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Abstract

We investigate and discuss limitations of the approach based on homogeneous regions (hereafter referred to as regional
approach) in describing the frequency distribution of annual rainfall maxima in space, and compare its performance with
that of a boundaryless approach. The latter is based on geostatistical interpolation of the at-site estimates of all distribution
parameters, using kriging for uncertain data. Both approaches are implemented using a generalized extreme value theoretical
distribution model to describe the frequency of annual rainfall maxima at a daily resolution, obtained from a network of 256
raingauges in Sardinia (Italy) with more than 30 years of complete recordings, and approximate density of 1 gauge per 100
km?. We show that the regional approach exhibits limitations in describing local precipitation features, especially in areas
characterized by complex terrain, where sharp changes to the shape and scale parameters of the fitted distribution models
may occur. We also emphasize limitations and possible ambiguities arising when inferring the distribution of annual rainfall
maxima at locations close to the interface of contiguous homogeneous regions. Through implementation of a leave-one-out
cross-validation procedure, we evaluate and compare the performances of the regional and boundaryless approaches miming
ungauged conditions, clearly showing the superiority of the boundaryless approach in describing local precipitation features,
while avoiding abrupt changes of distribution parameters and associated precipitation estimates, induced by splitting the study
area into contiguous homogeneous regions.

Keywords Rainfall extremes - Extreme values - Regional frequency analysis - Geostatistical interpolation

1 Introduction

Hydrologic engineering and design are necessarily linked
to reliable and robust estimates of extreme rainfall and dis-
charges, to quantitatively assess and manage flood risks. In
this context, soon after the development of the index-flood
procedure by Dalrymple (1960), statistical estimation of the
spatial distribution of extremes, also referred to as regional
frequency analysis (see e.g. Hosking and Wallis 1997), has
developed to one of the most prominent challenges in statisti-
cal hydrology (see e.g. Adamowski 2000; Ahmad et al. 2013;
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Alila 1999; Benson 1962; Bernardara et al. 2011; Blanchet
et al. 2016; Caporali et al. 2008; Carreau et al. 2013; Cong
et al. 1993; Cunnane 1988; Deidda et al. 2000; Dinpashoh
et al. 2004; Du et al. 2014; Eslamian et al. 2012; Fitzgerald
1989; Gellens 2002; Guttman et al. 1993; Hosking and Wallis
1993, 1997; Madsen et al. 1997a; Malekinezhad et al. 2011;
Mascaro 2020; Modarres and Sarhadi 2011; Ngongondo et al.
2011; Perdios and Langousis 2020; Sang and Gelfand 2010;
Satyanarayana and Srinivas 2008; Schaefer 1990; Thomas
and Benson 1970; Trefry et al. 2005), with particular empha-
sis on the estimation of hydrologic quantities (i.e. rainfall and
discharges) from short recordings, and associated predictions
at ungauged locations within a basin; see also the PUB (pre-
diction in ungauged basins) initiative set by the International
Association of Hydrological Sciences (IAHS) for the decade
2003-2012 (see https://iahs.info/pub/index.php), aiming at
reducing uncertainty in hydrological predictions.

To what concerns extreme rainfall estimation, the intrin-
sic spatial and temporal variability of rainfall fields induced
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by the complex interactions of atmospheric processes with
topographic features and the land-sea boundary, result in
significant parameter estimation uncertainties when fitting
extreme type distribution models to maxima series of lim-
ited length (see e.g. Coles et al. 2003; Coles and Tawn
1996; Deidda 2010; Emmanouil et al. 2020; Koutsoyiannis
2004b; Langousis et al. 2013, 2016b). Thus, regional fre-
quency analysis approaches based on homogeneous regions
(also referred to as regional approaches) became very popu-
lar for extreme rainfall estimation at the end of last century
(see e.g. the review in Hosking and Wallis 1997), as a means
of improving statistical estimation at ungauged locations,
including refinements based on the concept of region of influ-
ence around each site (Burn 1990; Das 2019).

In brief, regional approaches are based on the assumption
that, after proper partitioning of the study area into distinct
statistically homogeneous geographical regions, the maxima
series at different locations within the same homogeneous
region can be described by the same probability distribution
when standardized by their mean, or some other index-
statistic (e.g. median, 90% -quantile etc.). Under this setting,
and at the expense of spatial detail, one can effectively reduce
parameter estimation uncertainties induced by short sample
lengths, by pooling together the standardized recordings of
all stations within a homogeneous region, and fitting a unique
distribution model common to all stations (usually referred to
as parent distribution) inside each identified region. Selection
of homogeneous regions can be conducted through a vari-
ety of cluster analysis (CA) techniques, such as hierarchical
cluster analysis (HCA), principal component analysis (PCA),
factorial analysis (FA), and self-organizing maps (SOM) (see
e.g. Baeriswyl and Rebetez 1997; Beaudoin and Rousselle
1982; Comrie and Glenn 1998; Hassan and Ping 2012; Karl
et al. 1982; Malekinezhad et al. 2011; Mallants and Feyen
1990; Markonis and Strnad 2020; Modarres and Sarhadi
2011; Munoz-Diaz and Rodrigo 2004; Ngongondo et al.
2011; Pineda-Martinez et al. 2007; Santos et al. 2015; Van
Regenmortel 1995), complemented by some type of statisti-
cal homogeneity testing; see e.g. Hosking and Wallis (1997)
and Sect. 3.3.

While widely used in hydrology due to their computa-
tional simplicity and robustness of the obtained estimates,
regional approaches are not limitation free. More precisely,
independent of the method used to define homogeneous
regions, regional approaches result in abrupt shifts of quan-
tile estimates along the boundaries of contiguous regions,
due to differences in the regional parameters of the parent
distribution (see e.g. Schaefer 1990). Except for the fact
that such discontinuities cannot be physically justified, as
hydrologic variables, such as precipitation, vary seamlessly
in space, the aforementioned issue is of particular importance
in engineering applications, as hydrological basins may be
consisted by areas belonging to neighboring homogeneous
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regions, with significantly different distribution parameters.
Additional limitations of regional approaches include: (a) the
lack of high resolution detail in the spatial variation of rainfall
statistics, as the effects of topography and local climatology
are smeared out by grouping of stations, (b) the fact that the
extent of homogeneous regions, as determined through sta-
tistical testing, is necessarily constrained by the length of the
available recordings (i.e. when the recordings are short, esti-
mation uncertainties are large enough to shade site-to-site
differences of rainfall statistics induced by the topography
and local climatology, leading to coarser partitioning of the
study area), and (c) the technical limitation that the parent
distribution assigned to each homogenous region constitutes
an average of different at-site behaviors, leading to quantile
overestimation in some parts of the considered region, and
underestimation inside the remaining parts.

The aforementioned shortcomings can be remedied, to
some extent, by the so-called geostatistical approaches,
which allow for a seamless representation of rainfall statis-
tics in space. This is accomplished by fitting a theoretical
distribution model to the recordings of each station and,
then, spatially interpolating the return levels or distribution
parameters over the region of interest. For the latter purpose,
different interpolation techniques can be used, such as linear
regression based methods (see e.g. Begueria and Vicente-
Serrano 2006; Carreau et al. 2013; Van De Vyver 2012),
inverse distance weighting schemes (see e.g. Goovaerts
2000), bootstrap techniques (see e.g. Uboldi et al. 2014),
spline based regression models (see e.g. Blanchet and Lehn-
ing 2010), and kriging (see e.g. Alila 1999; Goovaerts 1999;
Libertino et al. 2018; Moral 2010; Prudhomme and Reed
1999). The latter is a geostatistical technique, which was
initially proposed by Krige (1951), improved by Matheron
(1963) and Mazzetti and Todini (2009), and still remains the
most widely used method for spatial interpolation (see e.g.
Ceresetti et al. 2012; Das et al. 2020; De Marsily 1986; Fur-
colo et al. 2016; Mamalakis et al. 2017; Mazzetti and Todini
2009; Panthou et al. 2012; Prudhomme and Reed 1999; Yin
et al. 2018).

While promising, estimation of the spatial distribution of
rainfall extremes using geostatistical approaches has received
limited attention. In this context, the present study aims
at assessing the relative performance of regional and hier-
archical geostatistical approaches in modeling the general
tendencies and spatial variation of the distribution of extreme
rainfall. In doing so, two models are progressively developed,
aregional and geostatistical one, to describe the spatial vari-
ation of extreme rainfall regimes over the island of Sardinia
(Italy). The analysis is conducted using annual maxima of
daily rainfall from 256 raingauges with at least 30 years of
complete recordings, which are fitted using a Generalized
Extreme Value (GEV) distribution model. The at-site GEV
parameter estimates are spatially interpolated using two ver-
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sions of kriging: ordinary kriging (OK, the simplest and most
widespread version of kriging) and kriging for uncertain data
(KUD), which accounts for intrinsic uncertainties of at-site
estimates due to measurement errors and/or sampling vari-
ability.

The paper is organized as follows. Section 2 presents some
necessary information regarding the study area and the avail-
able data. In Sect. 3 we summarize background information
on extreme value theory, present step-by-step details on the
implementation of the regional and geostatistical approaches,
and outline the error metrics used to assess the relative perfor-
mance of the two procedures for extreme rainfall estimation.
Section 4 discusses the obtained results, and Sect. 5 summa-
rizes the main findings of the study, and points towards future
research directions.

2 Study area and rainfall data

The regional and boundaryless approaches are here imple-
mented using rainfall timeseries recorded in Sardinia
(Fig. 1a), the second largest island in Italy with approximate
area of 24 000 km?, which is located in the center of the West-
ern Mediterranean sea (see inset in Fig. 1a), between 32° N
and 41° N latitude, and between 8° E and 10° E longitude.
The topography of Sardinia is rather complex, as illustrated
inFig. 1a. A long mountain range is located in the eastern part
of the island, running from North to South, with highest ele-
vation of 1834 m. A secondary and smaller mountain range
is located in the southwestern part of the island. Between the
two mountain ranges, the Campidano plain is formed.

The island of Sardinia is characterized by Mediterranean
climate, with dry summers and most rainfall occurring dur-
ing the period from September to May. The central-east and
the southwestern coastal zones of the island experience the
highest rainfall extremes, due to the interaction of humid
air masses from southern Mediterranean with the two main
mountain ranges (Chessa et al. 2004), while the local topogra-
phy, soil structure, land use and intensive coastal urbanization
make these areas highly vulnerable to flash floods and land-
slides.

The available database consists of daily rainfall record-
ings from 1920 to 2008, collected by Sardinia’s Regional
Hydrographic Agencies. During the considered period, more
than 400 raingauges evenly distributed over the island have
been recording daily precipitation, with some of them expe-
riencing one or more temporal interruptions. For this reason,
we conducted a statistical analysis (described in detail in
Sect. 4.3) to determine a tradeoff rule between the minimum
record length required for including a certain station in a
specific phase of the analysis, and the resulting spatial den-
sity of the network. As a result, two ensembles of stations
were identified. The first one consists of 229 stations with at

least 50 years of complete observations (see black circles in
Fig. 1), and it was used to estimate distribution parameters
controlled by moment orders larger than 1, which are charac-
terized by higher statistical variability. The second ensemble
consists of 256 stations (see black and red circles in Fig. 1)
with at least 30 years of complete recordings (thus including
also all stations pooled in the first ensemble), and it was used
to estimate statistical attributes characterized by lower levels
of uncertainty; i.e. in our analysis mean rainfall fields.
Figure 1b shows the spatial distribution of the mean annual
rainfall depth over the Island, indicating a strong linkage
between mean annual rainfall and elevation (compare Fig. 1a
to 1b). Mean annual rainfall depths range from about 450 mm
per year in low elevation areas, to about 1200 mm in the high-
est mountain peaks, while the regional mean is approximately
730 mm/yr. A different pattern is depicted in Fig. 1c, which
illustrates the spatial distribution of the highest daily rainfall
depths recorded. One notices a significant intensification of
rainfall extremes at the eastern and southern parts of Sardinia,
where cyclonic activity interacts with orographic barriers.

3 Methods

This Section aims at providing essential information regard-
ing the implementation of methods and interpretation of
the results presented herein. Hence, for the sake of brevity,
we limit discussion solely to methodological and technical
aspects used in the present study, whereas for additional
details the interested readership is referred to the wide lit-
erature on the presented topics. Since the main objective
of the study is to propose a geostatistical boundaryless
approach and to compare its performance against widely
applied regional methods (see e.g. Hosking and Wallis 1997),
the common tools for the two approaches are introduced
first, namely the selected theoretical distribution model for
the purposes of extreme value analysis (Sect. 3.1), and the
standardization procedure associated with the index-flood
method (Sect. 3.2). Section 3.3 resumes the main prin-
ciples of regional analysis, and Sect. 3.4 introduces the
boundaryless approach based on geostatistical analysis using
kriging for uncertain data. Statistical measures and metrics
used to evaluate and compare the performances of the two
approaches are presented in Sect. 3.5.

3.1 Elements of extreme value theory

The problem of characterizing the probability distribution of
hydrological extremes has been addressed in the past using a
variety of theoretical probability distribution models. Based
on both theory and empirical evidence (see e.g. AghaK-
ouchak and Nasrollahi 2010; Blanchet et al. 2016; Coles
2001; Coles and Dixon 1999; Coles et al. 2003; El Adlouni
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Fig.1 a Digital Elevation Model of Sardinia (Italy) with an inset
illustrating the location of the island in the Mediterranean; black circles
indicate the locations of raingauges (total number 229) with more than
50 years of complete daily recordings, while red circles indicate the

et al. 2008, 2007; El Adlouni and Ouarda 2010; Engeland
et al. 2004; Gubareva and Gartsman 2010; Katz 2013; Katz
et al. 2002; Koutsoyiannis 2004a, 2004b; Koutsoyiannis and
Langousis 2011; Langousis et al. 2013, 2016b; Lucarini et al.
2016; Mélese et al. 2018; Onibon et al. 2004; Papalexiou and
Koutsoyiannis 2013; Tyralis and Langousis 2019; Veneziano
et al. 2009, 2007; Villarini 2012; Villarini et al. 2011, 2012),
in the present study we model annual maxima of daily rain-
fall using the Generalized Extreme Value (GEV) distribution
model. In what follows, we recall the essentials of GEV for-
mulation, while referring the interested reader to the wide
literature on the topic for a more in-depth discussion (see
e.g. Coles 2001; Langousis et al. 2016b; Lucarini et al. 2016).
Additional empirical evidence regarding the suitability of the
GEV distribution model in describing the statistical attributes
of the analyzed dataset are presented in Sect. 4.1, where we
discuss some preliminary results of our analysis.

Let Z; be a sequence of independent and identically dis-
tributed (iid) random variables, and X: = max(Z;,...,Zyr) be
the maximum inside a block of length M. For example, if
M is the number of observations in one year, as commonly
assumed in statistical hydrology, then X corresponds to the
annual maximum. If nondegenerate, extreme value theory
(see e.g. Coles 2001; Fisher and Tippett 1928; Gnedenko
1943; Jenkinson 1955; Lucarini et al. 2016) determines the
specific form of the limiting distribution of X when M tends
to infinity; i.e. Gumbel, Fréchet and Weibull distributions.
Using the von Mises-Jenkinson parameterization (Jenkinson
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locations of 27 stations with 3050 years of complete data. b Spatial
distribution of the mean annual rainfall depth (mm) over the Island.
¢ Spatial distribution of the highest daily rainfall depths in record (mm)

1955), the three limiting distributions can be summarized in
the following closed form, usually referred to as Generalized
Extreme Value (GEV) model:

1

exp{—[l +k(x;“)]_"} fork=0
exp{—exp[—(=£)]} fork=0

Fx(x) = ey

where k € (— 00, + 00), 0 >0 and u € (— 00, + 00) are
the shape, scale and location parameters of the distribution,
respectively.

The specific form of the distribution in Eq. (1) determines
the upper tail behavior of random variable X; see e.g. Gum-
bel (1958), and more recently Coles (2001). For £k = 0 the
GEV distribution reduces to Gumbel’s (i.e. Extreme Value
of type 1, EV1) form with exponential upper tail; for k >0
(i.e. Frechet, or EV2 form) the corresponding distribution is
lower bounded and exhibits an algebraic upper tail with expo-
nent — 1/k, whereas for £ <0 (i.e. Weibull, or EV3 form) the
distribution in Eq. (1) exhibits a finite upper bound.

In the context of extreme daily rainfall characterization,
it is worth mentioning the results of Papalexiou and Kout-
soyiannis (2013), who analyzed more than 15 000 annual
maxima series from different locations worldwide, with
lengths varying from 40 to 163 years. The study showed
that for very long time series, GEV shape parameter esti-
mates vary in the range between 0 and 0.23 with probability
99%, while the probability of negative shape parameter esti-
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mates is well below 1% (i.e. on the order of 0.005). Based
on these findings, as well as visual inspection (using Gum-
bel charts) of the empirical cumulative distribution functions
of all analyzed series, we concluded that the few negative
shape parameter estimates obtained should be attributed to
sampling variability and were set to zero. In this context,
please note that from a physical perspective the rainfall pro-
cess cannot simultaneously exhibit (as implied by negative
shape parameter estimates) and not exhibit (as implied by
positive shape parameter estimates) an upper bound. There-
fore, unless attributed to statistical variability, positive and
negative GEV shape parameter values cannot coexist in a
region (Emmanouil et al. 2020).

For practical applications, one usually needs to estimate
quantiles corresponding to different return levels. This is
done by inverting Eq. (1):

(F) = {u—%[l—(—lnF)k] fork #0 2
u—oln(=InF) fork=0

where F denotes the non-exceedance probability. While dif-
ferent definitions of F are possible depending on the problem
under consideration (see e.g. Langousis and Kaleris 2014;
Langousis etal. 2016a,2009; Langousis and Veneziano 2007,
2009; Stedinger et al. 1993; Veneziano and Furcolo 2002;
Veneziano and Langousis 2005a, 2005b; Willems 2000), for
the case of annual maxima, one usually sets F = 1-1/T,
where T denotes the return period of the event in years.

3.2 The index-flood method

The index-flood method inherits its name from an appli-
cation to flood frequency estimation by Dalrymple (1960),
but the method has been effectively applied to other hydro-
logical variables, including rainfall; see e.g. Hosking and
Wallis (1997) for a general and widely adopted framework for
regional frequency analysis, and Fitzgerald (1989), Schaefer
(1990), Cong et al. (1993), Guttman et al. (1993) Madsen
et al. (1997a), Alila (1999), Deidda et al. (2000), Trefry
et al. (2005), Caporali et al. (2008) Satyanarayana and Srini-
vas (2008), Modarres and Sarhadi (2011), Ngongondo et al.
(2011), and Blanchet et al. (2016) for relevant applications
to rainfall. In brief, the method is essentially based on the
assumption that, after proper at-site standardization, the data
originating from different sites belong to the same popula-
tion, as outlined below.

Let X be a random variable that corresponds to a cer-
tain hydrologic quantity at site i = 1, 2, ..., N within a
homogeneous region. According to the index-flood concept,
when properly standardized by a local multiplicative factor
m®, the frequency distribution of the ratio ¥: = X®W/m®
is assumed to be invariant within the homogeneous region.
Since the present study deals with rainfall fields, hereafter

the site-specific multiplicative factor m® will be referred to
as index-rainfall (instead of index-flood; see e.g. Ngongondo
etal. (2011)). Hence, under the above assumption, the quan-
tile function x(i)(F ) for any specific sitei = 1, 2, ..., N within
a homogeneous region is given by:

xOF)y=mPyF) i=1,...N (3)

where y(F) is a dimensionless quantile function, also referred
to as regional growth curve (see e.g. Hosking and Wallis
1997). y(F) is common to all sites inside a homogeneous
region, while the multiplicative factor m® may vary from
site to site, and can be linked to physiographic descriptors,
or estimated using interpolation procedures. Although the
most popular choice is to use the local mean of the modeled
variable X as site-specific factor (i.e. m = E[X®]) (see
e.g. Cunderlik and Ouarda 2007; Laio et al. 2011; Madsen
etal. 1997b; Zaman et al. 2012), occasionally, other statistical
measures, such as the median or mode, have also been used
(see e.g. Kjeldsen and Jones 2006; Ngongondo et al. 2011).
In what follows, we estimate mY as the mean value of the
annual maxima of daily rainfall, recorded at raingauge i.

By introducing the aforementioned standardization to
Eq. (1), the distribution function of the dimensionless ran-
dom variable ¥: = X®/m receives the form:

1

exp —[1+k(y;ff*)]_"} fork £0
exp —exp[—(y;*“*)“ fork=0

Fy(y) = “

where the shape parameter &, the dimensionless scale param-
eter o *: = o/m, and the dimensionless location parameter
(¥ = p/mremain constant inside each homogeneous region.
Again, direct inversion of Eq. (4) results in the dimensionless
quantile function of random variable Y:

= 21— (=InF)7*} fork #0

u* —o*In(—InF) fork =0 )

y(F)Z{

In addition, since the ratio Y has unit mean value (i.e. my

= E[Y] = E[XD/m¥D] = 1), it can be easily proved that the

three parameters are linked by the following equation:

«_[1+Z{1-TU -k} fork#0 ©
T |l1=yo* fork=0

where I'(.) denotes the gamma function I'(x) =
fgot"_le_’dt, and y =0.577215665... is the Euler constant.
Thus, estimation of k and o * from the pool of all standardized
data in a homogeneous region suffices to fully parameterize
Egs. (4) and (5).

@ Springer



2610

Stochastic Environmental Research and Risk Assessment (2021) 35:2605-2628

Regarding GEV parameter estimation, common proce-
dures include the method of moments (also referred to as
simple moments (SM) or conventional moments), the method
of probability-weighted moments (PWM), and maximum
likelihood (ML). Here we use the method of L-moments (i.e.
a subcase of PWM; see Hosking and Wallis (1997) for a
detailed review and relevant formulations), due to its higher
robustness against outliers relative to SM (see e.g. Hosking
1992; Sankarasubramanian and Srinivasan 1999; Vogel and
Fennessey 1993), and its better performance relative to ML
when applied to small samples (see e.g. Bezak et al. 2014;
Gubareva and Gartsman 2010; Hosking et al. 1985; Madsen
et al. 1997a). Also, similar to simple moments, L-moment
ratios can be efficiently used to describe the empirical distri-
bution of samples (see e.g. Deidda and Puliga 2006; Hosking
1990; Hosking and Wallis 1997; Silva Lomba and Fraga
Alves 2020; Vogel and Fennessey 1993 among others). In
this context, the coefficient of L-variation (L-CV) is defined
as:

T =
Al

(N

where A denotes the mean, and A, is the L-moment of order
2. For orders r >2, the L-moment ratio 7, is defined as:

r=23,4,... 3

T = —

2

where A, denotes the L-moment of order r

When interest is in determining the theoretical distribution
model that best fits the data, a useful diagnostic is the L-
moment ratios diagram proposed by Hosking (1990) (see
also Vogel and Fennessey 1993). The latter allows for direct
comparison of the empirically estimated L-skewness (13 =
A3/12) and L-kurtosis (4 = A4/A3) from the available data,
to what is theoretically expected for different distribution
models; see also discussion of Fig. 2 in Sect. 4.1.

3.3 Regional approach

Any regional approach requires a preliminary identification
of homogeneous regions, where the parameters of the dis-
tribution function of the dimensionless random variable y
(in our case the GEV model in Eq. (4)) can be reasonably
assumed constant. Different approaches to group measur-
ing locations of hydrologic quantities into homogeneous
regions have been proposed (see Hosking and Wallis 1997
for a review), but no consensus on the best procedure has
been still reached, since any approach exhibits advantages
and limitations; e.g. regions determined based solely on
geographic proximity constraints may not guarantee hydro-
logical or climatological similarity, pure objective criteria
based solely on minimization of heterogeneity metrics may
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lead to fragmented regions, whereas subjective partitioning
may be unfeasible in the case of large observational networks.
Independent of the grouping criteria used, there is always
the necessity for statistical testing to determine whether the
standardized series y = x(/m( at different sites i can be
considered to belong to the same population. The spatial cov-
erage of these sites defines the extent of the homogeneous
region.

In this study, we have applied a mixture of grouping crite-
ria, trying to take advantage of different techniques. In brief,
identification of homogeneous regions was mainly imple-
mented in two steps. The first step relied on purely objective
criteria, namely an agglomerative (or “bottom-up”) hierar-
chical cluster analysis approach based on Ward’s method
(see e.g. Ahmad et al. 2013; Ercan et al. 2008; Hassan
and Ping 2012; Modarres and Sarhadi 2011), coupled with
a geographic proximity constraint to avoid excessive frag-
mentation of regions. Specifically, Ward’s method was used
to minimize the total within-group variance of sample L-
CV and L-skewness (see e.g. Pearson 1991), starting from
clusters containing only one station each, and progressively
merging couplets of clusters based on Delaunay’s triangu-
lation of the region. More precisely, at each step of the
algorithm, we considered as candidates for potential merg-
ers only couplets of previous-step clusters that shared at
least one site in the same Delaunay triangle (Tucker et al.
2001). In case needed, a final subjective refinement was
applied to the clusters resulting from each step of the algo-
rithm, by exchanging very few sites at cluster boundaries
to better reflect orographic features, with particular care
not to increase the average error metrics described in Sect.
3.5.

Once the clustering procedure was completed (i.e. all sites
were merged into a unique terminal cluster), in the second
step of the regionalization procedure, we used a “top—bot-
tom” approach to conclude on the minimum number of
homogeneous regions. More in detail, we started by assum-
ing one homogeneous region containing all sites, then two
homogeneous regions corresponding to the last two clusters
before the final merger, then three clusters etc., to conclude
on the partition consisting of the minimum number of clusters
where the hypothesis of statistical homogeneity was accepted
unanimously at a certain significance level.

To test regional homogeneity within regions, we used the
procedure described in Hosking and Wallis (1997). Accord-
ing to this procedure, for each considered region, one first
calculates the regional value of L-CV (t Ry,

N @)
.[R — Zl:]n T (9)

Zthln(i)

where ) and n® denote the sample L-CV and the number
of available observations at site i, respectively, and N is the
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number of sites inside the region. Then, one calculates the
dispersion measure V, which corresponds to the weighted
standard deviation of L-CV estimates within the region:

N v 27172
V= Zi:ln(l)(r(l) -7 ) (10)
B SN n@)
i=1"
As a final step, one computes the heterogeneity measure:

(V=)
-

H (11)

where 1y and oy denote the mean and standard deviation of
V, which are usually determined via Monte Carlo simulation,
as described below.

To assess statistical homogeneity within a region, Hosk-
ing and Wallis (1997) suggest the following three ranges of H
values: (i) H <1 the region is acceptably homogeneous; (ii)
1 <H <2 the region is possibly heterogeneous; (iii) H >2
the region can be considered heterogeneous. It is important
to note that Hosking and Wallis (1997) suggest the aforemen-
tioned ranges as guidelines, rather than acceptance regions
for a statistical test. In this (lenient) context, to determine
the acceptance region for the null hypothesis of statistical
homogeneity at a certain significance level, one can reason-
ably assume that H follows a standard normal distribution.

For each considered region, the mean py and standard
deviation oy of the dispersion measure V can be obtained
using Monte Carlo simulation, as follows. First, a regional

L-skewness

probability distribution model (in our case a 4-parameter
Kappa distribution (Hosking 1994); see discussion below and
Eq. (12)) is fitted to the sample created after pooling together
all standardized timeseries y® (i = 1, 2,..., N) within the
considered region, using the method of L-moments; see e.g.
Hosking and Wallis (1997). Then, the fitted regional distri-
bution is used to simulate a large number, in our case N, =
10000, of synthetic timeseries at each locationi =1,2,..., N,
with length equal to that of the corresponding historical series
nY. By construction, and in accordance with the tested null
hypothesis of statistical homogeneity, all simulated series
originate from a homogeneous random field, free of cross
(spatial) and serial (temporal) dependencies. Hence, one can
calculate py and oy in Eq. (11) using the N, estimates of
the dispersion measure V, obtained by applying Eqs. (9) and
(10) to the ensemble of synthetic realizations generated by a
4-parameter Kappa distribution model (Hosking 1994):

1
197

Fy(y) = 1—h{1+@}_k (12)

where, & and o denote the location and scale parameters of the
distribution, respectively, and k and / control the distribution
shape (i.e. through skewness and kurtosis).

Selection of a 4-parameter Kappa distribution to model the
regional sample for the purposes of Monte Carlo simulation,
has been based mainly on the following two reasons (see
also Hosking and Wallis 1997): (i) In our analysis, rainfall
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maxima are modeled using a GEV theoretical distribution
with 3 parameters. Hence, to avoid biasing the conducted
homogeneity tests through a priori selection of the parent
distribution model (i.e. in our case a GEV model), we used a
4-parameter distribution to allow for an additional degree of
freedom (a fourth parameter) in describing the shape of the
distribution. (ii) The 4-parameter Kappa distribution model
is quite flexible in describing a wide range of distribution
types used in extreme analysis and beyond, including: the
GEV for h = 0, the Generalized Logistic for 4 = -1, and the
Generalized Pareto for & = 1, as sub-cases.

Since the distribution functions of extremes are generally
characterized by heavy tails, we decided to complement the
homogeneity analysis with two additional dispersion mea-
sures (V> and V3), built using the regional L-skewness (73%),
and the regional L-kurtosis (74%), given by:

N i) (i)
R Zi:l”(l)fsl

T3 = 13
U ST "
N @), @)
1T
erZl—l 4 (14)

ZiNzln(i)

where, similar to Eq. (9), ‘L’3(i), 74® and n® denote the sample
L-skewness, L-kurtosis and number of available observations
at site i, respectively, and N is the number of sites inside the
region. Following the same notation as in Hosking and Wal-
lis (1997), we named the additional dispersion measures V3
(i.e. based on L-CV and L-skewness) and V3 (i.e. based on
L-skewness and L-kurtosis), and the corresponding hetero-
geneity measures Hy and H3 (see "Appendix" for details).
Similar to heterogeneity measure H, computation of H, and
Hj3 requires preliminary estimation of the regional mean and
variance of V, and V3 in the tested region, which can be
obtained from the generated synthetic realizations.

Once partitioning of the station network into the min-
imum possible number of homogeneous regions is com-
pleted, one pools together the standardized annual rainfall
maxima from all stations belonging to each of the iden-
tified regions, and fits a unique (for each homogeneous
region) GEV model (see Eq. (4)), using the estimated
regional L-moments; see Eqgs. (9), (13) and (14). The
parameters k, o *, and pu* of the regional distribution are
kept constant inside each homogeneous region, while the
index-rainfall m varies seamlessly in space, and can be
related to physiographic features or estimated through spatial
interpolation techniques, as described in the next subsec-
tion.
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3.4 Boundaryless approach based on geostatistical
analysis

As an alternative to the regional approach described in the
previous subsection, we propose and test a boundaryless
approach based on the hierarchical application of geosta-
tistical interpolation, to obtain seamless estimates of GEV
distribution parameters in space.

It is well known that at-site estimates of distribution
parameters are affected by uncertainties in statistical esti-
mation, due to the limited length of hydrological timeseries;
actually, it is exactly this limitation that motivated the
development and application of regional approaches. In this
context, we decided to avoid applying ordinary kriging (OK;
see e.g. De Marsily 1986; Kitanidis 1997; Matheron 1963),
and opt in favor of kriging for uncertain data (KUD); see
e.g. De Marsily (1986), Mazzetti and Todini (2009), Furcolo
et al. (2016), and Mamalakis et al. (2017). Contrary to OK,
which assumes zero estimation variance of statistical quan-
tities at locations where data is available, KUD allows for
explicit modeling of intrinsic uncertainties in the data, mak-
ing the interpolation less sensitive to local sampling effects,
while remaining unbiased and minimizing the interpolation
error variance. These attributes of KUD make it particularly
useful when the data to be interpolated exhibit considerable
variability, as it is the case here where we interpolate statis-
tical estimates of distribution parameters, originating from
finite samples with different lengths.

A pioneering KUD formulation was first proposed by De
Marsily (1986) for homoschedastic fields (i.e. where the error
variance is constant), and later extended by Mazzetti and
Todini (2009) to apply also to heteroschedastic fields, with
variance that varies spatially. According to this last formula-
tion, the KUD estimate of a parameter € at a certain location
is obtained as § = Z,iv; | MOk, where 0y is the local param-
eter estimate at site k, N is the number of neighboring sites
considered for the interpolation, and Aj are weights obtained
by solving a system of linear equations similarly to OK. The
only difference is that the matrix of coefficients (y*i,j) and
vector of constant terms (y *,-,o) in the KUD system of linear
equations are properly modified to account for uncertainties
in statistical estimation, receiving the form (see Mazzetti and
Todini 2009):

N al.2+o/2 L . .
Vi =vijt 3 Vi,j=1,...,Ng and i # ]
V,‘Tj:Vi,j =]
2 .
yl.fo:)/i’0+% VZZL...,NS
(15)

where y;; is the variogram value between measuring sites i
and j, y;o is the variogram value between location i and the



Stochastic Environmental Research and Risk Assessment (2021) 35:2605-2628

2613

estimation point, and o iz denotes the variance of the mea-
suring error at site i.

In the suggested boundaryless approach, KUD is applied
to obtain seamless GEV parameter estimates over the study
region, following a four-step hierarchical approach:

1. Ateach measuring locationi =1, 2, ..., N, the standard-
ized to mean-1 timeseries of annual rainfall maxima y)
= xD/m are used to fit a GEV model (see Eq. 4), using
the method of L-moments.

2. KUD is applied to the GEV shape parameter k estimates
from all measuring locations, to obtain a smoothly vary-
ing k-field over the study region. The shape parameter
estimation variances at the measuring locations (nec-
essary for KUD analysis and interpolation; see Eq. 15
above), are obtained through Monte Carlo simulation.
More precisely, at each measuring location, we used
the fitted GEV distribution model to simulate 10 000
synthetic series with length equal to that of the corre-
sponding historical series of annual maxima, refitted the
GEV model to each of the simulated series, and calcu-
lated the variance of the shape parameter estimates.

3. At each site, the interpolated shape parameter value is
used to condition estimation of the dimensionless scale
parameter o *. Next, KUD is applied to the newly esti-
mated dimensionless scale parameters o *, to obtain a
smoothly varying o *-field over the study region. Similar
to shape parameter k, the dimensionless scale param-
eter estimation variance at each measuring location is
obtained through Monte Carlo simulation, using the GEV
distribution model from step 2 above (i.e. where o *
is estimated conditionally based on the interpolated k
value).

4. The interpolated k and o * fields are used together with
Eq. (6), to acquire the dimensionless location parameter
w*-field.

The first step of the suggested approach produces unbiased
GEV shape parameter estimates, which are less sensitive to
local sampling effects and, also, account for intrinsic uncer-
tainties in the data. The remaining steps reduce propagation
of the estimation uncertainty from the shape parameter,
which is more sensitive to sampling effects, to the dimen-
sionless scale and location parameters, thus making the
interpolation method more robust.

As a final step for the application of both regional and
boundaryless approaches, one needs to obtain an interpolated
field of the index-rainfall m over the study region, which will
be used to multiply the dimensionless quantile function in
Eq. (5), or calculate the scale o and location  parameters
of the GEV distribution at any location inside the study area,
from o * and p*, respectively. Here we do so by applying

KUD analysis to the mean of annual rainfall maxima over
the study region.

3.5 Error metrics

The relative effectiveness of the regional and boundaryless
approaches in modeling the observed annual rainfall maxima,
are evaluated by comparing the empirical and fitted distribu-
tion models in each raingauge site in terms of: (i) observed
and modeled frequencies over the whole range of histori-
cal observations, and (ii) the average error of the estimated
quantiles corresponding to the highest values in record. For
the sake of brevity, and to facilitate readability, indexing of
raingauge sites is omitted in this subsection.

For the first type of comparisons, we selected the Ander-
son Darling, AZ, and the Cramer-von Mises, W2, statistics
(see e.g. Ahmad et al. 1988; Anderson and Darling 1952,
1954; Deidda and Puliga 2006, 2009; Laio 2004; Laio et al.
2009; Langousis et al. 2016b; Stephens 1986) to quantify
the deviations between the empirical cumulative distribution
function (CDF) and the fitted theoretical GEV model Fx(x):

l n
A =—n— - ;(2]' — D[log(Fx(x;)) +log(1 — Fx (xnr1-5))]
(16)
R 2j —1)\?
2_ AR
w?= +j:1 (FX(x.,) - > (17)

where n denotes the length of the available observations, and
x; denotes the j-th ascending order statistic. In Both W2 and
A? the empirical CDF is estimated by applying the Hazen
(1914) plotting position formula (see e.g. Barnett 1975, 1976;
Harter 1984). W2 assigns equal weights to the whole distribu-
tion, while A% assigns larger weights to observations located
at the upper or lower distribution tails.

For the second type of comparisons, we calculated the
mean error (ME, see Eq. 18), mean relative error (MEr, see
Eq. 19), mean absolute error (MAE, see Eq. 20), and the mean
absolute relative error (MAETr, see Eq. 21) in the estimation
of the K highest recordings at each station:

1 n

ME(K) = - > xti—x (18)
j=n—K+1
1 " x4 —x;
MEr(K) = — Z e (19)
j=n—K+1 J
1 n
MAE(K) == ). ‘xd,- — x,»‘ (20)
j=n—K+1
1 " x4 —x;
MAEr(K) = - > % 1)
j=n—K+1 J
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where x¢ j denotes the theoretical quantile of the j-th ascend-
ing order statistic, estimated from Eq. (2) for F = (2j—1)/n
according to Hazen (1914) plotting position formula.

The first two metrics (i.e. Eqs. 18 and 19) measure the
bias of each approach providing an indication of the locations
where the theoretical quantiles from Eq. (2) over- or under-
estimate the K highest observed maxima, while the third and
fourth metrics (i.e. Eqs. 20 and 21) provide an indication
of the magnitude of the errors, regardless of their sign. ME
and MAE are dimensional, sharing the same units with the
analyzed records (i.e. mm), while MEr and MAEr are dimen-
sionless.

All error metrics in Egs. (18)—(21) were computed for
the K = 5 highest annual maxima recorded by each rain-
gauge considered in our analysis, and the performances of
the regional and boundaryless approaches were evaluated
in terms of the spatial distribution of the considered error
metrics, as well as in terms of summary statistics for the
overall performances. A leave-one-out cross-validation pro-
cedure was also implemented to evaluate performances at
ungauged locations, as described in the following Section.

4 Results and discussion

In the following subsections we discuss the main findings
and results from the application of the regional and bound-
aryless approaches described in Sect. 3 to the annual maxima
of daily rainfall in the island of Sardinia (Italy). All analy-
ses were conducted using the 229 timeseries with more than
50 years of daily recordings, except for the interpolation of
index-rainfall, which was implemented including also shorter
series, with at least 30 years of observations (i.e. using the
extended network of 256 raingauges; see Sect. 2). Section 4.1
describes the preliminary analysis conducted to conclude on a
proper distribution model and parameter estimation method,
while Sects. 4.2 and 4.3 focus on the implementation of the
regional and boundaryless approaches, respectively. The per-
formances of the two approaches are assessed and compared
in Sect. 4.4.

4.1 Local analysis and preliminary investigations

As noted in Sect. 3.1, under proper renormalization and if
nondegenerate, the GEV model is the limiting distribution
of block maxima when the block size M tends to infinity.
In addition, as reviewed in Sect. 3.1, the GEV distribution
has been widely applied in statistical hydrology to model
annual rainfall maxima. To empirically confirm that the GEV
assumption can reasonably describe the analyzed timeseries
of annual rainfall, we conducted a preliminary investigation
using the diagnostic diagram based on L-moment ratios pro-
posed by Hosking (1990); see discussion in Sect. 3.2.
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Table 1 Regional values of sample L-moment ratios (7, T3R , ‘E4R ) and
Kappa distribution parameter estimates (SR, af kR hR®), based on the
standardized to mean-1 229 timeseries with more than 50 years of com-
plete recordings; see main text for details

R R R R R R R
T 3 T & o k h

0.225 0.243 0.186 0.804 0.284 0.119 — 0.004

Figure 2 compares the L-ratio curves (L-skewness, L-
kurtosis) for different theoretical distribution models (i.e.
GEV, Generalized Logistic, Lognormal, Pearson type III)
to the corresponding empirical L-moment ratios. The latter
were estimated using the annual maxima series of daily pre-
cipitation from the subset of 229 stations with more than
50 years of complete recordings. From visual inspection of
Fig. 2, one concludes that the theoretical L-moment ratio
curve corresponding to a GEV model is the most repre-
sentative one in terms of minimum average distance from
the empirically estimated (L-skewness, L-kurtosis) combi-
nations. The representativeness of the GEV model is also
justified by the fact that the point corresponding to the
regional statistics (t%3, t%4) obtained by averaging the at-
site L-skewness and L-kurtosis empirical estimates from the
229 stations using Eqs. (13) and (14) (filled large mark in
Fig. 2), lies on the GEV theoretical L-moment ratio curve. In
addition, Table 1 reports the regional averages of L-moment
ratios estimated at the 229 sites, as well as the regional aver-
ages of the parameters of the fitted Kappa distribution (see
Eq. (12) and Sect. 3.3) to the standardized to mean-1 at-
site data, using the PWM method; see Hosking and Wallis
(1997). The fact that the regional average of the estimated
h parameter of the Kappa distribution is very close to zero,
further supports the selection of the GEV distribution as the
most representative model for the analyzed annual maxima,
as expected by theoretical arguments.

Regarding the effectiveness of different methods for GEV
parameter estimation, we conducted a preliminary investi-
gation using the methods of Simple Moments (SM), Maxi-
mum Likelihood (ML) and Probability Weighted Moments
(PWM). Simple moments resulted in significantly biased
estimates in cases when the empirical distributions exhib-
ited heavy upper tails and, therefore, were not considered
for the remainder of the analysis. With reference to the other
two methods, when applied to the standardized to mean-1
timeseries from the 229 sites, our analysis did not reveal any
clear competitive advantage of either ML or PWM. In sel-
dom cases where k estimates exhibited small negative values,
these were set to zero (see discussion in Sect. 3.1). Figure 3a,
b show scatterplots of the ML versus PWM local estimates of
k and o *, respectively. One sees that the two methods produce
compatible results, with the corresponding points fluctuating
around the 1:1 line. Similarly, good agreement is indicated
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Fig. 3 Scatterplots (upper panels) and empirical cumulative distribu-
tion functions (lower panels) of the GEV distribution parameters k (left
column) and o * (right column) estimated by applying the Maximum

by the empirical cumulative distribution functions of the esti-
mated k£ and o*, when using the ML and PWM methods
(see Fig. 3c, d). Based on the aforementioned findings, and
the fact that the PWM approach exhibits better performance
when dealing with small sample sizes (see Hosking et al.
1985, and Sect. 3.2), we decided to proceed by using the
PWM approach for estimation of distribution parameters. In
addition, PWM is the parameter estimation method of gen-
eral choice for regional frequency analysis purposes (see e.g.
Hosking and Wallis 1993, 1997) and, therefore, it is used here
also when applying the suggested boundaryless approach, to
ensure a fair comparison.

4.2 Results from the regional approach

As discussed in Sect. 3.3, grouping of observational sites in
potentially homogeneous regions was conducted by a hier-
archical cluster analysis based on Ward’s method, in order to
minimize the total within-group variance of different combi-
nations of sample L-CV (t) and L-skewness (73) metrics; see
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Likelihood (ML) and Probability Weighted Moments (PWM) methods
to the 229 series of annual maxima with more than 50 years of complete
recordings

discussion below. In order to keep compact sets of stations
at each merging step, the condition of territorial continuity
was imposed using Delaunay’s triangulation among the rain-
gauge locations, allowing solely aggregation of neighboring
stations and/or clusters. In this way, we obtained several clus-
ter configurations by using either the variance of t as metric,
or the weighted average of 7 and t3 variances. In the lat-
ter case, to account for the higher statistical variability of 73
relative to T estimates, the ratio of the applied weights was
set equal to the empirical mean of the ratio of the standard
deviations o cy and o1 gkewness Of T and t3, respectively
(i.e. E[oL-cv /0 L-skewness] = 1/3, see below and Fig. 4). The
standard deviations of T and t3 were obtained by simulat-
ing N, = 10 000 ensembles of synthetic timeseries at each
site { = 1, 2,..., N, with length equal to that of the cor-
responding historical series n”), using a Kappa distribution
model (see Hosking 1994 and Sect. 3.3) with parameters in
Table 1. The empirical probability density function of the
obtained ratios is shown in Fig. 4, where one sees that the
dispersion around the mean value 1/3 is relatively small. As
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a matter of fact, we found only minor differences among the
outcomes of the cluster analysis based only on 7, or both t
and 73 metrics (probably due to the high linear correlation,
p = 0.63, between 1 and 73 estimates) and, subsequently,
we made only minor adjustments at the boundaries of homo-
geneous regions to obtain a common configuration. In doing
so, we took into account orographic features and geograph-
ical exposure, while minimizing the error metrics described
in Sect. 3.5 when using the regional parameters of the GEV
distribution in each considered cluster. The resulting adjust-
ments included merging of a cluster facing the eastern coast
of Sardinia, with a cluster located at the southwest part of
Sardinia with eastward exposition. The merger was initially
driven by the fact that both regions are exposed to humid
air fluxes induced by Sirocco winds, causing intense precip-
itation events (sometimes larger than 500 mm in less than
24 h, see also Fig. 1c), but it is also supported by the fact
that both regions pool together stations characterized by the
highest coefficients of variation and skewness values (Hel-
lies 2016). The reason why the corresponding clusters were
not initially merged, is due to the lack of spatial continuity as
initially embodied in Delaunay’s triangulation of the station
network.

The terminal partitioning of the island of Sardinia into
four homogeneous regions is illustrated in Fig. 5a, using dif-
ferent symbols and colors (e.g. the blue diamond symbols
indicate region Cs, resulting from the merger of the cluster
facing the eastern coast of Sardinia, with the cluster at the
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southwest part of Sardinia with eastward exposition). Table
2 summarizes the statistical characteristics of each homoge-
neous region, i.e. the regional L-moment ratios R 738 and
748 the heterogeneity measures H, Hy, and H3 (see Sect.
3.3 and "Appendix"), and the regional value of Kappa dis-
tribution parameter /. The latter was found to be very close
to zero for all terminal clusters, confirming the suitability
of the GEV distribution in modeling the statistical charac-
ter of annual maxima of daily rainfall in each homogeneous
region.

Figure 5b shows the estimated L-moment ratios 73 and t4
for the stations inside each homogeneous region, using the
same colors and symbols as in Fig. 5a. In the same L-moment
ratios diagram, we used large marks to denote the regional
statistics (t®3, 784) of the terminal clusters (see also Table 2).
The latter lie on the theoretical GEV L-moment ratios curve,
providing additional confirmation that the GEV distribution
can effectively be used to model the statistical character of
each homogeneous region, with parameters shown in Table
3.

One sees that region C; is characterized by the lowest
values of shape (k) and dimensionless scale (o *) regional
parameters, probably because it is located far from the coast
at the center of the Island (see red circles in Fig. 5), thus
being less sensitive to interactions of humid air masses from
the sea with orography. On the other hand, region C3 (see blue
diamonds in Fig. 5) is characterized by the highest regional
values of distribution shape parameters, due to the interaction
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Fig.5 a Final configuration of the 4 contiguous homogeneous regions;
b Theoretical L-moment ratio curves of common distribution models,
as compared to the sample L-moment ratios of annual maxima of daily
precipitation from the network of 229 stations with more than 50 years

Table 2 Regional values of sample L-moment ratios (zR, r3R, rf), het-
erogeneity measures (H, Hp, H3), and Kappa distribution parameter
h for each identified homogeneous region. The IDs of the four terminal

Il
0.1 0.2 03 04 0.5 06
L—skewness

(b)

of complete recordings (colored circles). Colors correspond to different
homogeneous regions, as shown in (a). Filled large marks correspond to
the regional averages of sample L-moment ratios inside homogeneous
areas

clusters (homogeneous regions), the colors used in Fig. 5 to denote sta-
tion locations, and the number of stations in each terminal cluster are
reported in the first and second columns, respectively

Cluster (color) N. sites R 24 7 H H, Hj nR

Cl1 (red) 39 0.18 0.18 0.16 1.32 0.86 0.75 —0.08
C2 (green) 99 0.20 0.23 0.18 —0.56 —0.28 0.24 —0.04
C3 (blue) 67 0.29 0.30 0.22 0.30 0.72 0.20 0.04
C4 (yellow) 24 0.23 0.22 0.17 0.27 1.49 1.03 0.06

of cyclonic perturbations with the steep eastward orography
gradients, resulting in intense precipitation events.
Application of the regional approach requires parameter-
ization of the GEV model in Eq. (1) using the local scale o
and location p parameters. These can be obtained by multi-
plying the o * and u* values for each homogeneous region in
Table 3, by the index-rainfall m. For this last statistic, we did
not find any significant linkage to morphometric properties
and, therefore, we decided to interpolate the at-site index-

rainfall estimates obtained from the extended sample of 256
timeseries exhibiting more than 30 years of complete record-
ings, resulting in a seamless index-rainfall field. As discussed
in Sect. 3.3, this is a common feature of both regional and
boundaryless approaches considered in this study, and it is
discussed in the next subsection.
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Table 3 Estimates of GEV distribution parameters (k, o *, u*) for the
four identified homogeneous regions; see main text for details

Cluster (color) k o* w*

Cl1 (red) 0.012 0.252 0.851
C2 (green) 0.097 0.263 0.820
C3 (blue) 0.201 0.334 0.726
C4 (yellow) 0.083 0.308 0.795

4.3 Results from the boundaryless approach

The proposed boundaryless approach is based on KUD spa-
tial interpolation of the GEV shape and dimensionless scale
parameters, and the index-rainfall field, according to the fol-
lowing hierarchical approach (see also Sect. 3.4): (i) First, we
focus on the spatial interpolation of the shape parameter &, to
obtain a smoothly varying field; (ii) we use the interpolated k
estimates from step (i), to condition estimation and proceed
with interpolation of the dimensionless scale parameter o *;
(iii) as a final step, we interpolate the index-rainfall m, which
characterizes the local scaling factor for both the regional
and boundaryless approaches.

To optimize the obtained results in terms of accuracy and
robustness, we made some preliminary analyses to select
the theoretical variograms that best fits the sample of annual
rainfall maxima and, also, determine an optimal setting for
our geostatistical analysis (i.e. number of nearest stations
to be used for interpolation of distribution parameters, and
the lower cut-off threshold regarding the length of the time-
series to be included in the analysis). Preliminary analyses
were conducted using both ordinary kriging (OK) and krig-
ing for uncertain data (KUD). Indeed, while OK reproduces
the exact values of empirical estimates at the measuring loca-
tions, from a theoretical point of view, KUD is expected to
perform better when interpolating estimates of distribution
parameters, which are affected by sampling variability.

Concerning the choice of the theoretical variogram to be
used, after some initial attempts to fit location dependent var-
iograms, we decided to use a unique variogram for the whole
study area. The empirical raw variogram was thus built using
all possible couples of raingauge stations that exceeded a
certain minimum number of observed annual maxima (the
tradeoff rule regarding the minimum length of timeseries
included in the analysis is discussed below), and then binned
together according to 5 km distance intervals (i.e. 0-5 km,
5-10 km, 10-15 km, etc.). The resulting raw variogram was
then used to calibrate theoretical stationary and nonstationary
candidate variogram models, including the Gaussian, expo-
nential, spherical, hole-effect, power and linear models. The
best fit was obtained for the case of the exponential model,
which was adopted in our analysis to describe the covariance
properties of all statistics used in the boundaryless approach.
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Next we investigated the optimal setting for the spatial
interpolation of the GEV shape parameter k, dimensionless
scale parameter o *, and index-rainfall m in terms of: (i) num-
ber of nearest stations to be considered when building the
kriging system of linear equations; (ii) minimum length of
the timeseries to be included in the analysis; (iii) estima-
tion method (OK vs KUD), assuming no a priori preference.
For each setting, the overall performances were evaluated
using a leave-one-out cross-validation procedure, based on
the mean absolute error between the at-site empirical esti-
mate and the interpolated one. The latter was obtained by
neglecting all applicable information at the considered site,
which was instead used as benchmark for error estimation.
Figures 6a—c show the mean absolute error resulting from
interpolation of the shape k and the dimensionless scale o *
parameters, and the index-rainfall m, respectively, as a func-
tion of the number of nearest locations used to build the
kriging system of linear equations. Results from the applica-
tion of OK (KUD) interpolation are noted by empty circles
(asterisks), while the effect of the minimum length of the
timeseries included in the analyses is indicated by different
colors (i.e. the lower the minimum length, the larger the num-
ber of stations included in the analysis). An important finding
from Fig. 6, is that KUD outperforms OK interpolations for
any setting. In addition, a number of 10 nearest stations to
be included when building the kriging system of linear equa-
tions suffices to minimize the interpolation error of k, o *, and
m. The only difference is that, while for both GEV param-
eters k and o* the optimal cut-off threshold regarding the
minimum length of timeseries to be included in the analysis
is on the order of 50 years, for index-rainfall m the best inter-
polation performance is attained when including also shorter
timeseries, on the order of 30 years.

In the light of the aforementioned preliminary analyses,
we decided to apply KUD for all relevant parameters (i.e.
k, o * and m) on a regular grid with 1 km spatial resolution,
using information from the 10 nearest stations to each grid-
point. For interpolation of k and o* (i.e. where estimation
uncertainty is larger) we used information from stations with
at least 50 complete years of observations (a total number
of 229), while for interpolation of index-rainfall m (char-
acterized by lower sample variability) we applied a lower
threshold and used annual maxima series from stations with
at least 30 years of complete recordings (a total number of
256); see also Sect. 2.

Despite using KUD interpolation, we observed some noise
at sporadic locations of the spatial grid, originating from
changes in the coefficients and constant terms of the kriging
system of linear equations (i.e. built using information from
the 10 nearest stations), as one moves to different locations of
the computational grid. To smooth out this local variability,
we applied a simple moving average window with dimen-
sions 9 x 9 km. Comparison of the filtered and originally



Stochastic Environmental Research and Risk Assessment (2021) 35:2605-2628 2619
0.07 T 0.0245 T 7
o OK-Ny=30 o OK-Ny=30 o OK-Ny=30
@ o OK-Ny =50 R o OK-Ny=50 6.8 o OK-Ny=50
0.068 4 o OK-Ny=70 0.024 o OK-Ny=70 ’ o OK-Ny=70
* KUD - Ny =30 * KUD - Ny = 30 s * KUD - Ny =30
0.066 | e * KUD - Ny =50 00235 * KUD-Ny=50||] 66 *+ KUD - Ny =50
: * © * KUD - Ny =70 : °© o o | * KUD-Ny=70|| __ ] * KUD-Ny=70
=3 i * o o .1 ° o £6.4 e gex1x%000,
W 0.064 | "8 1t Lof W 0023 . ceecrm vt
<Y * * o * o 0o © 2 < . o © o <
= s e o 8 = * A . S S 6.2 .
* o
0.062} PR 0.0225} 2o ¢ #
° * ° * * * * 6» g o
ko o b8 20 * R I
* o * t — * ®
0.06 I TR 0.022 * 4 4 % * ¥ 5.8 9 o %o g2 s s
b * * * % c 29 2 o & o o
(a) ( ) ( ) * * a?e * x ¥ % ¥
0.058 - > 0.0215 - - 5.6 : *
0 5 10 15 0 5 10 15 0 5 10 15

# nearest points

Fig. 6 Mean absolute error of OK (circles) and KUD (stars) estimates
of k, o*, and m as a function of the number of nearest stations used to
solve each local kriging system, including only time series with more

interpolated parameter fields revealed negligible differences
at the peaks, with the moving average window allowing for
preservation of large scale spatial trends, with the added ben-
efit of continuity in parameter estimates.

The results of the spatial interpolation of the shape
parameter k, the dimensionless scale parameter o *, and the
index-rainfall m are shown in Fig. 7. The highest values of
parameters k and o * are located in the eastern and southwest-
ern parts of the Island, which are characterized by intense
precipitation events (as already noted in Sect. 2; see also
Fig. 1c), while the index-rainfall m exhibits a peak of about
125 mm/d at the eastern part of the Island.

4.4 Comparison between regional and boundaryless
approaches

The performances of the regional and boundaryless
approaches were evaluated and compared using the error
metrics introduced in Sect. 3.5. In this context, Table 4 sum-
marizes the results in terms of average values of error metrics
computed at the 229 raingauge locations with atleast 50 years
of observations, including absolute (relative) errors in esti-
mating the quantiles of the 5 highest observations at each site
(i.e. MAE(5) and MAE¥(5)), and errors in the whole distri-
bution range (A% and W? metrics). The first row in Table
4 reports the errors corresponding to the local fits of the
GEV theoretical distribution model, which are reported here
as benchmarks, representative of the smallest possible error
one may reasonably achieve. Results from the regional and
boundaryless approaches are reported in the second and third
rows of Table 4, where one sees that the errors of the bound-
aryless approach are always lower than those of the regional
approach, and very close to those of the local fits.

Although results presented in the first rows of Table
4 suggest that the boundaryless approach outperforms the

# nearest points

# nearest points

than Ny = 30, 50, and 70 years of complete recordings (red, black, and
blue colors respectively). Results for: a GEV shape parameter k; b GEV
dimensionless scale parameter o *; ¢ index-rainfall m

regional one, it must be noted that fair comparison of the
tested approaches should refer to ungauged locations. To
evaluate the relative performance of the two approaches
miming ungauged conditions, we applied a leave-one-out
cross-validation (LOOCYV) procedure, implementing both
the regional and boundaryless approaches N = 229 times to
estimate the parent distribution at each raingauge site, using
solely information from the remaining N-1 sites with at least
50 years of complete observations. In each iteration, infor-
mation from the blinded raingauge was only used to evaluate
the errors of the estimated parent distribution by applying
the same metrics introduced in Sect. 3.5. Specifically, for the
regional approach the blinded site was assigned to the same
region as the nearest station, and the GEV distribution model
in Eq. (4) was consequently parameterized with the corre-
sponding regional estimates. For the boundaryless approach,
application of the LOOCYV is straightforward since parame-
terization of Eq. (4) at the location of the blinded raingauge
is provided by interpolation of the N-1 parameter estimates
at the remaining sites. Finally, for a fair comparison, the
local GEV in Eq. (1) was parameterized with the same index-
rainfall m for both approaches. A summary of results of the
LOOCYV procedure is presented in the last two rows of Table
4, which clearly confirms the superiority of the boundaryless
approach relative to the regional one at ungauged locations.

More details regarding the outcome of the LOOCYV pro-
cedure are illustrated in Fig. 8, which shows the spatial
distribution of the LOOCYV error metric MEr(5) (i.e. the
average relative overestimation/underestimation error of the
5 highest recordings at each site) for the regional (left) and
boundaryless (right) approaches. The radius of each circle
in Fig. 8 is proportional to the error magnitude, while red
(blue) color denotes overestimation (underestimation) larger
than +20%. Evidently, the boundaryless approach performs
better than the regional one, with the former resulting in
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Fig.7 KUD interpolation of GEV parameters k and o * (using 229 time series with more than 50 years of complete recordings), and index-rainfall

m (using 256 time series with more than 30 years of complete recordings)

Table 4 Average performance

metrics of the local, regional and MAE(5) (mm) MAE«(5) (-) A (-) W2 (-)
Eﬁ‘iﬁgag;ezsaﬁgﬂzﬁﬁxs based  GEV Jocal (PWM) 10.50 0.070 0315 0.047
timeseries with more than GEV regional 15.17 0.098 0.708 0.106
50 years of complete recordings GEV boundaryless 12.77 0.085 0.483 0.074
GEYV regional (cross-val) 18.76 0.126 1.094 0.165
GEV boundaryless (cross-val) 15.35 0.103 0.688 0.104

very few stations with relative error larger than +=20%. This
becomes apparent even from visual inspection of Fig. 8a,
b, based on the predominance of green color (i.e. relative
errors smaller than +=20%) and the smaller sizes of symbols
in Fig. 8b (boundaryless case). To complement the visual
comparison between Fig. 8a and 8b, histograms of LOOCV
ME¥(5), W? and A? are presented in Fig. 9a—c, respectively.
One sees that, when compared to the regional approach, the
boundaryless approach is more robust, characterized by esti-
mation errors that exhibit both lower mean value (i.e. bias)
and variance.

In conclusion, all applied error metrics revealed the supe-
riority of the boundaryless approach relative to the regional
one. To make even clearer the advantages of the boundary-
less approach in practical applications, Fig. 10 compares the
maps of daily rainfall depth (mm) with return period T =
200 yr, obtained using the regional (left panel) and bound-
aryless (right panel) approaches. As displayed in Fig. 10a,
the regional approach results in abrupt discontinuities along
the boundaries of homogeneous regions, indicative of rainfall
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depth shifts that cannot be justified based on physical argu-
ments. Since the location of the boundaries of homogenous
regions may vary due to many factors, including the method
used for cluster identification, the density and spatial distribu-
tion of the network, as well as sampling variability issues and
subjective interpretations, it becomes evident that, to what
concerns practical applications, any possible assignment of
an ungauged site located close to the boundaries to a certain
homogeneous region, is subject to large uncertainties. The
proposed boundaryless approach overcomes this limitation,
as all distribution parameters, and quantiles corresponding to
different non-exceedance probability levels, vary seamlessly
in space; see Fig. 10b.

An additional advantage of the boundaryless approach,
is that by avoiding grouping of stations into homogeneous
regions, it can more effectively describe the effects of topog-
raphy and local climatology on the distribution of extreme
rainfall, minimizing underestimation/overestimation issues.
For example, focusing on the eastern part of Sardinia in
Fig. 10a, it becomes apparent that the regional approach
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Fig. 9 Histograms of error metrics of the regional (blue) and boundaryless (red) approaches: a MEr(5), b W2, ¢ A2

introduces some kind of smoothing at the central part of
the homogeneous region Cs, due to the common regional
growth curve; i.e. the spatial variability of the 200 yr rainfall
quantiles inside terminal cluster Cj is solely driven by spa-
tial variations of the index-rainfall. This is not the case for
the boundaryless approach, where the growth curve varies
spatially, allowing for more accurate reproduction of rainfall
extremal properties; see Fig. 10b and similarity with Fig. 1c.

5 Summary considerations and conclusions

Assessment and management of flood risks is strictly con-
nected to accurate and robust estimation of extreme rainfall
events. Although addressed by many scientists, dating back
to the pioneering works on regional frequency analysis (see
Introduction), spatial characterization of the frequency of
rainfall extremes still exhibits enough room for improve-
ments. Indeed, most studies on the spatial distribution of
extreme rainfall limit interest to regional approaches where,
except for an at-site dependent index-variable, higher order
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Fig. 10 Spatial distribution of the quantiles of daily rainfall depth (mm) with return period 7' = 200 years, as obtained from the regional (left) and

boundaryless (right) approaches

moments of the parent distribution are considered constant
inside wide areas, which are assumed to be homogeneous.
Regional frequency analysis based on homogeneous regions
became very popular at the end of last century (see e.g. the
review in Hosking and Wallis 1997), primarily due to the
limited length of available timeseries of observed maxima.
Indeed, for short samples, any estimation method of distribu-
tion parameters related to higher order moments is affected
by significant estimation uncertainties, making site-to-site
differences indistinguishable from a statistical point of view,
especially inside wide areas exhibiting similar large-scale
topographic and climatological characteristics. Under this
setting, timeseries corresponding to stations inside homo-
geneous regions can be properly standardized (e.g. through
division by the local mean) to be described by a common dis-
tribution model. The parameters of the latter (usually referred
to as parent distribution) can be estimated by pooling together
all time-series within the identified homogeneous region, sig-
nificantly reducing the estimation error, in expense of spatial
statistical detail.
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All aforementioned considerations are certainly true and
very appealing if one really deals with ensembles of homo-
geneous timeseries. However, when processing observations
of precipitation, which is the final product of complex inter-
actions of atmospheric processes with orography and the
land-sea boundary, the question one should answer is: In such
a complex setting, does regional homogeneity really exist?
Usually hydrologists answer this question by applying sta-
tistical tests, thus a region is considered as homogeneous
if the differences among specified parameters, metrics or
statistics, derived from different stations belonging to the
considered region, are comparable to the magnitude of the
estimation error. This also implies that if the analysis is based
solely on statistical arguments, one will find that the extent
of homogeneous regions depends also on the length of the
observation period. Indeed, for short enough timeseries, sta-
tistical tests often lead to the acceptance of wide areas as
statistically homogeneous regions, because estimation errors
will be high enough to hide possible site-to-site differences
of the local climatology. Conversely, for long enough time-
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series, only when splitting the original region into a number
of sub-regions, the null hypothesis of spatial homogeneity
will not be rejected. In other words, the longer the timeseries,
the larger the number of homogenous regions resulting from
statistical tests.

Even ignoring the above reasoning and accepting that any
partitioning of the study area into homogenous regions can
be revised in the future in the light of additional observations,
the regional approach is still subject to serious drawbacks.
One is related to abrupt shifts of quantile estimates along the
boundaries of contiguous regions, due to differences in the
regional parameters of the parent distribution. In most cases,
such discontinuities cannot be physically justified, as clima-
tological variables, such as precipitation, vary seamlessly in
space. In addition, for practical applications, the presence of
such discontinuities is an undesired source of uncertainty and
ambiguity; e.g. when one needs to determine the design rain-
fall for a catchment consisted of sub-catchments belonging
to different homogeneous regions.

An additional and, possibly more, critical drawback of the
regional approach is that homogeneity tests may fail to detect
local rainfall features associated with more intense precip-
itation events relative to the wider tested region. In such a
case, the same coefficient of variation, skewness, etc. will be
assigned to any location inside the region and, consequently,
rainfall quantiles at some locations can be severely underesti-
mated. This drawback is not surprising, since the final parent
distribution in each homogenous region is, to some extent,
an average of different at-site behaviors, leading to quantile
overestimation in some parts of the considered region, and
underestimation inside the remaining parts.

Another important source of uncertainty in the regional
approach is related to the selection procedure used to pool
together stations in a hypothetically homogeneous region.
Indeed, depending on the adopted procedure, stations located
at the boundaries of homogeneous regions, will be subject
to quantile overestimation/underestimation issues, similar to
those discussed above.

We have shown how problems related to application of
the regional approach for extreme rainfall estimation can
be overcome by implementing a quite simple boundaryless
approach based on geostatistical analysis of all distribu-
tion parameters, using kriging for uncertain data (KUD).
Indeed, the boundaryless approach can better characterize
local topographic and climatological features, such as those
related to the presence of orographic barriers. For example,
as shown in our application, the spatial distribution of quan-
tiles obtained using the boundaryless approach (see Fig. 10b),
reliably reproduces the pattern of extreme rainfall events in
Sardinia (see Fig. 1c), which are localized due to the interac-
tion of cyclonic activity with the main mountain ranges (see
Fig. 1a). Conversely, the quantile estimates obtained using
the regional approach at the same locations (Fig. 10a), are

smeared out by the assumption of a common growth curve
inside the whole homogeneous region (terminal cluster C3).

In addition, we have also shown that the boundaryless
approach reproduces in a reliable and seamless fashion the
spatial variation of rainfall quantiles (see Fig. 10b), avoid-
ing unrealistic jumps and shifts (Fig. 10a), while minimizing
subjective interpretations regarding the boundaries of homo-
geneous regions. In summary, by applying the boundaryless
approach, it is possible to bypass most of the typical draw-
backs of the regional approach.

Besides empirical evidence on the superiority and advan-
tages of the boundaryless approach with respect to the
regional one, we complemented our analysis by assessing
the performances of the two approaches in reproducing
the spatial distribution of observed extremes using two
classes of error metrics. The first class quantifies the squared
differences between the empirical and fitted cumulative dis-
tribution functions, whereas the second class quantifies the
errors in reproducing the highest observed values in record.
The obtained results unanimously confirmed the superiority
of the boundaryless approach in assessing the frequency of
rainfall extremes at ungauged sites, based on a leave-one-out
cross-validation procedure.

It is also worth mentioning that, although many prob-
ability distributions have been proposed and applied to
describe hydrological extremes, during implementation of
the regional and boundaryless approaches, we obtained suf-
ficient evidence regarding the suitability of the Generalized
Extreme Value (GEV) distribution for modeling annual max-
ima of daily rainfall, even under pre-asymptotic conditions
(see e.g. Langousis et al. 2013; Veneziano et al. 2009). To
account for uncertainties in parameter estimation, in the pro-
posed boundaryless approach interpolations were conducted
using kriging for uncertain data (KUD), where at-site error
variances of statistical estimates were determined through
Monte Carlo simulation. In addition, since parameters con-
trolled by higher order moments are affected by higher
estimation errors, the boundaryless approach was imple-
mented in a hierarchical setting: first we interpolated the
GEV shape parameter estimates, then we interpolated the
GEV scale parameter estimates conditioned on the previously
interpolated shape parameters, and lastly the index-rainfall.
Finally, to optimize the obtained results in terms of accu-
racy and robustness, we conducted preliminary analyses to
determine the theoretical variogram to be applied, the num-
ber of nearest stations to be used when developing the kriging
system of linear equations, and the lower cut-off threshold
regarding the length of the timeseries to be included in the
analysis.

While the superiority of the boundaryless approach rel-
ative to the regional one has been quantitatively assessed
in a detailed real-world comparison, there is still significant
room for improvements, such as the use of locally-dependent
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anisotropic variogram models to more accurately describe
the effects induced by the interaction of humid air masses
with orographic barriers, more in-depth assessment of avail-
able interpolation schemes, and the statistical linkage among
the spatial distributions of daily and smaller duration rainfall
estimates. These will form the subjects of future communi-
cations.
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Appendix

To test whether stations grouped in a hypothetical homoge-
nous region are characterized not only by the same L-CV, but
also by the same L- skewness and L-kurtosis (assuring the
same shape parameter of the parent distribution), we used
two additional measures of dispersion (Hosking and Wallis
1997):

4 . . 21172
SO0 = o4 () - o))
L =
. . 2 . 21172
SO (0 = o)+ (- o)}

ZINZIn(i)

V), =

Vi3 =

(23)

where r3(i), r4(i) and n® denote the sample L-skewness,
L-kurtosis and number of available observations at site i,
respectively, and N is the number of sites inside the region.

Metric V, measures the dispersion of both L-CV and L-
skewness, while V3 measures the dispersion of L-skewness
and L-kurtosis. Similar to heterogeneity measure H, we
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define heterogeneity measures H, and H3, by standardizing
dispersion measures V, and V3, respectively:

Vo, —
H, = M (24)
O'V3
Vi —
UV3

where y2 and o y7, y3 and o 3 denote the mean and stan-
dard deviation of V, and V3 inside the considered region,
and can be determined through Monte Carlo simulation (see
e.g. Sect. 3.3). Finally, as for the case of heterogeneity mea-
sure H, one can assume that H, and H3 follow a standard
normal distribution, allowing for straight forward definition
of acceptance regions.
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