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Abstract
The choices that researchers make while conducting a statistical analysis usually have a notable impact on the results. This

fact has become evident in the ongoing research of the association between the environment and the evolution of the

coronavirus disease 2019 (COVID-19) pandemic, in light of the hundreds of contradictory studies that have already been

published on this issue in just a few months. In this paper, a COVID-19 dataset containing the number of daily cases

registered in the regions of Catalonia (Spain) since the start of the pandemic to the end of August 2020 is analysed using

statistical models of diverse levels of complexity. Specifically, the possible effect of several environmental variables (solar

exposure, mean temperature, and wind speed) on the number of cases is assessed. Thus, the first objective of the paper is to

show how the choice of a certain type of statistical model to conduct the analysis can have a severe impact on the

associations that are inferred between the covariates and the response variable. Secondly, it is shown how the use of spatio-

temporal models accounting for the nature of the data allows understanding the evolution of the pandemic in space and

time. The results suggest that even though the models fitted to the data correctly capture the evolution of COVID-19 in

space and time, determining whether there is an association between the spread of the pandemic and certain environmental

conditions is complex, as it is severely affected by the choice of the model.

Keywords COVID-19 � Spatio-temporal models � Environmental covariates � Integrated nested Laplace approximation �
Space-time interaction � Relative risk

1 Introduction

The pandemic caused by the coronavirus disease 2019

(COVID-19) has led in a few months to an unprecedented

number of related scientific outcomes. Many of the studies

on the COVID-19 focus on the evolution of viral trans-

mission, or the clinical factors that increase the risk of

contagion, among other relevant topics. In particular, one

of the most consolidated lines of research is dedicated to

clarifying how certain environmental or meteorological

factors have had an impact (or may have in the future) on

the evolution of COVID-19 at a local, national, or global

level.

At the time of writing (November 2020), hundreds of

statistical analyses about the effect of the environment on

the evolution of COVID-19 have already been published.

Specifically, the influence of temperature, humidity, or

solar radiation (among other variables) on the transmission

of the virus has been massively investigated at a macro-

scopic level, considering municipalities, regions, countries,

etc., as the spatial units of analysis. Surprisingly (to some

extent), the results provided by these studies are sometimes

very different, or even opposite, as shown by the several

reviews that have been published on this topic (Briz-Redón

and Serrano-Aroca 2020b; Shakil et al. 2020; Yuan et al.

2020). Some of the discrepancies found between studies

could be due to the different ranges of values that the main

environmental variables present depending on the area of

the world being analysed, but it is also very reasonable to

think that certain methodological choices such as the type

of statistical model, the geographical unit of analysis, or the
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set of covariates also have a notable impact on the results.

In relation to this fact, it is worth noting that among the

studies already published on this topic, very different types

of statistical and modelling techniques have been employed

(Briz-Redón and Serrano-Aroca 2020b), including corre-

lation analyses (e.g., Tosepu et al. 2020), generalised

additive models (e.g., Xie and Zhu 2020), panel data

models (e.g., Sobral et al. 2020), spatio-temporal models

(e.g., Briz-Redón and Serrano-Aroca 2020a), or epide-

miological models such as the susceptible-infected-recov-

ered-susceptible (SIRS) model (e.g., Baker et al. 2020).

Machine learning models, which are being widely used to

predict COVID-19 incidence and mortality (Dhamodhar-

avadhani et al. 2020; Iwendi et al. 2020; Lalmuanawma

et al. 2020; Sujath et al. 2020), have been also considered

by multiple researchers to assess the relationship between

COVID-19 spread and the environment (Malki et al. 2020;

Shrivastav and Jha 2020; Siddiqui et al. 2020). Thus, the

spatio-temporal nature of the data under analysis has been

taken into account in only a relatively small percentage of

studies, despite the importance of accounting for spatial

and temporal patterns to explain and model the evolution of

the pandemic with greater accuracy, as shown in several

recent studies. For instance, Guliyev (2020) compared

different panel data models and concluded that the spatially

lagged X (SLX) model showed the greatest performance in

modelling COVID-19 confirmed, death, and recovered

rates. Moreover, Mollalo et al. (2020) verified that geo-

graphically weighted regression models accounting for

spatial heterogeneity and scale outperformed non-spatial

models in modelling COVID-19 spread. Finally, in several

studies developed at different levels of spatio-temporal

aggregation, it has been identified that COVID-19 cases

tend to be highly concentrated in space and time (Arauzo-

Carod 2020; Cordes and Castro 2020; Desjardins et al.

2020; Hohl et al. 2020).

The purpose of this paper is twofold. The first objective,

and main contribution of the paper, is to highlight how

certain modelling choices may affect the analysis of a

spatio-temporal dataset, particularly in studying the impact

of the environment on the development of the COVID-19

pandemic. The motivation to carry out this particular

research arises as a consequence of the existence of mul-

tiple contradictory studies on this subject, and the suspicion

that the type of statistical analysis carried out has been

responsible for some of these inconsistencies. Although

some review articles mentioned above have already high-

lighted this question, there are hardly any empirical works

in this direction, to the best of my knowledge. To meet this

capital objective, the comparative analysis starts with

rather general models without neither spatial nor temporal

effects (basic generalised linear models), to which different

spatial, temporal, and spatio-temporal terms are then added

to properly account for the nature of the data. The second

objective consists of exploring how the inclusion of spatio-

temporal effects in the model can be helpful to understand

the dynamics of the COVID-19 pandemic through the

identification of high-risk areas, general trends over time,

and the singular trends experienced by each area under

study.

Therefore, the paper is structured as follows. Section 2

includes a brief description of the data used for the ana-

lysis. In Sect. 3, the different statistical models considered

for the analysis are presented. The results provided by each

of the models are displayed and compared in Sect. 4.

Finally, some concluding remarks are provided in Sect. 5.

2 Data

2.1 Study area

The study has focused on Catalonia, one of the 17

Autonomous Communities of Spain. Concretely, the ana-

lysis has been carried out at the region (comarca) level,

which represents an intermediate spatial aggregation level

between the province level and the city level. Thus, Cat-

alonia is divided into 42 regions which contain about 1000

municipalities for a total of 7619494 inhabitants (as of

2019). The population sizes of these regions vary from

more than 2 million people in the case of Barcelonès

(which nearly represents the 30% of the population of

Catalonia) to less than 4000 in the case of Alta Ribagorça.

Figure 1 shows the location of Catalonia within Spain (Fig.

1a) and a map of Catalonia at the region level (Fig. 1b).

2.2 COVID-19 data

A dataset containing the new daily COVID-19 cases

recorded in each municipality of Catalonia, Spain, from 25

(a) (b)

Fig. 1 Map of peninsular Spain at the province level (a) and map of

Catalonia at the region level (b). In a, the four provinces of Catalonia
are highlighted. In b, the region of Barcelonès, where the capital city

of Catalonia (Barcelona) is located, is also highlighted
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February 2020 to 24 August 2020 (covering 182 days

within a total of 27 weeks) was downloaded from Catalo-

nia’s Open Data platform (https://analisi.transpar

enciacatalunya.cat/en/). In this dataset, cases are

disaggregated according to the type of diagnostic test

employed for their determination: antibody test, poly-

merase chain reaction (PCR) test, and serology test.

Among these diagnostic methods, the PCR test has been by

far the most used in Catalonia since the beginning of the

pandemic. In fact, about 90% of the cases detected up to

August 24th were identified by PCR, according to the

dataset downloaded. For this reason, to conduct this study,

the number of daily COVID-19 cases determined by a PCR

test has been considered as the response or dependent

variable of the analysis.

2.3 Environmental data

Environmental data for the period under study has been

downloaded from the OpenData platform of the State

Meteorological Agency (AEMET) of Spain. Specifically,

daily solar exposure (in terms of the number of hours over

irradiance threshold of 120 W/m2), mean temperature (in
�C), and wind speed (in km/h) values measured from

February to August 2020 by a total of 172 automatic

weather stations installed all over Spain have been

collected.

In order to analyse the association between the number

of COVID-19 cases and the environmental conditions in

the regions of Catalonia during the study period, a region-

level estimation of the three environmental variables was

performed for each day within the period. First, ordinary

kriging (Cressie 1988) was used to estimate the daily

values of the three environmental variables on a grid of

points (defined at a distance of 5 km from each other)

covering the whole area under study. Hence, only the sta-

tions from Catalonia and the two Autonomous Commu-

nities of Spain sharing a border with Catalonia (Aragón and

the Valencian Community) may have influenced these

estimates. Secondly, region-level daily estimates of the

variables of interest were obtained as the average of the

estimates corresponding to the points of the grid lying

within the region.

3 Methodology

3.1 Statistical models

In this subsection, the different statistical models that have

been considered for the analysis are described in order of

complexity (from the simplest to the most complex). The

precise specification of these models according to the set of

terms and coefficients involved in each of them is provided

in Table 1.

3.1.1 Basic models

The number of new daily COVID-19 cases observed in

region i (i ¼ 1; . . .; 42) on day t (t ¼ 1; . . .; 182), denoted
by Oit, was assumed to follow a Poisson distribution with

mean git ¼ Eitrit, where Eit (offset term of the model)

denotes the number of expected cases in region i on day t,

and rit the relative risk for region i and day t. Eit was

calculated as the product of the total number of cases

observed in Catalonia on day t by the fraction of the

population of Catalonia that region i represents.

The first model that was tested (Model 1) only included

the fixed effect of each of the three environmental variables

considered for the analysis: solar exposure (x1), tempera-

ture (x2), and wind speed (x3). Next, a non-environmental

variable such as the population density (x4) was incorpo-

rated into the model (Model 2). For the remaining models

(Models 3 to 12), a spatio-temporal approach was followed,

which seems the most appropriate one in order to account

for the structure of the data under analysis.

3.1.2 Spatio-temporal models

Several spatio-temporal models of increasing complexity

were fitted to the data. First, a spatio-temporal model

without interaction, that is, where regional and temporal

effects act separately, was considered in Models 3 and 4.

To model the spatial effects (ui and vi), the Besag-York-

Molliè (BYM) model was followed (Besag et al. 1991). On

the one hand, under the BYM model it is assumed that the

conditional distribution of the spatially-structured effect on

region i, ui, is

uijuj 6¼i �Normal

�
1

Ni

Xn
j 6¼i¼1

wijuj;
r2u
Ni

�

where Ni is the number of neighbours that region i has (two

regions are neighbours if they are spatially contiguous), wij

is the element (i,j) of the row-standardised matrix of

dimension 42� 42 that represents the neighbourhood

matrix for the regions (wij ¼ 1=Ni if regions i and j are

neighbours, otherwise wij ¼ 0), and r2u represents the var-

iance of the spatially-structured effect. On the other hand,

for the spatially-unstructured effect over the regions,

denoted by vi, an independent and identically distributed

Gaussian prior is considered

vi �Normalð0; r2vÞ
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where r2v represents the variance of the spatially-unstruc-

tured effect of the model.

With regard to the two temporal effects, the temporally-

structured effect, ct, was modelled through a second-order

random walk

ctjct�1; ct�2 �Normalð2ct�1 þ ct�2; r
2
cÞ

where r2c is the variance component. Finally, an indepen-

dent and identically distributed Gaussian prior is chosen for

/t: /t �Normalð0; r2/Þ.
In the case of Model 3, the random temporal effects are

set on a weekly basis, whereas in Model 4 the temporal

effects are set on a daily basis. Hence, in Table 1, the index

of the temporal effects corresponding to Model 3 is actu-

ally denoted by w(t) (instead of t), which represents the

week to which the day t belongs to (wðtÞ ¼ 1; . . .; 27). The

consideration of weekly effects instead of daily effects

allows reducing the complexity of the model by reducing

the number of parameters being involved, which reduces

the chance of overfitting issues.

Then, several spatio-temporal models accounting for the

presence of space-time interaction were also fitted (Models

5 to 12), among which the space-time interaction is

accounted for on a weekly (Models 5 to 8) or daily basis

(Models 9 to 12). In particular, the four spatio-temporal

structures proposed by Knorr-Held (2000) were used. Each

of these structures consists in specifying the non-separable

spatio-temporal term of the model according to a concrete

combination of a structured/unstructured spatial effect with

a structured/unstructured temporal effect. The combination

of these effects is carried out through the Kronecker pro-

duct of the two matrices that represent the spatial and

temporal effect chosen, respectively. Table 2 shows the

four types of spatio-temporal interactions that can be

considered following this approach.

The implementation of Models 1 to 12 was carried out

through the Integrated Nested Laplace Approximation

(INLA) method, which allows obtaining the posterior

marginal distributions of the parameters involved in the

model. Non-informative priors were chosen for the

Table 1 Description of the 12

main models that were

considered for the comparison

in terms of the specification of

the logarithm of the relative

risk, logðritÞ, corresponding to

region i (i ¼ 1; . . .; 42) on day t
(t ¼ 1; . . .; 182)

Model logðritÞ

Model 1 lþ logðEitÞ þ
P3

j¼1 bjxjit

Model 2 lþ logðEitÞ þ
P4

j¼1 bjxjit

Model 3 lþ logðEitÞ þ
P4

j¼1 bjxjit þ ui þ vi þ cwðtÞ þ /wðtÞ

Model 4 lþ logðEitÞ þ
P4

j¼1 bjxjit þ ui þ vi þ ct þ /t

Model 5 lþ logðEitÞ þ
P4

j¼1 bjxjit þ ui þ vi þ cwðtÞ þ /wðtÞ þ diwðtÞ (I)

Model 6 lþ logðEitÞ þ
P4

j¼1 bjxjit þ ui þ vi þ cwðtÞ þ /wðtÞ þ diwðtÞ (II)

Model 7 lþ logðEitÞ þ
P4

j¼1 bjxjit þ ui þ vi þ cwðtÞ þ /wðtÞ þ diwðtÞ (III)

Model 8 lþ logðEitÞ þ
P4

j¼1 bjxjit þ ui þ vi þ cwðtÞ þ /wðtÞ þ diwðtÞ (IV)

Model 9 lþ logðEitÞ þ
P4

j¼1 bjxjit þ ui þ vi þ ct þ /t þ dit (I)

Model 10 lþ logðEitÞ þ
P4

j¼1 bjxjit þ ui þ vi þ ct þ /t þ dit (II)

Model 11 lþ logðEitÞ þ
P4

j¼1 bjxjit þ ui þ vi þ ct þ /t þ dit (III)

Model 12 lþ logðEitÞ þ
P4

j¼1 bjxjit þ ui þ vi þ ct þ /t þ dit (IV)

For all the models, l denotes the intercept of the model, E the number of expected cases, and xj
(j ¼ 1; . . .; 4) the covariates. In addition, ui and vi represent the structured and unstructured random spatial

effect of the model, ct and /t the structured and unstructured random temporal effect, and dit the random

spatio-temporal effect. The symbols I, II, III, IV denote the type of spatio-temporal interaction (for either

diwðtÞ or dit) considered in Models 5 to 12, according to Table 2

Table 2 Specification of the four types of spatio-temporal interaction

considered in terms of the Kronecker product of the two matrices

representing the structure of the spatial and temporal effect,

respectively

Type of spatio-temporal interaction Rd

I Is � It

II Is � Rt

III Rs � It

IV Rs � Rt

The matrix Is (It) represents the identity matrix, which corresponds to

the unstructured spatial (temporal) effect, whereas Rs (Rt) represents a

non-identity matrix that corresponds to a specific structured spatial

(temporal) effect
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parameters corresponding to the fixed effects included in

all of the models, whereas a Gammað1; 5 � 10�5Þ was used
for the precision of the random effects implicated in

Models 3 to 12 (these are the default priors provided by the

INLA package). Further details on the implementation of

these models in INLA can be found in the literature (Ugarte

et al. 2014; Blangiardo and Cameletti 2015; Gómez-Rubio

2020). Besides, the specific R code used to implement

Models 1 to 12 described above is available in https://

github.com/albrizre/COVID_Catalonia.

3.1.3 Model variations

Although comparing the 12 types of models introduced

above constitutes the main part of the comparison, certain

(minor) variations of them are also considered to extend the

comparative analysis. First, the three environmental cov-

ariates were introduced into the model with a certain time

lag with respect to the cases observed on the day t. Spe-

cifically, since COVID-19 has shown a mean incubation

period of approximately 5 days, ranging from 2 to 14 days

(Nishiura et al. 2020; Rasmussen et al. 2020), three dif-

ferent lags of 0, 7, and 14 days were considered for the

covariates (which implies replacing the covariate terms xjit
present in all the expressions included in Table 1 by xjit�7

or xjit�14). Second, the possibility of considering the

environmental covariates in their quadratic or cubic form in

order to capture non-linear effects is also considered for

some of the models. In these cases, the new models will be

referred to only as specific modifications of Models 1 to 12

described in Table 1, which are those that define the fun-

damental modelling structures under comparison.

3.2 Model quality assessment

Model assessment was performed through the Deviance

Information Criterion (DIC) introduced by Spiegelhalter

et al. (2002), the Watanabe-Akaike Information Criterion

(WAIC) proposed by Watanabe and Opper (2010), and the

probability integral transform (PIT) defined by Dawid

(1984). Both the DIC and the WAIC measure the good-

ness-of-fit of a Bayesian model while accounting for its

complexity in terms of the number of effective parameters

involved in the model. Hence, as a general rule, the model

with the smallest DIC/WAIC value is the one that shows

the greatest performance, meaning the best balance

between deviance and complexity. Besides, the PIT is a

leave-one-out cross-validation score defined as follows for

a given spatio-temporal unit

PITit ¼ PðYit\yobsit jy�itÞ

where Yit is a random variable generated by the posterior

distribution of a fitted model, yobsit is the value observed on

spatio-temporal unit (i,t), and y�it is the vector containing

all observations except the one corresponding to unit (i,t).

If the distribution of the PIT scores is close to uniform, the

model is well calibrated (Czado et al. 2009). Deviations

from uniformity suggest that the predictive distribution of

the model suffers from either underdispersion (U-shaped

distribution), overdispersion (inverse-U shape distribution),

or bias (skewed distribution).

3.3 Software

The R programming language (R Core Team 2020) has

been used to carry out the present study. In particular, the R

packages automap (Hiemstra et al. 2008), ggplot2

(Wickham 2016), gstat (Pebesma 2004; Gräler et al.

2016), INLA (Rue et al. 2009; Lindgren and Rue 2015),

rgdal (Bivand et al. 2019), and spdep (Bivand et al. 2008)

have been required at some points of the analysis.

4 Results

This section summarises the results provided by each of the

statistical models fitted. First, the quality of the models is

assessed. Second, the coefficients associated with the three

environmental variables involved in the analysis are com-

pared across models. Finally, the spatio-temporal effects

estimated through Models 3 to 12 are described and shown

graphically.

4.1 Model quality

Model 9 including random temporal effects at the daily

level and a type I spatio-temporal interaction (unstructured

in space and time) showed the greatest performance in

terms of the DIC and the WAIC (Table 3), while Model 11

including a type III spatio-temporal interaction (structured

in space but unstructured in time) yielded the second-

lowest DIC and WAIC (in addition, the choice of the type

of lagged effect imposed on the covariates has no effect on

the results). However, Model 12, which considers a type IV

space-time interaction (structured in both space and time)

showed unreliable DIC and WAIC values (extremely high

in comparison with the rest of the models), preventing a

direct comparison on the basis of the DIC and the WAIC.

Among the models considering a weekly random temporal

effect (Models 5 to 8), the model with the type I spatio-

temporal interaction (Model 5) also presented the greatest

performance according to the DIC, closely followed by

Model 8 (type IV interaction), whereas Model 8 was the
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best one according to the WAIC. Anyhow, the models

including daily-based temporal effects (Models 9 to 12)

performed considerably better.

With regard to the PIT scores, the associated histograms

corresponding to Models 3 to 8 are shown in Fig. 2. In

general, all these histograms are slightly U-shaped and

notably left-skewed, which suggests that the predictive

distributions of the models are a bit underdispersed

(especially in the case of Models 3 and 4) and biased (the

predictions tend to underestimate the true values, which is

not surprising because of the presence of unpredictable

local peaks in the time series representing the number of

daily COVID-19 cases). In the case of Models 9 to 12, the

approximation carried out by the INLA package to compute

PIT scores was not trustworthy for most of the observa-

tions, which prevented its use. Besides, the ‘‘manual’’

computation of the PIT scores for these models is com-

putationally very intensive and was only performed for

some of these models. Anyhow, the shape of the histo-

grams obtained remained very similar to those shown in

Fig. 2, a fact that indicates that the prediction of daily

COVID-19 cases at a small-area level is a challenging task.

Thus, the main conclusion derived from the analysis of the

distribution of the PIT scores is that the predictive quality

of the models could be improved. From the perspective of

model selection, since there is no model that presents a

substantially better predictive performance, Model 9 is kept

as the best model among the twelve models tested,

according to the DIC and WAIC metrics.

4.2 Environmental effects

Regarding the effect of each environmental covariate on

the spread of COVID-19, the main conclusion would be

that the choice of the model has a strong impact on the

results, as shown in Fig. 3. First, Model 1 suggests that

solar exposure, wind speed, and temperature have a posi-

tive association with COVID-19 spread. Besides, these

associations are consistent across the different time lags (0,

7, and 14 days) explored for the covariates. A visible

characteristic of Model 1 is the narrowness of the con-

fidence intervals associated with the mean estimates of the

effects, which causes that all the associations are statisti-

cally significant with 95% confidence. However, the results

provided by Model 2 (where population density is incor-

porated into the model) increase the uncertainty about the

possible association between COVID-19 spread and the

environment. Now, there is great inconsistency across lags

for the three environmental covariates, which makes it

difficult to achieve solid conclusions on their effects.

Indeed, the difficulty in establishing an association between

environmental covariates and the number of daily COVID-

19 cases is maintained if the results provided by Models 3

to 12 are analysed. Some models suggest that there is a

positive association between COVID-19 and temperature

(Models 3 and 4), or a negative association between

COVID-19 daily cases and wind speed (Model 11). Con-

sidering the best model in terms of the DIC, Model 9, it

could be concluded that there is a statistically significant

positive association between mean temperature and daily

new cases, and a non-significant association with solar

exposure and wind speed. Indeed, the modification of

Table 3 DIC and WAIC values

corresponding to Models 1 to

12, considering a lagged effect

on the covariates of 0, 7, or 14

days

Model Lagged effect on the covariates (in days)

0 7 14

DIC WAIC DIC WAIC DIC WAIC

Model 1 72565.19 72679.40 73011.11 73124.89 73122.80 73237.75

Model 2 67300.15 67382.92 67327.76 67409.48 67317.83 67399.46

Model 3 52467.55 53120.39 52445.03 53094.57 52471.95 53126.27

Model 4 52440.54 53362.19 52421.46 53373.55 52459.30 53366.84

Model 5 31851.36 33309.72 31858.83 33315.52 31855.27 33310.80

Model 6 32060.54 33300.17 32073.40 33311.08 32067.71 33303.21

Model 7 31991.11 33388.21 32001.95 33398.70 31998.69 33393.09

Model 8 31860.42 33131.04 31868.50 33136.35 31864.40 33131.99

Model 9 26162.89 25639.98 26163.56 25641.39 26161.46 25636.84

Model 10 29175.52 31005.83 29197.48 31033.46 29192.74 31031.59

Model 11 26240.72 25915.22 26245.35 25919.58 26246.03 25922.32

Model 12 – – – – – –

In the case of Model 12, the values obtained for the two metrics were not comparable to those of the rest of

models (they all were extremely high), so they are omitted (–)
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Fig. 2 Histograms of the PIT scores obtained for Models 3 to 8 (from left to right), considering a 0-day, a 7-day, and a 14-day lagged effect (from

top to bottom) on the covariates

Fig. 3 Summary of the

estimates obtained for the

coefficients associated with

environmental covariates for

each of the 12 models fitted,

considering a lagged effect on

the covariates of 0, 7, or 14 days
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Model 9 through the addition of the three environmental

covariates in its quadratic and cubic form (x2i and x3i ,

i ¼ 1; . . .; 3), even though it reduces the DIC of Model 9 to

26106.22, neither does it reveal any significant association

between these covariates and the daily number of COVID-

19 cases.

4.3 Spatio-temporal effects

The inclusion of spatio-temporal effects helps to under-

stand how the disease has spread throughout the territory

under study. Specifically, the estimates of random spatial

and temporal effects and their interaction allow assigning a

relative risk to each spatial, temporal, or spatio-temporal

unit under analysis. These relative risks are obtained by

exponentiating the space-time parameters that describe the

log(rit) expression in each of the models. In the remainder

of the section, for simplicity, only the estimates of the

random spatial, temporal and spatio-temporal effects that

correspond to the models that include a 7-day lagged effect

in the environmental covariates are displayed. Since the

selection of the temporal lag barely affects the results, as

shown in the previous subsections, the choice of a 7-day

lagged effect seems to be the most reasonable due to the

fact that the incubation time of COVID-19 is close to one

week.

Hence, Fig. 4 shows relative risks over time in terms of

the random temporal effects estimated through Models 3

(including weekly effects) and 4 (including daily effects).

The relative risk represented by the structured component

of the random temporal effect (either expðcwðtÞÞ in Model 3

or expðctÞ in Model 4, for t ¼ 1; . . .; 182) captures the

evolution of the pandemic in Catalonia: the relative risk

was nearly 0 at the beginning of March 2020, reached a

peak in April, and then decreased for the following months

until July, when it started to increase again. Oppositely, the

relative risk associated with the unstructured component

(either expð/wðtÞÞ in Model 3 or expð/tÞ in Model 4) barely

fluctuates around 1, which suggests that there were not

notable overall changes in the relative risk during the

period of study that were solely attributable to single days

within the period. This fact can also be verified by com-

paring the estimates of the precision parameters associated

with each of the random effects included in the models,

which are shown in Table 4. Each precision parameter

represents the inverse of the variance of the corresponding

random effect. For instance, sc ¼ 1=r2c is the precision

parameter associated with the temporally-structured effect,

ct. Thus, a smaller precision parameter indicates a larger

variance from the corresponding random effect, which at

the same time reflects that such effect has a greater con-

tribution to relative risk variations. In both Models 3 and 4,

sc is clearly smaller than s/, especially in the case of

Model 3 (Table 4), which confirms the larger contribution

of the temporally-structured effect to daily relative risks.

With regard to the random spatial effects, Fig. 5 displays

the values of expðui þ viÞ corresponding to Models 3 and 4

(although the differences between the two models are

almost negligible). It can be observed that the regions in

the central zone of Catalonia, which covers from the sur-

roundings of the Barcelonès region to some regions in the

west of Catalonia that border Aragón, experienced the

highest relative risks during the period under research. One

of these regions located in western Catalonia, called Segrià

(a) (b)

Fig. 4 Relative risks on a weekly and a daily basis according to the

structured and unstructured temporal random effects estimated

through Models 3 (a) and 4 (b). The relative risk corresponding to

the structured component is computed as either expðcwðtÞÞ or expðctÞ,

whereas the one corresponding to the unstructured component is

computed as either expð/wðtÞÞ or expð/tÞ
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, reached the highest relative risk for the period under

consideration, presenting a relative risk very close to 5 (for

both Models 3 and 4). The regions of Anoia, Bages, Baix

Llobregat, Barcelonès, and Noguera were the ones that

presented the closest relative risks to Segrià , although they

were considerably smaller, only ranging from 2 to 3.

Besides, regarding the contribution of each random spatial

effect to relative risks, the structured spatial effect, ui,

captures most of the spatial variation, since su\\sv for

both Models 3 and 4 (Table 4). This fact indicates that

there has been a strong spatial dependence between the

regions studied in terms of their COVID-19 relative risks.

Indeed, as can be observed in Fig. 5, high-risk (low-risk)

regions tend to be closer to other high-risk (low-risk)

regions.

Interpreting the precision parameters under the presence

of spatio-temporal interaction terms is more challenging,

but some general outcomes are easily appreciated. Speci-

fically, the precision of the interaction parameter (d) is very
small in all Models 5 to 12, which indicates that space-time

interaction highly contributes to daily relative risks.

Although the structured spatial effect, ui, presents a larger

contribution than d for some of the models, these results

confirm that the inclusion of the spatio-temporal effect is

more than suitable. As an example of the convenience of

considering space-time interaction, the spatio-temporal

relative risks provided by Model 9 for a selection of days

within the period of study are shown in Fig. 6 (these are

computed as expðui þ vi þ ct þ /t þ ditÞ). The inclusion of

space-time interaction terms is essential to allow the model

to capture certain variations in relative risks across both

regions and subperiods. Thus, by observing the evolution

of the relative risks across regions and days in Fig. 6, it can

be appreciated how certain regions of the central zone of

Catalonia presented quite different relative risks along

time. These variations in the relative risk are overlooked if

one only considers global spatial effects (as in Fig. 5).

Concretely, the highest relative risks for most of the

regions were achieved between the end of March 2020 and

the beginning of April 2020. Then, for the following

months, the relative risks were generally lower across

entire Catalonia, except for some regions in the west of

Catalonia such as Segrià , which has been presenting higher

relative risks since the month of May.

Besides, to better appreciate the evolution of the relative

risk in some highly affected regions of Catalonia, Fig. 7

shows the evolution of the relative risk (according to

Model 9) that correspond to a selection of regions of

Catalonia (the six regions mentioned above, which pre-

sented the highest relative risk according to Models 3 and

4). It is important to be aware that the estimates of the daily

relative risks that both models provide for each of the

regions are quite erratic and difficult to inspect visually.

For this reason, these estimates were smoothed through a

locally estimated scatterplot smoothing (LOESS) regres-

sion (Fox and Weisberg 2018) to ease the interpretation of

Fig. 7. Hence, Fig. 7 indicates that, except for Segrià , all

these regions reached a peak in the relative risk at the

beginning of April 2020, and then decreased until July,

when relative risks started growing again. This temporal

pattern corresponds to the overall relative risk over time

shown in Fig. 4. In the case of Segrià , however, the

relative risk kept growing until August, when it started to

show a slight decrease.

(a) (b)

Fig. 5 Global relative risks at the region level estimated for the period under study (computed as expðui þ viÞ) considering Model 3 (a) and
Model 4 (b)
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5 Discussion and conclusions

This study has shown how the choice of a certain type of

statistical model to evaluate the association between a set

of covariates and a response variable can seriously influ-

ence the results. In the context of the study of the asso-

ciation between the evolution of the COVID-19 pandemic

and environmental conditions, this fact seems to be

occurring remarkably. In this regard, the lack of con-

sideration of certain non-environmental variables, and

overlooking spatio-temporal effects appear inadequate. In

particular, the results obtained for the case study described

in this paper suggest that there seems to be too much

uncertainty to establish an association between the envir-

onmental variables considered and the development of the

pandemic in Catalonia, on the basis of the data examined.

Anyhow, the present study also has its own limitations.

Besides the fact that the predictive performance of the

models fitted could be improved, many other methodolo-

gical choices that have not been accounted for in the pre-

sent study may also have some influence on the association

between the environment and the COVID-19 propagation.

Fig. 6 Relative risks at the

region level (computed as

expðui þ vi þ ct þ /t þ ditÞ)
estimated for a selection of days

within the period under study

with Model 9

Fig. 7 Evolution of the relative risks (computed as

expðui þ vi þ ct þ /t þ ditÞ), according to the estimates provided by

Model 9 in the six regions of Catalonia with the highest global

relative risks (according to the estimates provided by Models 3 and 4).

To make this plot, the relative risks provided by Model 9 have been

smoothed through a locally estimated scatterplot smoothing (LOESS)

regression (Fox and Weisberg 2018) for ease of visualisation and

interpretation

Stochastic Environmental Research and Risk Assessment (2021) 35:1701–1713 1711

123



For instance, the definition of different neighbourhood

relationships between the regions, the consideration of

more non-environmental covariates such as the inter-region

mobility or the age structure of the population, and the

selection of the most suitable spatio-temporal unit for the

analysis, which implies dealing with the modifiable areal

unit problem (MAUP; Openshaw 1981) and the modifiable

temporal unit problem (MTUP; Cheng and Adepeju 2014),

are other issues deserving attention that could be explored

in future studies. In particular, concerning the MAUP, it is

important to note that some geographical units at the sub-

regional level (such as cities or even city districts) may

present certain unique characteristics that require con-

sideration for performing an accurate analysis of the evo-

lution of the pandemic. Indeed, Wang and Di (2020)

recently found that the association between COVID-19

mortality and NO2 levels depends on the level of spatial

aggregation (considering four different spatial aggrega-

tions, including cities and provinces), which indicates the

presence of the MAUP. In addition, another important

aspect that should be considered in future studies is the fact

that cases detection rate has remained far from 100% since

the beginning of the COVID-19 pandemic. In particular, if

detection rates vary spatially and temporally, this could

have an impact on the results. For instance, in the case of

Spain, differences in detection rates between geographical

units belonging to different Autonomous Communities are

likely to arise because the competencies in health policy

and organisation are established at this territorial level. To

mitigate this problem, the existence of seroepidemiological

studies that provide estimates of the prevalence of COVID-

19 at the province level (Pollán et al. 2020), or the avail-

ability of reliable COVID-19 mortality data (Langousis and

Carsteanu 2020) could be helpful.

In conclusion, it seems clear that the data modelling

approach that we choose to conduct the analysis can have a

strong impact on the conclusions that can be drawn from it.

Although this is generally true, in the specific case of the

ongoing line of research that focuses on unveiling the

effects of the environment on the spread of COVID-19, the

employment of models that properly take into account the

structure of the data, the consideration of non-environ-

mental variables, or the performance of sensitivity ana-

lyses, seem highly-advisable strategies to avoid the

persistence of highly contradictory results which could

make decision-making against the COVID-19 pandemic

even more difficult.
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