÞ ¼ expðb0 þ b1ZðuÞÞ; u 2 W ; ð9Þ

where b0 and b1 are known parameters, Z denotes a

covariate, and W is the planar region of study. The

covariate comes from a realisation of a Gaussian random

field, with mean zero and an exponential covariance

structure with parameters r ¼ 0:316 and s ¼ 150. Thus the

covariance function is given by CðrÞ ¼ r2 expð�r=sÞ,
together with b0 ¼ 3 and b1 ¼ 1. This is an external

covariate, see Sect. 4.1, hence to calculate the value

defined in the Euclidean plane over the linear network, we

consider the average value of this covariate in a circle of

radius r ¼ 0:5 km. centred at points of the linear network.

Once the covariate is defined on the linear network, we

construct an intensity function following equation (9). We

further obtain patterns from an inhomogeneous Poisson

point process with this intensity to evaluate the perfor-

mance of our proposals. Figure 2 shows the intensity

function and a realisation of this inhomogeneous Poisson

point process over the linear network.

6.2 Simulated examples

We conduct a simulation study to estimate the intensity

function based on this external covariate to show the per-

formance of the resulting intensity estimators for each

bandwidth selector. We simulate 500 realisations for four

expected sample sizes m ¼ 100; 300; 700; 1000 points, to

analyse its effect. Note that for m ¼ 700 the scenario is

similar to the one of our real data problem of wildlife-

vehicle collisions, both with around 0.56 events per linear

km. To guarantee the expected sample size on each sce-

nario, we need to appropriately scale the intensity function

given in (9). From the simulated samples, we evaluate the

performance of our intensity estimator (6) with different

bandwidth choices through three different measures. We

first consider the relative integrated squared error

ISErelðĥÞ ¼
Z

L

�
k̂ðuÞ � kðuÞ

kðuÞ

�2

du;

where recall that L denotes the network, and define the first

two performance measures as

e1 ¼ meanðISErelðĥÞÞ and e2 ¼ stdðISErelðĥÞÞ;

the average relative error and its variability. On the other

hand, most of the bandwidth selectors adapted in this paper

aim to estimate the infeasible optimal bandwidth that

minimises theMISE(h) criterion. So it is natural to consider

such infeasible value as a benchmark in our simulations,

and measure how close our estimates are from such value.

This motivates our third performance measure that is the

relative bias of the bandwidth selectors, defined as

e3 ¼ mean


ðĥ� ĥMISEÞ=ĥMISE

�

where ĥMISE is the minimiser of the Monte Carlo approx-

imation (based on the 500 simulated samples) of the

MISE(h) criterion.

Table 1 shows the performance of the resulting band-

width selectors ĥMISE, ĥRT , ĥBoot, ĥNM , together with the

selector proposed by Baddeley et al. (2012), ĥSilv. We

compute them for inhomogeneous Poisson point processes

with intensity given in (9) and the four expected sample

sizes. This table highlights that independently of the point

intensity, the bootstrap bandwidth selector is the method

that outperforms the rest, followed by Silverman’s band-

width selector, the non-model-based approach, and finally

the rule-of-thumb. This result gains in strength when the

point intensity increases. Moreover, any bandwidth selector

increasing the expected sample size, the corresponding

error decreases approaching the values of the optimal

bandwidth minimising the MISE(h) criterion. In terms of

variability, the four proposals show a similar behaviour as

it is reflected in measure e2.

Figure 3 shows boxplots of the resulting four bandwidth

selectors based on 500 point pattern realisations. We note

that, independently of the point intensity, these selectors

are always smaller than the optimal bandwidth value that

minimises the MISE(h) criterion (hMISE). The resulting

average values of the four selectors show the same sort of

behaviour as that observed for the e1 measure, i.e. the

bootstrap method is the bandwidth selector that is closer to

the ĥMISE, followed by Silverman’s method, the non-model-

based approach, and finally the rule-of-thumb. In terms of

variability (see also criteria e2 in Table 1), the four
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compared methods are similar, although the selectors ĥBoot

and ĥNM present more heterogeneity for smaller point

intensities.

As a final assessment to reinforce our approach for

networks against the alternative existing procedure in

Borrajo et al. (2020), we evaluated the measures e1, e2

under the same scenarios as in Table 1, but now just

missing out the existence of the network, i.e., assuming the

realisations of the point process lying on the Euclidean

plane. We thus used the estimators proposed in Borrajo

et al. (2020) for the plane with point patterns simulated on

the network, but assuming that the plane is their support.

In Table 2 we sum up the corresponding results,

including measures e1 and e2. Clearly the magnitudes of

this two performance measures are far much larger than

those shown in Table 1 under our proposal. This reflects

the need of considering our adaptation to the network and

reinforces the fact that the network effect can not be missed

out. Figure 4 shows the corresponding spatial intensity

used in the simulations.

7 Case study: wildlife-vehicle collisions
on a road network

We now illustrate the use of our kernel intensity estimator

and the bandwidth selection methods by analysing the real

data set involving wildlife-vehicle collisions on a road

network, initially introduced in Sect. 2. Let us recall that

the data set contains the whole road network of Catalonia

(North-East of Spain) involving 11790 km of roads for

three distinct road categories, namely, highways, paved and

unpaved roads, and provides the locations of 6590 wildlife-

vehicle collision points occurred during the period

2010� 2014. Most of the roadkills involve ungulates and

other non-identified mammals.

Inspection of Fig. 1 reveals points forming aggregations

along some of the roads, suggesting the presence of a

cluster structure of roadkills along the roads. Two covari-

ates were considered to analyse their effects on the spatial

distribution of roadkills: surface of forests and surface of

crop fields, given as a percentage based on a buffer area of

0.5 km around the roads. Several authors have considered

these two covariates as possible predictors of wildlife-ve-

hicle collisions, see for instance, Ha and Shilling (2018),

Hegland and Hamre (2018), Tatewaki and Kioke (2018)

Fig. 2 Left: intensity function over the linear network corresponding

to Fig. 1 (right panel) based on a realisation of a zero-mean Gaussian

random field with parameters r ¼ 0:316, s ¼ 150, b0 ¼ 3 and b1 ¼ 1,

assuming the average value of this resulting covariate in a circle of

radius r ¼ 0:5 km centrered at points on the linear network. Right: a

random realisation (709 points) of a point pattern from an inhomo-

geneous Poisson with intensity (9)

Table 1 Measure values e1, e2 and e3 based on 500 point patterns

realisations for bandwidth selectors ĥMISE , ĥRT , ĥBoot, ĥNM , and ĥSilv
(see descriptions in Sect. 4), under four point intensities and the

intensity function corresponding to Fig. 2, generated by the proposed

inhomogeneous Poisson process

ĥMISE ĥRT ĥBoot ĥNM ĥSilv

m ¼ 100

e1 28.982 54.897 39.818 44.909 41.978

e2 16.595 29.654 24.800 23.748 25.313

e3 – - 0.605 - 0.410 - 0.525 - 0.488

m ¼ 300

e1 15.485 25.405 18.280 24.719 19.110

e2 7.402 10.909 9.615 10.463 9.155

e3 – - 0.533 - 0.318 - 0.518 - 0.392

m ¼ 700

e1 10.308 16.609 11.430 16.126 12.242

e2 4.860 6.291 4.998 6.079 5.156

e3 – - 0.457 - 0.197 - 0.445 - 0.292

m ¼ 1000

e1 8.610 14.339 9.761 12.885 10.551

e2 3.812 4.938 3.891 4.481 3.942

e3 – - 0.466 - 0.199 - 0.417 - 0.303
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who have considered forests as an explanatory covariate to

explain the distribution of roadkills, whilst Hubbard et al.

(2000), Acevedo et al. (2014), Colino-Rabanal and Peris

(2016) analysed the effect of the surface of crop fields as a

predictor for these type of traffic collisions.

Figure 5 shows the effect of these two covariates on the

network, and it highlights that where the percentage of

forest is high, the corresponding percentage of crop fields is

low, which is an expected result. Informal visual inspection

of these two covariates and wildlife-vehicle collision

locations seem to show that roads with a high percentage of

Fig. 3 Boxplots of the four

bandwidth selectors based on

500 point pattern realisations of

the intensity function

corresponding to Fig. 2, for the

four point intensities (from top

left to down right, the expected

sizes are 100, 300, 700 and 1000

points). The horizontal red line

is the ĥMISE value

Table 2 Measure values e1 and e2 based on 500 point patterns

realisations for bandwidth selectors ĥRT , ĥBoot , ĥNM , and ĥSilv (see

descriptions in Sect. 4), under four point intensities and the intensity

function corresponding to Fig. 4, generated by the proposed inho-

mogeneous Poisson process, where the network structure is omitted

and W � R2 is the considered support

ĥRT ĥBoot ĥNM ĥSilv

m ¼ 100

e1 200.776 174.060 155.336 337.542

e2 111.962 104.191 103.467 1045.431

m ¼ 300

e1 121.865 109.318 98.966 523.572

e2 52.005 49.681 47.131 811.909

m ¼ 700

e1 95.679 87.436 80.681 813.417

e2 32.014 30.309 29.239 708.880

m ¼ 1000

e1 92.675 85.129 78.817 997.838

e2 30.605 29.694 28.339 721.105

Fig. 4 Representation of the theoretical spatial intensity used in our

simulation study
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crop fields have a larger number of roadkills than roads

with a high percentage of forest coverage. This has to be

formally proved, and we here perform such an analysis

using our procedure. We consider our new kernel intensity

estimation to investigate if these two covariates are rele-

vant for the estimation of the location and number of

roadkills.

Table 3 shows the values of the four bandwidth selectors

for the two explanatory covariates, and we note that the

resulting bandwidth values are quite distinct, being Sil-

verman’s the method with the largest bandwidth value for

both covariates. Note that the resulting bandwidth values

obtained under the percentage of forest and the percentage

of crop fields are very similar, thereby suggesting that both

covariates need the same amount of smoothing when

estimating the intensity.

The resulting intensity estimations based on these four

bandwidth selectors are shown in Figs. 6 and 7 for the

percentage of forests and field crops, respectively. Visual

inspection of these two figures shows that the largest

bandwidth values, i.e. the Silverman’s rule-of-thumb and

the non-model-based approach, identify better the roads

with a larger number of roadkills than the other bandwidth

selectors.

Moreover, Figs. 8 and 9 show the density of roadkills as

a function of the percentage of forests and field crops,

respectively. In terms of the density function, the results

obtained for the four bandwidth are similar, although both

Silverman’s rule-of-thumb and the non-model-based

approaches result in smoother curves than those for the

rule-of-thumb approach and the bootstrap bandwidth

methods. For the four bandwidth values the resulting

density functions suggest a structure between the number

of roadkills and the covariate values. In particular, the

presence of forest around roads apparently reduces the

number of wildlife-vehicle collisions, whilst crop fields

around roads increase this type of traffic collisions. Note

that for the rule-of-thumb proposed and the bootstrap

bandwidth selector this function shows a ‘‘saw-tooth’’

pattern peaking at small and large percentages of both

covariates, whilst for the other two bandwidth selectors this

density is a smooth curve. These density patterns are

expected since the bandwidth values of Silverman’s rule-

of-thumb and the non-model-based approaches are larger

than those under the other bandwidth approaches (see

Table 3). As expected, both covariates have distinct effects

on the presence of road kills, though they seem to be

complementary.

8 Discussion

We have presented a kernel intensity estimator in the

context of spatial point processes defined on a linear net-

work with covariates. The literature on kernel smoothing

for general spatial point processes is well established, but

Fig. 5 Wildlife-vehicle collision point pattern together with the percentage of forests (left panel) and crop fields (right panel) around the road

network of Catalonia (see Fig. 1)

Table 3 Resulting values for the four bandwidth selectors corre-

sponding to the wildlife-vehicle collision point pattern and the road

network of Catalonia (see Fig. 1), under two explanatory covariates,

the percentage of forests and crop fields around roads (see Fig. 5)

ĥRT ĥBoot ĥNM ĥSilv

Forest 0.146 0.057 4.840 5.392

Crop fields 0.146 0.070 4.840 5.747
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this is not the case when the intensity depends on covari-

ates that have an impact of the spatial structure of the

events, see Baddeley et al. (2012), Borrajo et al. (2020). In

particular, our work is the first attempt to deal with such

problem when the point pattern has as support a linear

network, making available the use of covariates in this new

context of high interest in several disciplines.

We have thus proposed a statistically principled method

for kernel smoothing of point pattern data on a linear

network when the first-order intensity depends on covari-

ates. Our estimator relies on the relationship between the

original point process on the network and its transformed

process through the covariate. We have derived the

asymptotic bias and variance of the estimator, and we have

adapted some data-driven bandwidth selectors, previously

used in the Euclidean plane context, to estimate the optimal

bandwidth for linear networks.

The multivariate extension is not considered here, but it

would be an interesting problem extending our estimator to

the spatio-temporal case and to the case of more than one

covariate. The theoretical developments in the multivariate

framework require further work, and even if in Borrajo

et al. (2020) the authors have skimmed some ideas about

the multivariate problem, its adaptation to the linear net-

work domain require an extra effort. A complementary idea

would be to go parametrically, and consider a fully para-

metric model for the first-order intensity on networks

depending on covariates.

Another possible extension of this work is the use of not

only external but also internal covariates (those that are not

defined in the Euclidean plane but only over the network).

The theoretical developments required to use these

covariates are not straightforward and the authors are

already working on them.

As noted in the paper, the literature on kernel smoothing

depending on covariates for spatial point processes is quite

limited and this paper contributes in this line for the par-

ticular case of point processes on networks. It is important

to underline that estimating the first-order intensity func-

tion is also crucial for second order characteristics in

inhomogeneous point processes. Network inhomogeneous

K- or pair-correlation functions, as main second order

tools, need an estimator of the intensity. Hence, this paper

would also be useful to tackle second order problems on

linear networks from a nonparametric perspective.

Fig. 6 Wildlife-vehicle collision point pattern (top, left panel)
together with the resulting intensity estimation for the percentage of

forests based on bandwidth selector methods ĥRT (top, middle panel),

ĥBoot (top, right panel), ĥNM (bottom, left panel) and ĥSilv (bottom,
right panel). Yellow, red and blue colours represent, respectively,

high, medium and low intensities
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Proof of theorem 3.1

We consider two steps in the proof: we first prove that

ZðXÞ is itself a point process, and then we show that its

intensity is given by qgH.
Let us denote by Ld ¼ ðL; dÞ the metric space formed by

the linear network L and the shortest-path metric, d. As X is

a point process in Ld, following Møller and Waagepetersen

(2003), there is a measurable mapping N : ðX;A;{Þ �!
ðNlf ;N lf Þ defined in some probability space ðX;A;{Þ with
Nlf , defined before, the space of locally finite point con-

figurations in Ld, i.e., Nlf ¼ fx � Ld with nðxBÞ\
1 for all bounded B � Ldg. Here, xB ¼ X \ B and nð�Þ
denotes the cardinality. Finally, N lf is a r�algebra on Nlf ,

i.e., N lf ¼ r fx 2 Nlf =nðxBÞ ¼ mg : B 2 B0;m 2 N0


 �
,

with B0 the class of bounded Borel sets andN0 ¼ N [ f0g.
In order to show that ZðXÞ is a one-dimensional point

process, with Z a real-valued covariate, we need to con-

struct another measurable mapping associated with ZðXÞ,
NZ : ðXZ ;AZ ;{ZÞ �! ðNZ

lf ;N
Z
lf Þ, where

– ðXZ ;AZ ;{ZÞ is the probability space induced from

ðX;A;{Þ with Z, meaning that XZ ¼ ZðXÞ ¼ fZðxÞ :

x 2 Xg, AZ ¼ rfZðBÞ : B 2 Ag, and for every A 2
AZ ; 9B 2 A such that A ¼ ZðBÞ, then, {ZðAÞ ¼ {ðBÞ.

– NZ
lf ¼ fz � ZðLdÞ; such that nðzAÞ\þ1 for

hboxall bonded A � ZðLdÞg.
– N Z

lf is a r�algebra in NZ
lf .

Hence, we define for every A 2 XZ , NZðAÞ :¼
NðZ�1ðAÞÞ ¼ NðBÞ for a certain B 2 X whose existence is

guaranteed by construction of the induced spaces. And, as

N is measurable, then NZ is measurable.

For the second argument, i.e., to determine the intensity

of the transformed process ZðXÞ, we make use of the result

in Federer 1969, Th. 3.2.22). We first rewrite the expres-

sion of the unnormalised version of the spatial cumulative

distribution function of Z

GHðzÞ¼
Z

L

1fZðuÞ�zgd1u¼
Z

L

1fZðuÞ�zgjjrZðuÞjj�1jjrZðuÞjjd1u

where jjrZðuÞjj denotes the two-dimensional Euclidean

norm of the gradient of Z, that can be defined as L � R2.

Moreover, as L is assumed to be a piecewise regular

path, there exists a parametrisation a : ½a; b� �! L that can

be split in a finite number of pieces, and in each of them a
is regular, i.e., it is first-order derivable and its derivative is

Fig. 7 Wildlife-vehicle collision point pattern (top, left panel)
together with the resulting intensity estimation for the percentage of

crop fields based on bandwidth selector methods ĥRT (top, middle

panel), ĥBoot (top, right panel), ĥNM (bottom, left panel) and ĥSilv
(bottom, right panel). Yellow, red and blue colours represent,

respectively, high, medium and low intensities
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continuous. Hence, using (Federer 1969, Th 3.2.22), we

can write

GHðzÞ ¼
Z b

a

1fZðaðtÞÞ� zgjjrZðaðtÞÞjj�1jjrZðaðtÞÞjj jja0 ðtÞjjdt

¼
Z z

�1

Z

ðZ 
 aÞ�1ðsÞ
jjrZðaðtÞÞjj�1jja0 ðtÞjjdHðtÞds;

ð10Þ

with dH(t) the one-dimensional Hausdorff measure.

Differentiation of (10) with respect to z gives

gHðzÞ ¼ ðGHÞ
0
ðzÞ ¼

Z

ðZ 
 aÞ�1ðzÞ
jjrZðaðtÞÞjj�1jja0 ðtÞjjdHðtÞ:

ð11Þ

Additionally, we have the following expression for the

intensity function

Z

L

kðuÞd1u¼
Z

R

Z

ðZ 
aÞ�1ðsÞ
kðaðtÞÞjjrZðaðtÞÞjj�1jja0 ðtÞjjdHðtÞds

¼
Z

R

qðsÞ
Z

ðZ 
aÞ�1ðsÞ
jjrZðaðtÞÞjj�1jja0 ðtÞjjdHðtÞds

¼
Z

R

qðsÞgHðsÞds

ð12Þ

Finally, as X has intensity k, we have that

E½NðXÞ�¼
R
LkðuÞd1u, and for construction we know that

E½NðZðXÞÞ�¼E½NðXÞ�. Then, using the above result, it is

straightforward to see that

E½NðZðXÞÞ� ¼ E½NðXÞ� ¼
Z

L

kðuÞd1u ¼
Z

R

qðsÞgHðsÞds:

Thus, we have shown that ZðXÞ is a point process in R with

intensity function qgH. The last statement of the theorem

about the inheritance of the Poisson property is trivial by

construction, because the expected number of points in the

transformed process is exactly the same as the expected

number in the original one.

Fig. 8 Estimates of the intensity of wildlife-vehicle collisions as a

function of percentage of forest around roads for the estimated

bandwidth selectors ĥRT (top, left panel), ĥBoot (top, right panel), ĥNM

(bottom, left panel) and ĥSilv (bottom, right panel) (see Table 3 for

specific values of these bandwidth selectors)
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