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Abstract
The novel coronavirus disease (COVID-19) has spread rapidly across the world in a short period of time and with a

heterogeneous pattern. Understanding the underlying temporal and spatial dynamics in the spread of COVID-19 can result

in informed and timely public health policies. In this paper, we use a spatio-temporal stochastic model to explain the

temporal and spatial variations in the daily number of new confirmed cases in Spain, Italy and Germany from late February

2020 to mid January 2021. Using a hierarchical Bayesian framework, we found that the temporal trends of the epidemic in

the three countries rapidly reached their peaks and slowly started to decline at the beginning of April and then increased

and reached their second maximum in the middle of November. However decline and increase of the temporal trend seems

to show different patterns in Spain, Italy and Germany.

Keywords Autoregressive model � Besag model � COVID-19 � Disease mapping � Spatio-temporal prediction

Mathematics Subject Classification 62M30 � 62M10 � 91G70

1 Introduction

Started from Wuhan, the capital of Hubei province, China

in December 2019, the outbreak of 2019 novel coronavirus

disease (COVID-19) has spread rapidly across more than

200 countries, areas or territories in a short period of time

with so far (as of January 20, 2021) over 94.96 million

confirmed cases and 2.05 million confirmed deaths (World

Health Organization 2021).

The spread of COVID-19 across and within countries

has not followed a homogeneous pattern (Giuliani et al.

2020). The causes of this heterogeneity are not yet clearly

identified, but different countries have different levels of

national capacity based on their abilities in prevention,

detection, response strategies, enabling function, and

operational readiness (Kandel et al. 2020). Besides, dif-

ferent countries have implemented different levels of rig-

orous quarantine and control measures to prevent and

contain the epidemic, which affect the population move-

ment and hence the spread pattern of COVID-19. Given the

highly contagious nature of COVID-19, the spatial pattern

of the spread of the disease changes rapidly over time.

Thus, understanding the spatio-temporal dynamics of the

spread of COVID-19 in different countries is undoubtedly

critical.

The spatial or geographical distribution of relative

location of incidence (new cases) of COVID-19 in a

country is important in the analyses of the disease risk

across the country. In disease mapping studies, the spatial

domain of interest is partitioned into a number of con-

tiguous smaller areas, usually defined by administrative

divisions such as provinces, counties, municipalities, towns

or census tracts, and the aim of the study is to estimate the

relative risk of each area at different times (Lee 2011;

Lawson 2018). Spatio-temporal models are then required to

explain and predict the evolution of incidence and risk of

the disease in both space and time simultaneously (An-

derson and Ryan 2017).

Estimation of area-specific risks over time provides

information on the disease burden in specific areas and

identifies areas with elevated risk levels (hot spots). In

addition, identifying the changes in the spatial patterns of
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the disease risk over time may result in detecting either

regional or global trends, and contributes to make informed

and timely public health resource allocation (Wakefield

2007).

To account for the underlying temporal and spatial

autocorrelation structure in the spread of COVID-19,

available data on the daily number of new cases and deaths

in different countries/regions have already been analyzed

in a considerable number of studies. For example, Kang

et al. (2020) used Moran’s I spatial statistic with various

definitions of neighbors and observed a significant spatial

association of COVID-19 in daily number of new cases in

provinces of mainland China. Gayawan et al. (2020) used a

zero-inflated Poisson model for the daily number of new

COVID-19 cases in the African continent and found that

the pandemic varies geographically across Africa with

notable high incidence in neighboring countries. Briz-

Redón and Serrano-Aroca (2020) conducted a spatio-tem-

poral analysis for exploring the effect of daily temperature

on the accumulated number of COVID-19 cases in the

provinces of Spain. They found no evidence suggesting a

relationship between the temperature and the prevalence of

COVID-19 in Spain. Gross et al. (2020) studied the spatio-

temporal spread of COVID-19 in China and compare it to

other global regions and concluded that human mobility/

migration from Hubei and the spread of COVID-19 are

highly related. Danon et al. (2020) combined 2011 census

data to capture population sizes and population movement

in England and Wales with parameter estimates from the

outbreak in China, and found that the COVID-19 outbreak

is going to peak around 4 months after the start of person-

to-person transmission. Using linear regression, multilayer

perceptron and vector autoregression, Sujath et al. (2020)

modeled and forecasted the spread of COVID-19 cases in

India.

As pointed out in Alamo et al. (2020), there are many

national and international organizations that provide open

data on the number of confirmed cases and deaths. How-

ever, these data often suffer from incompleteness and

inaccuracy, which are considerable limitations for any

analyses and modeling conducted on the available data on

COVID-19 (Langousis and Carsteanu 2020). We highlight

that we are yet in the center of the pandemic crisis and due

to the public health problem, and also to the severe eco-

nomical situation, we do not have access to all sources of

data. Thus reseachers know only a portion of all the ele-

ments related to COVID-19. In addition, data on many

relevant variables such as population movement and

interaction, and the impact of quarantine and social dis-

tancing policies are not either available or accurately

measured. Combined with the unknown nature of the new

COVID-19 virus, any analysis such as the present study

only provides an approximate and imprecise description of

the underlying spatio-temporal dynamics of the pandemic.

Nevertheless, having a vague idea is better than having no

idea, and the results should be interpreted with caution.

Currently, a wealth of studies have appeared in the very

recent literature. Many of them follow the compartmental

models in epidemiology, partition the population into

subpopulations (compartments) of susceptible (S), exposed

(E), infectious (I) and recovered (R), and fit several vari-

ations of the classical deterministic SIR and SEIR epi-

demiological models (Peng et al. 2020; Roda et al. 2020;

Bastos and Cajueiro 2020). We believe that considering

stochastic components is important, if not essential, to

explain the complexity and heterogeneity of the spread of

COVID-19 over time and space. For this reason, in the

present work we propose a spatio-temporal stochastic

modeling approach that is able to account for the spatial,

temporal and interactions effects, together with possible

deterministic covariates.

We acknowledge that the proposed model in its current

form requires development and refinements as more

information becomes available, but at the stage of the

pandemic we are now, it can provide a reasonable mod-

eling framework for the spatio-temporal spread of COVID-

19. This is illustrated by modeling the daily number of new

confirmed cases in Spain, Italy and Germany from late

February 2020 to mid January 2021. The R code for

implementing the proposed model can be made available

upon request. We also provide a Shiny web application

(Chang et al. 2020) based on the model discussed in this

paper at https://ajalilian.shinyapps.io/shinyapp/.

The structure of the paper is the following. The open

data resources used in this study are introduced in Sect. 2.

A model for the daily number of regional cases is con-

sidered in Sect. 3. As described in Sect. 4, this model

explains the spatio-temporal variations in the relative risk

of each country in terms of a number of temporal, spatial

and spatio-temporal random effects. The results of fitting

the considered model to the number of daily confirmed

cases in Spain, Italy and Germany are given in Sect. 5. The

paper concludes in Sect. 6 with some few last remarks.

2 Data on the daily number of COVID-19
cases

Governmental and non-governmental organizations across

the world are collecting and reporting regional, national

and global data on the daily number of confirmed cases,

deaths and recovered patients and provide open data

resources. Incompleteness, inconsistency, inaccuracy and

ambiguity of these open data are among limitations of any

analysis, modeling and forecasting based on the data

(Alamo et al. 2020). Particularly, the number of cases
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mainly consist of cases confirmed by a laboratory test and

do not include infected asymptomatic cases and infected

symptomatic cases without a positive laboratory test.

In this study, we focus on the daily number of confirmed

cases in Spain, Italy and Germany and used the following

open data resources.

Spain: DATADISTA, a Spanish digital communica-

tion medium that extracts the data on con-

firmed cases (PCR and antibody test)

registered by the Autonomous Communities

of Spain and published by the Ministry of

Health and the Carlos III Health Institute.

DATADISTA makes the data available in an

accessible format at the GitHub repository

https://github.com/datadista/datasets/tree/mas

ter/COVID The daily accumulated number of

total confirmed cases registered in the 19

Autonomous Communities of Spain are

updated by DATADISTA on a daily bases.

Italy: Data on the daily accumulated number of

confirmed cases in the 20 regions of Italy are

reported by the Civil Protection Department

(Dipartimento della Protezione Civile), a

national organization in Italy that deals with

the prediction, prevention and management of

emergency events. These data are available at

the GitHub repository https://github.com/pcm-

dpc/COVID-19 and are being constantly

updated.

Germany: The Robert Koch Institute, a federal govern-

ment agency and research institute responsible

for disease control and prevention, collects

data and publishes official daily situation

reports on COVID-19 in Germany. Data on

the daily accumulated number of confirmed

cases in the 16 federal states of Germany

extracted from the situation reports of the

Robert Koch Institute are available at the

GitHub repository https://github.com/

jgehrcke/covid-19-germany-gae and are being

updated on a daily basis.

Table 1 summarizes the number of regions, study period

and country-wide daily incidence rate of the data for each

country.

Data on distribution population of the considered

countries are extracted from the Gridded Population of the

World, Version 4 (GPWv4), which provides estimates of

the number of persons per pixel (1� resolution) for the year
2020 (Center International Earth Science Information

Network (CIESIN) Columbia University 2018). These data

are consistent with national censuses and population

registers.

3 Modeling daily regional counts

Suppose that a country, the spatial domain of interest, is

partitioned into regions A1; . . .;Am, defined by administra-

tive divisions such as states, provinces, counties, etc (see

Table 1). Let Yit denote the number of new COVID-19

cases in region Ai, i ¼ 1; . . .;m, at time (day) t ¼ 1; . . .; T .

Figure 1 shows boxplots of the observed number of new

cases Yi1; . . .; YiT for each region i ¼ 1; . . .;m. Clearly,

observed values of Yi1; . . .; YiT are heavily right-skewed

and directly related to the population of region Ai. Boxplots

of the observed values of logð1þ Y1tÞ; . . .; logð1þ YmtÞ for
each day t ¼ 1; . . .;m are shown in Fig. 2. The roughly

symmetric boxplots in the logarithmic scale imply right

skewness of the regional counts at each day. Figure 2 also

depicts temporal trends and variations of the observed

number of COVID-19 cases which are due to restrictions

and lockdowns imposed by national or regional govern-

ment authorities and other relevant factors.

Thus, it is reasonable to assume that the expected

number of new COVID-19 cases in region Ai at time t is

given by

Eit ¼ E½Yit� ¼ Pi.it; i ¼ 1; . . .;m; t ¼ 1; . . .; T ;

where Pi is the population of region Ai and .it [ 0 is the

incidence rate of COVID-19 in region Ai at time t.

Table 1 Considered countries with their corresponding number of regions (m), length of study period and the estimated country-wide daily

incidence rate (b.0)

Country Number of regions Study period Incidence rate

Spain 18a Autonomous communities 2020-02-25 to 2021-01-16 155.7 9 10-6

Italy 20 Regions 2020-02-25 to 2021-01-16 122.6 9 10-6

Germany 16 Federal states 2020-03-03 to 2021-01-16 79.1 9 10-6

aThe Autonomous Communities Ceuta and Melilla are merged into ‘‘Ceuta y Melilla’’
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Fig. 1 Boxplots of the daily

number of COVID-19 cases

yi1; . . .; yiT (left) and population

Pi (right) in each region (first

level administrative division),

i ¼ 1; . . .;m, of Spain, Italy and

Germany
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3.1 The null model of homogeneous incidence
rates

Under the null model of spatial and temporal homogeneity

of the incidence rate, we have that .it ¼ .0, and

bEit ¼ Pib.0; ð1Þ

provides an estimate for Eit, where

b.0 ¼
1

T

X
T

t¼1

Pm
i¼1 Yit

Pm
i¼1 Pi

is an estimate of the country-wide homogeneous daily

incidence rate (Waller et al. 1997). The estimated daily

incidence rate per million population (106b.0) so far is

around 156, 123 and 79 for Spain, Italy and Germany,

respectively (see Table 1).

3.2 Distribution of daily regional counts

Consul and Jain (1973) introduced a generalization of the

Poisson distribution, which is a suitable model to most

unimodal or reverse J-shaped counting distributions with

long right tails. In fact, the generalized Poisson distribution

is a mixture of Poisson distributions and, compared to the

ordinary Poisson and negative binomial distributions, it is a

more flexible model for heavily right-skewed count data

(Joe and Rong 2005; Zamani and Ismail 2012). Given

nonnegative random rates Kit, i ¼ 1; . . .;m, t ¼ 1; . . .; T ,
following Zamani and Ismail (2012), we write

Xit ¼
Kit

1þ uKa�1
it

; Wit ¼
uKa�1

it

1þ uKa�1
it

;

where u� 0 and a 2 R, and assume that Yit’s are inde-

pendent random variables following the generalized Pois-

son distribution with

PðYit ¼ yitjKit;u; aÞ

¼ exp �Xit �Wityitð ÞXit Xit þWityitð Þyit�1

yit!
;

yit ¼ 0; 1; . . .;

Then,

PðYit ¼ yitjKit;u; aÞ

¼ exp �Kit þ uKa�1
it yit

1þ uKa�1
it

� �

Kit Kit þ uKa�1
it yit

� �yit�1

1þ uKa�1
it

� �yit
yit!

and

E½YitjKit;u;a�¼Kit; VarðYitjKit;u;aÞ¼Kit 1þuKa�1
it

� �2
:

Thus u is the dispersion parameter and the case u¼0

represents the ordinary Poisson distribution (no dispersion)

with

P Yit ¼ yitjKitð Þ ¼ exp �Kitð ÞK
yit
it

yit!
; yit ¼ 0; 1; . . .:

Here, parameter a controls the shape (power) of the rela-

tion between the conditional variance of YitjKit and its

conditional mean. For example, the relation between

VarðYitjKitÞ and E½YitjKit� is linear if a ¼ 1, quadratic if

a ¼ 1:5 and cubic if a ¼ 2 (Zamani and Ismail 2012).

4 Modeling relative risks

The underlying random rates Kit, i ¼ 1; . . .;m; t ¼ 1; . . .; T ,

account for the extra variability (overdispersion), which

may represent unmeasured confounders and model mis-

specification (Wakefield 2007). Variations of the random

rate Kit relative to the expected number of cases Eit provide

useful information about the spatio-temporal risk of

COVID-19 in the whole spatial domain of interest during

the study period.

4.1 Relative risks

In disease mapping literature, the nonnegative random

quantities

hit ¼
E½YitjKit�
E½Yit�

¼ Kit

Eit
; i ¼ 1; . . .;m;

are called the area-specific relative risks at time t ( Lawson

2018, Section 5.1.4). Note that the random rate Kit and the

expected value Eit have the same dimension (unit is people

per day) as Yit and hence hit is a dimensionless random

latent variable. Since

E½Kit� ¼ E E½Yit
�

�Kit;u; a�
� �

¼ E½Yit� ¼ Eit;

it follows that E½hit� ¼ E½Kit�=Eit ¼ 1 and

Covðhit; hi0t0 Þ ¼
CovðKit;Ki0t0 ÞEitEi0t0 ;

which means that the temporal and spatial correlation

structure of the underlying random rates Kit determine the

spatio-temporal correlations between hit’s.
By ignoring these correlations, the standardized inci-

dence ratio bhit ¼ Yit= bEit provides a naive estimate for the

relative risks (Lee 2011). However, in a model-based

approach the variations of the relative risks are often

related to regional and/or temporal observed covariates and

the correlation between hit’s are explained in terms of

regional and/or temporal random effects using, for
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example, a log linear model (Wakefield 2007; Lee 2011;

Lawson 2018).

4.2 A model for relative risks

In the present study, we consider the log linear model

M0 : hit ¼ exp lþ bdið Þ ð2Þ

as the null model, where l is the intercept and di is the

population density of region Ai, i.e. the population of Ai, Pi,

divided by the area of Ai. The population density is stan-

dardized to have mean 0 and variance 1 and b is its

regression coefficient. However, Figs. 1 and 2 demonstrate

spatio-temporal variations in daily number of COVID-19

cases which are not accounted for in the null model (2). We

include zero mean random effects in the null model to

account for spatio-temporal variations in relative risks due

to temporal and spatial trend and correlation. Among many

different possibilities, we consider the following models

M1 : hit ¼ exp lþ bdi þ dtð Þ;
M2 : hit ¼ exp lþ bdi þ dt þ nið Þ;
M3 : hit ¼ exp lþ bdi þ dt þ et þ nið Þ;
M4 : hit ¼ exp lþ bdi þ dt þ et þ ni þ fið Þ;

where dt represents the temporal trend, et accounts for

temporal correlation and ni and fi explain spatial correla-

tion due to spatial distance and neighborhood relations

among regions A1; . . .;Am, respectively (see Table 2).

Here, dt, et, ni and fi are dimensionless random effects that

explain temporal and spatial variability in the relative risk

hit.
The latent (stochastic) temporal trend dt is expected to

be a smooth function of t. Since the second order random

walk (RW2) model is appropriate for representing smooth

curves (Fahrmeir and Kneib 2008), d ¼ ðd1; . . .; dTÞ is

assumed to follow a RW2 model, i.e.,

D2dtþ1 ¼ dtþ1 � 2dt þ dt�1 ¼ �t; t ¼ 2; . . .;T � 1;

where �2; . . .; �T�1 are independent and identically dis-

tributed (i.i.d.) zero mean Gaussian random variables with

variance 1=sd. Here the precision parameter sd [ 0 acts as

a smoothing parameter enforcing small or allowing for

large variations in dt (Fahrmeir and Kneib 2008).

To account for temporal correlation, we assume that et
follows a stationary autoregressive model of order 2,

AR(2); i.e.,

et ¼ w1ð1� w2Þet�1 þ w2et�2 þ �0t; t ¼ 2; . . .; T ;

where �1\w1\1 and �1\w2\1 are the first and second

partial autocorrelations of et and �02; . . .; �
0
T are i.i.d. zero

mean Gaussian random variables with variance 1=se.
On the other hand, the neighborhood structure of regions

A1; . . .;Am may induce spatial correlation among relative

risks of regions because neighboring regions often tend to

have similar relative risks. To include spatial correlation

due to neighborhood structure of regions in the model, we

assume that n ¼ ðn1; . . .; nmÞ follows a scaled version of

the Besag–York–Mollié (BYM) model (Besag et al. 1991),

i.e., n is a zero mean Gaussian random vector with (Riebler

et al. 2016)

VarðnÞ ¼ 1

sn
ð1� /ÞQ� þ /Imð Þ:

Here Q� denotes the generalized inverse of the m� m

spatial precision matrix Q ¼ ½Qii0 � with entries

Qii0 ¼
ni i ¼ i0

�1 i� i0

0 otherwise

8

<

:

where ni is the number of neighbors of region Ai and i� i0

means that regions Ai and Ai0 share a common border. The

parameter sn [ 0 represents the marginal precision and

0	/	 1 indicates the proportion of the marginal variance

explained by the neighborhood structure of regions (Rie-

bler et al. 2016).

In addition to neighborhood interconnectivity, to

account for spatial correlations due to spatial distance we

assume that f ¼ ðf1; . . .; fmÞ follows a Gaussian Markov

random field (GMRF). More specifically, we assume that f

bFig. 2 Boxplots (yellow boxes with black whiskers) of logarithm of

the regional number of COVID-19 cases logð1þ y1tÞ; . . .; logð1þ
ymtÞ in each day t ¼ 1; . . .;m for Spain, Italy and Germany. The red

solid line connects the medians of boxplots and depicts the country-

wide temporal trends and variations, and the blue dashed line is the

overall median of all cases during the study period

Table 2 Considered terms in the

additive model for the spatio-

temporal random effect of the

log-linear model for relative

risks

Term Description Model

dt Smooth large scale temporal trend RW2

et Small scale temporal trends due to temporal correlation AR(2)

ni Spatial dependence due to neighborhood relation between regions BYM

fi Spatial dependence due to distance between regions GMRF
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is a zero mean Gaussian random vector with the structured

covariance matrix

VarðfÞ ¼ 1

sf
Im � x

emax

C

� ��1

where Im is the m� m identity matrix, 0	x\1 and emax

is the largest eigenvalue of the m� m symmetric positive

definite matrix C ¼ ½Cii0 �. The entry Cii0 of matrix C rep-

resents to what extend the regions Ai and Ai0 are inter-

connected. For example, Cii0 can be related to a data on

commuting or population movement between regions Ai

and Ai0 . In absence of most recent and reliable movement

data between the regions of Spain, Italy and Germany, we

set Cii0 to be the Euclidean distance between the centroids

of Ai and Ai0 .

4.3 Prior specification and implementation

In a Bayesian framework, it is necessary to specify prior

distributions for all unknown parameters of the considered

model. The Gaussian prior with mean zero and variance

106 is considered as a non-informative prior for the dis-

persion parameter of generalized Poisson distribution,

logu, and for the parameters of the log linear model for the

relative risks l, b, log sd, log se, log sf, log sn, log x
1�x,

log /
1�/, log

1þw1

1�w1
and log

1þw2

1�w2
. The prior distribution for the

a parameter of the generalized Poisson distribution is

considered to be a Gaussian distribution with mean 1.5 and

variance 106. Table 3 summarizes the model parameters

and their necessary transformation for imposing the non-

informative Gaussian priors.

Since all random effects of the model are Gaussian, the

integrated nested Laplace approximation (INLA) method

(Rue et al. 2009) can be used for deterministic fast

approximation of posterior probability distributions of the

model parameters and latent random effects (Martins et al.

2013; Lindgren and Rue 2015). The R-INLA package, an

R interface to the INLA program and available at www.r-

inla.org, is used for the implementation of the Bayesian

computations in the present work. The R code can be made

available upon request. The initial values for all parameters

in the INLA numerical computations are set to be the mean

of their corresponding prior distribution. The initial value

of a is chosen to be 1.5 (see Table 3).

4.4 Bayesian model posterior predictive checks

Let # denote the vector of all model parameters and

pðyitj#Þ ¼ P Yit ¼ yitj#ð Þ

be the likelihood function for the observed count yit. The

deviance information criterion (DIC)

DIC ¼ �2
X
m

i¼1

X
T

t¼1

2Epost log pðyitj#Þ½ � � log pðyitjb#Þ
n o

;

and the Watanabe–Akaike information criterion (WAIC)

WAIC ¼ �2
X
m

i¼1

X
T

t¼1

log pðyitjb#Þ �Varpost
�

log pðyitj#Þ
�

n o

are two widely used measures of overall model fit, where b#

is the posterior mode (Bayes estimate) of # and Epots and

Table 3 Parameters of the considered models M0 
 M1 
 � � � 
 M4 for the daily number of new cases, their transformation for non-informative

uniform (flat) priors and initial values

Parameter Notation Transformation Initial value Models

Dispersion parameter of generalized Poisson u logu 0 M0;M1; . . .;M4

Shape parameter of generalized Poisson a a 1.5 M0;M1; . . .;M4

intercept l l 0 M0;M1; . . .;M4

Coefficient of population density b b 0 M0;M1; . . .;M4

Precision (smoothness) of the temporal trend sd log sd 0 M1; . . .;M4

Precision of ni sn log sn 0 M2;M3;M4

Contribution of Q� in the variance of n / log /
1�/

0 M2;M3;M4

Precision of et se log se 0 M3;M4

First partial autocorrelation of et w1 log
1þw1

1�w1

0 M3;M4

Second partial autocorrelation of et w2 log
1þw2

1�w2

0 M3;M4

Precision of fi sf log sf 0 M4

Contribution of C in the variance of f x log x
1�x 0 M4
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Varpots denote expectation and variance with respect to the

posterior distribution of # (Gelman et al. 2014).

For count data Yit and in a Bayesian framework, a prob-

abilistic forecast is a posterior predictive distribution on Zþ.
It is expected to generate values that are consistent with the

observations (calibration) and concentrated around their

means (sharpness) as much as possible (Czado et al. 2009).

Following a leave-one-out cross-validation approach, let

B�ðitÞ ¼
\
m

i0 6¼i¼1

\
T

t0 6¼t¼1

Yi0t0 ¼ yi0t0f g

be the event of observing all count values except the one

for region Ai at time t. Dawid (1984) proposed the cross-

validated probability integral transform (PIT)

PITitðyitÞ ¼ P Yit 	 yit
�

�B�ðitÞ
� �

¼ E
�ðitÞ
post P

�

Yit 	 yitj#
�

�
�

for calibration checks, where E
�ðitÞ
post denotes expectation

with respect to the posterior distribution of # based on the

leave-one-out data B�ðitÞ. Thus, PITit is simply the value

that the predictive distribution function of Yit attains at the

observation point yit. The conditional predictive ordinate

(CPO)

CPOitðyitÞ ¼ P Yit ¼ yit
�

�B�ðitÞ
� �

¼ E
�ðitÞ
post pðyitj#Þ½ �

is another Bayesian model diagnostic. Small values of

CPOitðyitÞ indicate possible outliers, high-leverage and

influential observations (Pettit 1990). Moreover, the

Bayesian leave-one-out cross-validation

BCV ¼
X
m

i¼1

X
T

t¼1

logCPOitðyitÞ ð3Þ

computes predictive accuracy (Gelman et al. 2014).

For count data, Czado et al. (2009) suggested a non-

randomized yet uniform version of the PIT with

FitðujyitÞ ¼

0; u\PITitðyit � 1Þ;
u�PITitðyit � 1Þ

PITitðyitÞ�PITitðyit � 1Þ ; PITitðyit � 1Þ	u\PITitðyitÞ;

1; u�PITitðyitÞ;

8

>

>

<

>

>

:

which is equivalent to

FitðujyitÞ

¼ 1� PITitðyitÞ � u

CPOitðyitÞ

� �

1½0\PITitðyitÞ

� u	CPOitðyitÞ�
þ 1½PITitðyitÞ � u	 0�;

where 1½ � � is the indicator function, because

PITitðyit � 1Þ ¼ P Yit 	 yit � 1
�

�B�ðitÞ
� �

¼ P Yit 	 yit
�

�B�ðitÞ
� �

� P Yit ¼ yit
�

�B�ðitÞ
� �

¼ PITitðyitÞ � CPOitðyitÞ:

The mean PIT

FðuÞ ¼ 1

mT

X
m

i¼1

X
T

t¼1

FitðujyitÞ; 0	 u	 1;

can then be comparing with the standard uniform distri-

bution for calibration. For example, a histogram with

heights

f j ¼ F
j

J

� �

� F
j� 1

J

� �

; j ¼ 1; . . .; J;

and equally spaced bins ðj� 1Þ=J; j=J½ Þ, j ¼ 1; . . .; J, can

be compared with its counterpart from the standard uni-

form distribution with fj ¼ 1=J. Any departure from uni-

formity indicates forecast failures and model deficiencies.

As mentioned in Czado et al. (2009), U-shaped (reverse

U-shaped) histograms indicate underdispersed (overdis-

persed) predictive distributions and when central tenden-

cies of the predictive distributions are biased, the

histograms are skewed.

5 Results

The DIC, WAIC and BCV criteria for the fitted nested

models M0 
 M1 
 � � � 
 M4 are presented in Table 4.

Compared with the null model M0, it can be seen that

including the smooth temporal trend dt and spatial depen-

dence due to neighborhood structure ni in the models for all

three countries results in considerable improvement in the

model fit (smaller DIC and WAIC) and prediction accuracy

(larger BCV). Except for DIC criterion for Germany,

presence of small scale temporal trends due to temporal

correlation et in the model slightly improves the model fit

and prediction accuracy. Finally, including the spatial

dependence due to distance between regions fi in the model

leads to slightly worse model fit and prediction accuracy.

Table 5 presents the Bayesian estimates (posterior

means) for every parameter of the full model M4 fitted to

the daily number of new COVID-19 cases in Spain, Italy

and Germany. The corresponding 95% credible intervals of

the model parameters are also reported in parentheses.

Comparing the estimated parameters among different

countries, it can be seen that the dispersion parameter u of

the generalized Poisson distribution for Spain is lower than

Italy and Germany, but its shape parameter a is around 1.5

for the three countries, which implies that the variance of

the daily counts in each region is approximately a quadratic

function of their mean. The coefficient of the population
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density is not significantly different from zero for Spain

and Italy, but it is positive for Germany which indicates

that regions with higher population density have larger

relative risks. The opposite signs of w1 and w2 indicate

rough oscillations in et, which explains the small scale

oscillatory temporal trends for the three countries, espe-

cially Germany.

The contribution of each random effect on the overall

variation of relative risks can be quantified by

ca ¼
1=sa

1=sd þ 1=sn þ 1=se þ 1=sf
; a ¼ d; n; e; f:

Table 4 Deviance information

criterion (DIC), Watanabe–

Akaike information criterion

(WAIC) and Bayesian leave-

one-out cross-validation (BCV)

for the considered models

M0;M1; . . .;M4 fitted to the

daily number of new COVID-19

cases in Spain, Italy and

Germany

Country Model DIC WAIC BCV

Spain M0 76999.0 (–) 76999.9 (–) - 38499.9 (–)

M1 66296.1 (13.90%) 66310.9 (13.88%) - 33155.7 (13.88%)

M2 63372.9 (17.70%) 63388.5 (17.68%) - 31694.3 (17.68%)

M3 63298.8 (17.79%) 63321.4 (17.76%) - 31660.8 (17.76%)

M4 63333.4 (17.75%) 63344.1 (17.73%) - 31672.1 (17.73%)

Italy M0 78704.8 (–) 78705.9 (–) - 39352.94 (–)

M1 66019.4 (16.12%) 66035.4 (16.10%) - 33017.7 (16.10%)

M2 64103.4 (18.55%) 64128.3 (18.52%) - 32064.2 (18.52%)

M3 63796.2 (18.94%) 63838.9 (18.89%) - 31920.2 (18.89%)

M4 63815.5 (18.92%) 63849.5 (18.88%) - 31924.9 (18.88%)

Germany M0 63630.2 (–) 63630.6 (–) - 31815.3 (–)

M1 53579.0 (15.80%) 53583.1 (15.79%) - 26792.0 (15.79%)

M2 51755.7 (18.66%) 51818.8 (18.56%) - 25910.2 (18.56%)

M3 51786.7 (18.61%) 51803.2 (18.59%) - 25902.2 (18.59%)

M4 51809.5 (18.58%) 51812.7 (18.57%) - 25907.1 (18.57%)

The values in parentheses represent improvement with respect to the null model M0 for each criterion

Numbers represented in bold font show best performing models in temrs of the DIC, WAIC and BCV

criteria (smallest values)

Table 5 Posterior mean and

95% credible interval (in

parentheses) for every

parameter of the considered

model fitted to the daily number

of new COVID-19 cases in

Spain, Italy and Germany

parameter Spain Italy Germany

u 0.522 (0.518, 0.526) 1.439 (1.407, 1.468) 1.451 (1.411, 1.486)

a 1.499 (1.495, 1.503) 1.328 (1.322, 1.336) 1.261 (1.255, 1.267)

l - 0.859 (- 1.094, - 0.65) - 1.335 (- 1.41, - 1.271) - 1.15 (- 1.237, - 1.06)

b - 0.191 (- 0.461, 0.076) 0.052 (- 0.041, 0.147) 0.236 (0.071, 0.395)

sd 0.058 (0.047, 0.072) 0.112 (0.056, 0.175) 0.102 (0.061, 0.151)

sn 3.788 (2.23, 6.088) 12.767 (7.011, 22.564) 15.579 (6.69, 30.182)

/ 0.490 (0.156, 0.824) 0.818 (0.386, 0.988) 0.738 (0.160, 0.997)

se 89.296 (74.854, 103.413) 52.822 (34.857, 78.715) 9.96 (7.361, 14.027)

w1 0.668 (0.649, 0.687) 0.592 (0.56, 0.635) 0.587 (0.542, 0.645)

w2 - 0.863 (- 0.899, - 0.801) - 0.875 (- 0.937, - 0.806) - 0.756 (- 0.836, - 0.668)

sf 17372.2 (1199.2, 66901.7) 20531.5 (1084.0, 72227.4) 20100.1 (1249.8, 70790.0)

x 0.320 (0.001, 0.959) 0.314 (0.001, 0.958) 0.318 (0.001, 0.958)

Table 6 Contribution (in percent) of each random effect term in the

full model M4 on the overall variation of relative risks

country cd (%) cn (%) ce (%) cf (%)

Spain 98.39 1.54 0.06 \ 0:01

Italy 98.93 0.87 0.20 \ 0:01

Germany 98.31 0.71 0.98 \ 0:01
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Using the joint posterior distribution of precision parame-

ters sd; sn; se; sf, estimates of the posterior means of cd, cn,
ce and cf are obtained and summarized in Table 6. In line

with model fit and prediction accuracy criteria in Tables 4

and 6 reveals that more than 98% of the variations in the

relative risks are explained by the temporal trend dt. Also,
the spatial dependence due to neighborhood relation

between regions ni and small scale temporal trends et have
minor contributions in the total variations of the relative

risks for the three countries. The random effect term fi
representing spatial dependence due to distance between

regions has a negligible effect on the relative risks.

The Bayesian estimates and 95% credible intervals for

the temporal trend dt, t ¼ 1; . . .; T , are shown in Fig. 3.

These plots can be interpreted as a smoothed temporal

trend of the relative risk in the whole country. In fact,

Fig. 3 suggests that the COVID-19 epidemic in all three

countries rapidly reached their first peaks in the middle of

March and started to decline at the beginning of April and

then increased and reached its maximum in the middle of

November. The second wave of the epidemic seems to be

differently affecting each of the three countries; it declined

in December for Spain and Italy, but seems to be persistent

in Germany. In addition, a third peak at the beginning of

January is also apparent for Spain, which may be related to

end-of-the-year holidays.

Figure 4 shows the posterior means of the spatial ran-

dom effects fi and ni, i ¼ 1; . . .;m, on the corresponding

map of each country. The plot illustrates spatial hetero-

geneity of the relative risk of COVID-19 across regions in
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Fig. 3 Smoothed temporal trend

of the relative risks of COVID-

19, obtained from posterior

mean and 95% credible interval

of the structured temporal

random effect of the fitted full

model M4
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each country. Once again, the negligibility of fi can be seen
in Fig. 4. Regions with positive (negative) ni þ fi values
are expected to have elevated (lower) relative risks than the

baseline country-wide risk during the study period.

In order to see how the estimated relative risks under the

fitted full model M4 are in agreement with the observed

data, Fig. 5 shows the spatially accumulated daily number

of cases
Pm

i¼1 Yit, t ¼ 1; . . .; T , and their expected values
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Fig. 4 Posterior mean of the

spatial random effects ni
representing dependence due to

neighborhood relation between

regions (left) and fi representing
dependence due to distance

between regions (right) in the

fitted full model M4

808 Stochastic Environmental Research and Risk Assessment (2021) 35:797–812

123



under the fitted model M4, namely the posterior mean and

95% credible interval of
Pm

i¼1
bEit

bhit, t ¼ 1; . . .; T . Except

some discrepancies for Spain and Italy, the observed values

are inside the 95% credible intervals and close to the

expected values under the fitted model. Figure 5 in addition

shows 4-days ahead forecasts of the total daily number of

new cases at the end of study period of each country.

Finally, histograms of the normalized PIT values

described in Sect. 4.4 are obtained using J ¼ 20 from the

fitted full models and plotted in Fig. 6. The normalized PIT

values for the fitted models to data do not show a clear

visible pattern and the histograms seem to be close to the

standard uniform distribution.

The above results and more details on observed and

predicted values from the fitted full model are also

provided in an interactive Shiny web application at https://

ajalilian.shinyapps.io/shinyapp/.

6 Concluding remarks

There are some limitations in the analyses and modeling of

data on the number of new cases of COVID-19, including

data incompleteness and inaccuracy, unavailability or

inaccuracy of relevant variables such as population

movement and interaction, as well as the unknown nature

of the new COVID-19 virus. Nevertheless, understanding

the underlying spatial and temporal dynamics of the spread

of COVID-19 can result in detecting regional or global
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Fig. 5 Observed value (solid

line), predicted value (dashed

line) and 95% prediction

interval (grey area) for the daily

number of new COVID-19

cases in the whole country,

based on the posterior mean and

95% credible interval of the

spatially accumulated relative

risks of the fitted model
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trends and to further make informed and timely public

health policies such as resource allocation.

In this study, we used a spatio-temporal model to

explain the spatial and temporal variations of the relative

risk of the disease in Spain, Italy and Germany. Despite

data limitations and the complexity and uncertainty in the

spread of COVID-19, the model was able to grasp the

temporal and spatial trends in the data.

Obliviously, there are many relevant information and

covariates that can be considered in our modeling frame-

work and improve the model’s predictive capabilities. One

good possibility would be considering most recent and

accurate human mobility amongst regions and replace the

naive distance matrix C in the covariance matrix of the

random spatial effect fi with a matrix constructed based on

such mobility data. We would expect our model would

benefit from this information, which right now can not be

accessed. Moreover, the considered spatio-temporal model

in this paper is one instance among many possibilities. For

example, one possibility is to include a random effect term

in the model that represents variations due to joint spatio-

temporal correlations; e.g., a separable sptaio-temporal

covariance structure. However, the considered nested

models were adequate and no joint spatio-temporal random

effect term was considered to avoid increasing the model’s

complexity.

We focused here on a stochastic spatio-temporal model

as a good alternative to existing deterministic
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compartmental models in epidemiology to explain the

spatio-temporal dynamics in the spread of COVID-19.

However, it should be emphasized that one step forward

would be considering a combination of a deterministic

compartmental model in terms of differential equations for

the number of susceptible, exposed, infectious and recov-

ered cases with our sort of stochastic modeling approach.

This is a clear novelty and a direction for future research.
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Briz-Redón Á, Serrano-Aroca Á (2020) A spatio-temporal analysis

for exploring the effect of temperature on COVID-19 early

evolution in Spain. Sci Total Environ 728:138811

Center International Earth Science Information Network (CIESIN)

Columbia University (2018) Gridded population of the world,

version 4 (gpwv4): population count, revision 11. https://doi.org/

10.7927/H4JW8BX5. Accessed 15 May 2020

Chang W, Cheng J, Allaire J, Xie Y, McPherson J (2020) Shiny: Web

application framework for R. R package version 1.4.0.2. https://

CRAN.R-project.org/package=shiny

Consul PC, Jain GC (1973) A generalization of the Poisson

distribution. Technometrics 15(4):791–799

Czado C, Gneiting T, Held L (2009) Predictive model assessment for

count data. Biometrics 65(4):1254–1261

Danon L, Brooks-Pollock E, Bailey M, Keeling MJ (2020) A spatial

model of CoVID-19 transmission in England and wales: early

spread and peak timing. medRxiv

Dawid AP (1984) Present position and potential developments: some

personal views statistical theory the prequential approach. J R

Stat Soc Ser A (Gen) 147(2):278–290

Fahrmeir L, Kneib T (2008) On the identification of trend and

correlation in temporal and spatial regression. In: Recent

advances in linear models and related areas. Springer, pp 1–27

Gayawan E, Awe O, Oseni BM, Uzochukwu IC, Adekunle AI,

Samuel G, Eisen D, Adegboye O (2020) The spatio-temporal

epidemic dynamics of COVID-19 outbreak in Africa. medRxiv

Gelman A, Hwang J, Vehtari A (2014) Understanding predictive

information criteria for Bayesian models. Stat Comput

24(6):997–1016

Giuliani D, Dickson MM, Espa G, Santi F (2020) Modelling and

predicting the spatio-temporal spread of coronavirus disease

2019 (COVID-19) in Italy. Available at SSRN 3559569

Gross B, Zheng Z, Liu S, Chen X, Sela A, Li J, Li D, Havlin S (2020)

Spatio-temporal propagation of COVID-19 pandemics.

2003.08382

Joe H, Rong Z (2005) Generalized Poisson distribution: the property

of mixture of Poisson and comparison with negative binomial

distribution. Biom J 47(2):219–229

Kandel N, Chungong S, Omaar A, Xing J (2020) Health security

capacities in the context of COVID-19 outbreak: an analysis of

International Health Regulations annual report data from 182

countries. Lancet 395(10229):1047–1053. https://doi.org/10.

1016/S0140-6736(20)30553-5

Kang D, Choi H, Kim JH, Choi J (2020) Spatial epidemic dynamics

of the COVID-19 outbreak in China. Int J Infect Dis 94:96–102.

https://doi.org/10.1016/j.ijid.2020.03.076

Langousis A, Carsteanu AA (2020) Undersampling in action and at

scale: application to the COVID-19 pandemic. Stoch Environ

Res Risk Assess 34(8):1281–1283. https://doi.org/10.1007/

s00477-020-01821-0

Lawson AB (2018) Bayesian disease mapping: hierarchical modeling

in spatial epidemiology, 3rd edn. Chapman and Hall/CRC, Boca

Raton

Lee D (2011) A comparison of conditional autoregressive models

used in Bayesian disease mapping. Spatial Spatio Temporal

Epidemiol 2(2):79–89

Lindgren F, Rue H et al (2015) Bayesian spatial modelling with

R-INLA. J Stat Softw 63(19):1–25

Martins TG, Simpson D, Lindgren F, Rue H (2013) Bayesian

computing with INLA: new features. Comput Stat Data Anal

67:68–83

Peng L, Yang W, Zhang D, Zhuge C, Hong L (2020) Epidemic

analysis of COVID-19 in china by dynamical modeling. arXiv

preprint arXiv:200206563

Pettit L (1990) The conditional predictive ordinate for the normal

distribution. J R Stat Soc Ser B (Methodol) 52(1):175–184

Riebler A, Sørbye SH, Simpson D, Rue H (2016) An intuitive

Bayesian spatial model for disease mapping that accounts for

scaling. Stat Methods Med Res 25(4):1145–1165

Roda WC, Varughese MB, Han D, Li MY (2020) Why is it difficult to

accurately predict the COVID-19 epidemic? Infect Dis Model

5:271–281. https://doi.org/10.1016/j.idm.2020.03.001

Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference

for latent Qaussian models by using integrated nested Laplace

approximations. J R Stat Soc Ser B (Stat Methodol)

71(2):319–392

Sujath R, Chatterjee JM, Hassanien AE (2020) A machine learning

forecasting model for COVID-19 pandemic in India. Stoch

Environ Res Risk Assess 34(7):959–972. https://doi.org/10.1007/

s00477-020-01827-8

Wakefield J (2007) Disease mapping and spatial regression with count

data. Biostatistics 8(2):158–183

Stochastic Environmental Research and Risk Assessment (2021) 35:797–812 811

123

https://github.com/pcm-dpc/COVID-19
https://github.com/pcm-dpc/COVID-19
https://github.com/jgehrcke/covid-19-germany-gae
https://github.com/jgehrcke/covid-19-germany-gae
https://ajalilian.shinyapps.io/shinyapp/
https://arxiv.org/abs/2009.13577
https://arxiv.org/abs/2009.13577
http://arxiv.org/abs/200406111
http://arxiv.org/abs/200314288
https://doi.org/10.7927/H4JW8BX5
https://doi.org/10.7927/H4JW8BX5
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://doi.org/10.1016/S0140-6736(20)30553-5
https://doi.org/10.1016/S0140-6736(20)30553-5
https://doi.org/10.1016/j.ijid.2020.03.076
https://doi.org/10.1007/s00477-020-01821-0
https://doi.org/10.1007/s00477-020-01821-0
http://arxiv.org/abs/200206563
https://doi.org/10.1016/j.idm.2020.03.001
https://doi.org/10.1007/s00477-020-01827-8
https://doi.org/10.1007/s00477-020-01827-8


Waller LA, Carlin BP, Xia H, Gelfand AE (1997) Hierarchical spatio-

temporal mapping of disease rates. J Am Stat Assoc

92(438):607–617

World Health Organization (2021) WHO coronavirus disease

(COVID-19) dashboard. https://covid19.who.int. Accessed 21

Jan 2021

Zamani H, Ismail N (2012) Functional form for the generalized

Poisson regression model. Commun Stat Theory Methods

41(20):3666–3675

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

812 Stochastic Environmental Research and Risk Assessment (2021) 35:797–812

123

https://covid19.who.int

	A hierarchical spatio-temporal model to analyze relative risk variations of COVID-19: a focus on Spain, Italy and Germany
	Abstract
	Introduction
	Data on the daily number of COVID-19 cases
	Modeling daily regional counts
	The null model of homogeneous incidence rates
	Distribution of daily regional counts

	Modeling relative risks
	Relative risks
	A model for relative risks
	Prior specification and implementation
	Bayesian model posterior predictive checks

	Results
	Concluding remarks
	Data Availibility Statement
	References




