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Abstract
The vast majority of statistically-based landslide susceptibility studies assumes the slope instability process to be time-

invariant under the definition that ‘‘the past and present are keys to the future’’. This assumption may generally be valid.

However, the trigger, be it a rainfall or an earthquake event, clearly varies over time. And yet, the temporal component of

the trigger is rarely included in landslide susceptibility studies and only confined to hazard assessment. In this work, we

investigate a population of landslides triggered in response to the 2017 Jiuzhaigou earthquake (Mw ¼ 6:5) including the

associated ground motion in the analyses, these being carried out at the Slope Unit (SU) level. We do this by implementing

a Bayesian version of a Generalized Additive Model and assuming that the slope instability across the SUs in the study area

behaves according to a Bernoulli probability distribution. This procedure would generally produce a susceptibility map

reflecting the spatial pattern of the specific trigger and therefore of limited use for land use planning. However, we

implement this first analytical step to reliably estimate the ground motion effect, and its distribution, on unstable SUs. We

then assume the effect of the ground motion to be time-invariant, enabling statistical simulations for any ground motion

scenario that occurred in the area from 1933 to 2017. As a result, we obtain the full spectrum of potential coseismic

susceptibility patterns over the last century and compress this information into a hazard model/map representative of all the

possible ground motion patterns since 1933. This backward statistical simulations can also be further exploited in the

opposite direction where, by accounting for scenario-based ground motion, one can also use it in a forward direction to

estimate future unstable slopes.
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1 Introduction

‘‘The past and present are keys to the future’’ has been the

underlying principle over three decades to support statis-

tically-based landslide susceptibility studies (e.g., Calvello

et al. 2013; Ercanoglu and Gokceoglu 2004; Ermini et al.

2005; Varnes et al. 1984). This hypothesis implies time-

invariance of the slope response. However, if on the one

hand it may be true that the effect of predisposing factors

and triggers does not change over time because the laws of

physics stay the same; it is certainly true that the space-

time patterns of the triggers change from one event to

another (Van Westen et al. 2008). And yet, the temporal

dimension is rarely accounted for (Corominas and Moya

2008; Del Gaudio et al. 2003; Lee et al. 2008) although the

susceptibility of a given area is likely to change as a

function of the space-time realization of the trigger (Ghosh

et al. 2012; Lombardo et al. 2020a).

In physically-based approaches for earthquake-induced

landslide susceptibility and hazard assessment, more

emphasis has been given to this time variant aspect. Jibson

et al. (2000) are one of the first that present a method for

producing probabilistic seismic landslide hazard maps,

based on Newmark displacement modeling, using detailed

data of landslide inventories, strong motion records,
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geological, geotechnical and topographic data. For the

Northridge earthquake they computed the probability of

failure in relation to Newmark displacement. Several

authors have used ground motion data for different return

periods in combination with the Newmark displacement

model to analyze shallow landslide probability (e.g.,

Del Gaudio and Wasowski 2004; Jibson and Michael

2009). Rathje and Saygili (2008) developed displacement

hazard curves, that show the exceedance probability of

Newmark displacement levels. To account for the uncer-

tainty in input parameters, several approaches have been

proposed, such as Monte Carlo simulation (see, Refice and

Capolongo 2002) or logic tree approach (see, Wang and

Rathje 2015). Nevertheless, despite these advances the

application of physically-based approaches for earthquake-

induced landslide susceptibility remains problematic in

many areas, due to the scarcity of geotechnical data to

characterize the soil materials, the lack of soil depth

information, lack of landslide inventories for different

earthquake events, and the limitation of the Newmark

model to shallow slope failures. This paper focuses on the

possible contribution of statistical models to earthquake-

induced landslide hazard assessment. Several authors have

applied statistical techniques for analyzing the relationship

between coseismic landslides and causative factors for a

given earthquake (e.g., Lee et al. 2008).

To deal with such complexity, the research community

dealing with data-driven landslide susceptibility assess-

ment typically follows two lines of analysis:

• The signal of the trigger is ignored in the landslide

susceptibility models (e.g., Cama et al. 2015; Reichen-

bach et al. 2018). This procedure results in susceptibil-

ity maps of landslide occurrence for a given area,

ignoring the specific impacts produced by a given

trigger. The strength of this procedure consists of

delivering simple realizations of the geomorphological

responses. And, in practice this is often the only

possibility, when the available landslide inventory data

lacks the information on date of occurrence (Guzzetti

et al. 2012). However, the main downside is due to the

fact that the spatial (Lombardo et al. 2018a) and

temporal dependence of the landslide distribution is

entirely neglected. For instance, the spatial distribution

of the trigger intensity induces dependence in the

landslide distribution (Lombardo et al. 2019) and the

resulting landslides may further induce temporal depen-

dence to subsequent occurrences because of local

disturbance, re-activation and re-mobilization processes

(Samia et al. 2017).

• The signal of the trigger is incorporated in the

predictive models. This is generally done in near-real

time applications where the space-time dynamics of the

trigger are added to a baseline susceptibility. Such

statistically-based examples can be found in Kirsch-

baum et al. (2010); Kirschbaum and Stanley (2018) in

case of rainfall-induced landslides and in Now-

icki Jessee et al. (2018); Tanyas et al. (2019) for the

earthquake counterpart. The strength of this type of

applications resides in a much closer realization of the

hazard definition (Varnes et al. 1984; Fell et al. 2008),

where the probability of occurrence is estimated in a

given time period and area, though it still does not

account for the landslide event magnitude (Guzzetti

et al. 1999). For this reason, we will refer to suscep-

tibility models that feature the triggering effect of the

ground motion as coseismic susceptibility models in the

rest of the manuscript.

The latter case is inevitably much more comprehensive

than the former, but it comes with an added level of

complexity, and at times even non-feasibility because of

the lack of information on on the spatial distribution and

intensity of the trigger, and also often a lack of the asso-

ciated landslide pattern. In fact, an initial stage is required

where a susceptibility model is calibrated by using an

event-based landslide inventory together with traditional

morphometric and thematic properties, as well as the actual

pattern of the trigger. On the basis of the calibration stage,

the regression coefficients associated with the trigger are

estimated and used in a second phase to make a prediction.

The prediction is essentially a constantly changing sus-

ceptibility/hazard model, where the change is driven by

substituting the trigger with near-real time estimates

coming from remotely-sensed precipitation, for rainfall-

induced landslides (Kirschbaum and Stanley 2018), or by

ground motion parameters for seismically induced land-

slides (Nowicki Jessee et al. 2018).

Currently, these procedures have been implemented by

keeping the regression coefficient of the trigger fixed. In

other words, the uncertainty around the estimation of this

model component has been neglected. In this work, we take

a very similar starting point, but accounting for the

uncertainty of predisposing and triggering effects via sta-

tistical simulations. More specifically, by definition any

Bayesian model returns the distribution of each model

component. By taking advantage of this structure, we cal-

ibrate and validate an initial model where the earthquake-

induced landslides caused by the 2017 Jiuzhaigou earth-

quake (Mw ¼ 6:5) are modeled via a Bayesian Generalized

Additive Model (GAM) by incorporating conditioning

factors together with a triggering factor expressed in the

form of the Peak Ground Acceleration (PGA) of the Jiuz-

haigou earthquake. As a result, we extract the full distri-

bution of the regression coefficients, also associated with

the PGA, and simulate thousands realizations of the
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coseismic susceptibility by substituting the trigger pattern

with the analogous ground shaking parameters belonging to

any past earthquake, for which we have accessible records,

for a time window between 1933 and 2017.

Under the assumption that the functional relationship

between the trigger and the landslides is well estimated,

and that other causative factors have not significantly

changed through time, this procedure allows one to

reconstruct the space-time variation of the probability of

landslide occurrence under different environmental stresses

and to retrieve the distribution of unstable slope throughout

the investigated time window, for a given study area.

The manuscript is arranged as follows: in Sect. 2, we

describe the study area, the data on the previous earth-

quakes in the period since 1933 as the characteristics of the

inventory associated with the Jiuzhaigou earthquake. In

Sect. 3 we describe the subdivision of the area in mapping

units, their status (landslide/no-landslide assignment), the

explanatory variables’ selection, the modeling framework

and the simulations’ structure. Section 4 presents the

results which will be discussed and interpreted in Sect. 5.

Section 6 summarizes the take home message of this work

and the implications of what we propose.

2 Study area

2.1 Geomorphological settings

The study area, known as Jiuzhaigou National Geopark, is

located in the Jiuzhaigou County, near the northern

boundary of Sichuan province in the southwest of China

(see Fig. 1a). It is a part of the Min Mountains range

between the Tibetan Plateau and Sichuan Basin, approxi-

mately 285km north of the city of Chengdu. Jiuzhaigou was

recognised as a World Heritage Site by UNESCO in 1992

and a World Biosphere Reserve in 1997. It is one of the

most popular tourist destinations in the region and more

than five million tourists visit this outstanding natural

landscape each year. Jiuzhaigou is the main tributary of

Baishui River, and is one of the sources of Jialing River via

the Bailong River, part of the Yangtze River system.

The area features high-altitude karst landscape shaped

by glacial, hydrological and tectonic activity (Fig. 1b). The

latter results from the influence of the Minjiang fault

(northwestern section), the Wenxian-Maqin fault and the

Huya fault (Yi et al. 2018). The Huya fault is dominated by

left-lateral strike slip. Previous studies have pointed out the

north-west section of the Huya fault to be the specific

seismogenic source of the Jiuzhaigou earthquake (Fan

et al. 2018; Yusheng et al. 2017; Wu et al. 2018). More

generally, the Jiuzhaigou area is a seismically active hilly

mountainous region which is subjected to more than 50

events with M� 5 in the past century (Fan et al. 2018).

The study area extends from latitudes 32�5421 N to

33�169 N and from longitudes 103�4624 E to 104�354 E,

covering an extent of approximately 653 km2 (Fig. 1c).

This region belongs to a typical cold semi-arid monsoon

climate with annual precipitation of about 704.3 mm. The

mean annual temperature is 7.8�C, with a minimum of

�3:7�C in January and maximum of 16.8�C in July.

Topographically, the elevation ranges from 2000 m to

4828 masl. The study area encompasses three valleys

namely, Shuzheng, Rize and Zechawa valleys, arranged in

a Y shape. The slope gradients, derived from a SRTM

Digital Elevation Model with a spatial resolution of � 30

range from 0� to 78� being generally higher than 30� on

average. The main lithological formations in the study area

are Devonian, Carboniferous, Permian, Triassic, Dolomite

and Quaternary and consist of carbonate rocks such as

dolomite and tufa, as well as some sandstone and limestone

(see Fig. 1 and Table 1). Because of the complex tectonic

settings, ten main and several small faults dissect the car-

bonatic lithotypes, leaving the rock masses weakened by a

large number of joints and cracks.

2.2 Jiuzhaigou earthquake

On 8th August 2017, an earthquake of magnitude Mw6:5

struck the Jiuzhaigou county, belonging to the Sichuan

province, China. It was the third strong earthquake in the

region in the past 11 years, after the 2008 Mw 7.9

Wenchuan earthquake and the 2013 Mw 6.6 Lushan

earthquake (Fan et al. 2018). The epicentre of this earth-

quake was only 5 km west of the Jiuzhaigou National Park,

where the touristic infrastructure of the UNESCO world

heritage site was damaged, 31 person were killed and 525

were injured (Wang et al. 2018). This event affected to

different extents more than 175,000 people, both tourists

and locals. More than 73,000 buildings were damaged 76

of which collapsed. The scenic spot was temporarily closed

after the earthquake and reopened only after two years (on

October 8, 2019), which severely affected the economy

around Jiuzhaigou and the Aba Prefecture.

The ground motion not only directly damaged properties

and lives but, in a cascading effect, it also caused wide-

spread landsliding, which in turn contributed to increase

the overall losses.

Due to the destructive impact of this earthquake, several

studies have focused on studying its characteristics and the

chain of hazards that cascaded in the area, but also pre-

existing conditions. For instance, Cao et al. (2020) has

recently modeled the pre-earthquake landslide suscepti-

bility between 2000 and 2015, whereas Yi et al. (2019)
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modeled the coseismic landslide susceptibility. Conversely,

Chen et al. (2020) reconstructed the spatial distribution of

coseismic unstable slopes by using the Newmark approach.

Chen et al. (2018) and Wang et al. (2018) focused instead

on studying coseismic landslide occurrences and their

impact on infrastructure. Hu et al. (2019a) and Lu et al.

(2019) automatically detected the coseismic landslide sig-

nature and Hu et al. (2019b) numerically simulated

potential post-earthquake debris-flows.

2.3 Earthquake history

The Jiuzhaigou National Geopark is located in the transi-

tion zone of the western margin of the Sichuan Basin and

the Qinghai-Tibet Plateau which features tectonically

active mountains characterized by narrow and steep val-

leys. Numerous moderate to large earthquakes have been

recorded in the past century. Specifically, spanning a

200km radius from the Jiuzhaigou epicenter, the USGS

earthquake catalog (Earle et al. 2009) reports 76 earth-

quakes with magnitude between 5 and 8. Among them,

Table 1 Overview of geological

formations where the acronym

used throughout the text is

associated with the

corresponding age and

lithotype. This information is

obtained from the geological

map provided by the Jiuzhaigou

Management Bureau and

published by Cui et al. (2005)

Geology acronym Age Lithotype

Q Quaternary Clay, sand and gravel

T Triassic Tuffaceous and feldspar/quarz sandstone

P Permian Shale, carbonaceous shale with limestone

Cp Carboniferous/Permian Brecioid and dolomitic limestone, limestone

C Carboniferous Calclithite and compacted limestone

Dc Devonian Layered dolomite

Dd Devonian Biolithite with argillaceous limestone

Fig. 1 a Geographic context; b study area and regional tectonic

setting; c Geological map (acronyms are explained in Table 1),

showing the tectonic setting as well as the Jiuzhaigou-earthquake-

induced landslide inventory; d zoom-in detail of the area with the

highest concentration of landslides
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seven earthquakes have a magnitude 6:0�MW � 7:0, and

only one above 7.0, which corresponds to the Diexi

earthquake.

To reconstruct the coseismic susceptibility patterns due

to past earthquakes, we examined all the available earth-

quakes which have affected the study area and for which

the associated ground motion characteristics were available

at the ShakeMap service of the US Geological Survey

(USGS) (Allen et al. 2008; Wald et al. 2008). We collated

7 past earthquakes here listed in Table 2 and geographi-

cally shown in Fig. 2. The MW range since 1933 spans

from a minimum of 5.7 to a maximum of 7.3, with most of

the epicenters located to the south and outside the boundary

of the study area. And, two more recent earthquakes which

occurred to the north and within the study area.

Table 2 List of eartquake which

have affected the study area and

for which the shaking levels

were digitally accessible in the

ShakeMap Atlas (Allen et al.

2008)

ID Location Date/time Epicentre lat Epicentre long Mw Depth (km)

a Diexi 1933-08-25/07:50:33 (UTC) 32.012� N 103.676� E 7.3 15

b Songpan 1960-10-09/10:43:45 (UTC) 32.706� N 103.629� E 6.3 25

c Songpan 1973-08-11/07:15:39 (UTC) 32.995� N 104.015� E 6.1 33

d Songpan 1974-01-15/22:50:29 (UTC) 32.913� N 104.203� E 5.7 33

e Songpan-pingwu 1976-08-16/14:06:45 (UTC) 32.752� N 104.157� E 6.9 16

f Songpan-pingwu 1976-08-21/21:49:54 (UTC) 32.571� N 104.249� E 6.4 33

g Songpan-pingwu 1976-08-23/03:30:07 (UTC) 32.492� N 104.181� E 6.7 33

h Jiuzhaigou 2017-08-08/13:19:49 (UTC) 33.193� N 103.855� E 6.5 9

Fig. 2 a Location of the epicenters and b associated PGA levels (shown as contour lines) of all the earthquakes available in the ShakeMap Atlas

(Allen et al. 2008), which have struck the area since 1933)
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This is more evident in Fig. 3 where we focus on the

study area. In fact the highest PGAs are recorded in the

northern sector, these being associated with the 2017

Jiuzhaigou earthquake. The remaining patterns generally

show a northward increase of PGA levels.

2.4 Landslide mapping

The preparation of a reliable and accurate landslide

inventory map recording the location, spatial extent and

landslide characteristics is essential for any susceptibility

analysis (Guzzetti et al. 2012; Harp et al. 2011). In case of

earthquake-induced landslides (EQIL), the quality and

completeness of an inventory affects the coseismic sus-

ceptibility estimates of any landslide affected area (Tanyaş

et al. 2018).

For this reason, we undertook a multi-source mapping

procedure to discriminate pre- and co-seismic landslides.

The landslide inventory was carried out through visual

interpretation of high-resolution images with different

resolutions and sources (see Table 3). Remotely sensed

scenes, Unmanned Aerial Vehicle (UAV) photographs and

subsequent detailed field surveys were used for mapping

the landslides source and deposition areas.

Fig. 3 PGA patterns affecting the study area for each of the

earthquakes under examination (Source: USGS ShakeMap system

Garcı́a et al. 2012). Notably, there is no strict minimum PGA reported

in the literature to trigger landslides (Sassa et al. 2007). However,

several articles have reported that the vast majority of earthquake-

induced landslides trigger with a minimum threshold of 0.02 g

(Jibson and Harp 2016; Tanyaş and Lombardo 2019), which is also

contained in every PGA map shown in this figure: a
0:03\PGA\0:07; b 0:03\PGA\0:1; c 0:04\PGA\0:25; d
0:02\PGA\0:1; e 0:04\PGA\0:2; f 0:04\PGA\0:09; g
0:02\PGA\0:05; h 0:08\PGA\0:37

Table 3 Overview of the data

used for mapping landslides. EQ

stands for earthquake

Data description Data type Resolution Source

Pre-EQ satellite image Raster (�.tif) 2.5 m Spot-5

Post-EQ satellite image Raster (�.tif) 1.0 m Gaofen-1 and Gaofen-2

Post-EQ UAV aerial image Raster (�.tif) 0.2 m Field survey
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More specifically, the existence of landslides prior to the

earthquake was investigated by using a Spot-5 scene

(2.5 m resolution) acquired on 21 December 2015. These

pre-earthquake inventories were used to isolate coseismic

landslides (new activations and re-activations) mapped via

Gaofen-1 and Gaofen-2 satellite images (1m resolution)

acquired on 16 August and 9 August 2017, respectively.

And, we also refined the mapping procedure by addition-

ally examining UAV photos (0.2m resolution) of key areas

acquired during field surveys (Table 3). Some examples of

identified landslides are shown in Fig. 4.

Overall, we mapped 1022 landslides associated with the

Jiuzhaigou earthquake. The total landslide area sums up to

3.88 km2 covering approximately 0.6% of the study area.

They mainly occurred along the valleys, roads or rivers

(see Fig. 4). Notably, Fan et al. (2018), report 1883 land-

slides triggered for the same earthquake, although this

information is the result of a much wider study area, furter

extended to the North West (see Figure 5 in their article)

compared to the area where we focus in the present work.

The failure mechanisms consisted of shallow rock or

debris slides with minor rockfall occurrences (Varnes

1978; Hungr et al. 2014) spanning from small to moderate

landslide in size. This is shown in Fig. 5 where the Fre-

quency Area Distribution shows a rollover point at

approximately 100 m2, a minimum landslide area of

around 30 m2 and a well recognizable distribution, tradi-

tionally explained by a Inverse-Gamma distribution (Fan

et al. 2019). These characteristics have been recently rec-

ognized for earthquake-induced landslide inventories of

Fig. 4 Examples of landslide interpretation based on pre- and post-earthquake high resolution satellite and UAV images. Panels a, b and c

correspond to pre-earthquake conditions; A, B, C shows post-earthquake satellite images; UA, UB, UC are photographs acquired using drones
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good quality and completeness (Tanyaş et al. 2018; Tanyaş

and Lombardo 2020).

3 Modeling strategy

3.1 Mapping unit

The first requirement of any landslide susceptibility model

is the choice of the type of mapping unit used in the sta-

tistical analysis. The most common choice corresponds to a

regular squared lattice or grid (e.g., Cama et al. 2016;

Hussin et al. 2016; Reichenbach et al. 2018). However,

this mapping unit is sensible to mapping errors (Steger

et al. 2016) and the assignment of the instability status is

inherently uncertain as it is often subjectively chosen

between the centroid of the landslide body (e.g., Hussin

et al. 2016; Castro Camilo et al. 2017) or the highest point

along the landslide polygon (e.g., Amato et al. 2019;

Lombardo et al. 2014).

To avoid the issues concerning the grid-based choice,

here we opted for a Slope Unit (SU) partition (Carrara

et al. 1995). We computed the SUs by using the r.slopeu-

nits software made accessible by Alvioli et al. (2016).

More specifically, we parameterized r.slopeunits with a

very large Flow Accumulation threshold (800,000 m2) to

scan the area with a large configuration of possible SU

arrangements, whose conversion to the final setup we

controlled via a small minimum slope unit area of

10000 m2.

When at least one centroid of a landslide initiation

polygon fell inside a SU, the mapping unit was assigned a

positive landslide status, and vice-versa for the non-land-

slide status.

3.2 Covariates

The covariate set we chose features eight morphometric

properties, two related to the geological setting, and one

related to the Peak Ground Acceleration (Table 4).

The morphometric covariates were derived from the a

30 m resolution DEM provided by Sichuan Bureau of

Surveying, Mapping and Geoinformation, using a number

of different methods, following the references indicated in

Table 4.

The same institute provided the Geological Map of the

area, which we rasterized to coincide with the DEM res-

olution. We also generated a bedding map by digitizing

strike and dip measurements collected in the field and

subsequently crossing this parameters together with the

exposition of any given lithotype reported in the geological

map (see Table 5). More specifically, we followed the idea

introduced by Ghosh et al. (2010) and the approach later

proposed by Santangelo et al. (2015) exploiting a total

sample of 1490 dip measurement, which we then grouped

by lithology, as follows: 125 in Q, 123 in T, 133 in P, 368

in Cp, 560 in C, 79 in Dc, 102 in Dd.

From the fault map provided by the Exploitation of

Mineral Resources, we computed the Euclidean distance

from each pixel in the study area to the nearest fault line.

And, we repeated the same operation to compute the

Euclidean distance from the river network.

Because the SUs actually contain a distribution of pixel

values for each covariate, we summarized the covariate

information at the SU level by computing mean (l, here-
after) and standard deviation (r, hereafter) of continuous
properties. As for the categorical covariates such as bed-

ding and geology, we extracted the most represented class

per SU.

Here we will share the rational behind our choice of the

covariates, with a particular emphasis on DEM-derived

attributes. The covariate set features the elevation as a

proxy for relief effects that carry the signal of the potential

energy distribution across the landscape (Görüm 2019).

The slope steepness influences the balance between

retaining and destabilising forces (Wu and Sidle 1995).

Profile and planar curvatures control divergence and con-

vergence of both surface runoff and shallow gravitational

stresses (Ohlmacher 2007). Eastness and Northness bring

the signal of the slope exposition, being a proxy for the

distribution of dry and wet soils as a function of solar

lighting (Epifânio et al. 2014). Relative Slope Position

informs the model about the site location along the topo-

graphic profile (Böhner and Selige 2006). The Topographic

Wetness Index is a proxy for the terrain influence on

Fig. 5 Frequency area distribution of coseismic landslides
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retained water coming from upslope contributing areas

(Gokceoglu et al. 2005). Distance to Stream can express

the natural effect of overland flows as a predisposing factor

for slope undercutting (Donati and Turrini 2002).

Each of the continous covariates listed in Table 4 was

rescaled with mean zero and unit variance, or in other

words, by subtracting every covariate value per SU with

the mean covariate value of all the SUs in the study area

and ultimately dividing the result by the standard deviation

of the covariate values of all the SUs in the area. This

procedure ensures that the covariate effects estimated

during the modeling phase are all in the same scale,

enabling the interpretation of dominant properties on the

slope stability process.

Ultimately, before running any analysis we have tested

for potential collinearity issues between the PGAl and the

other contrinuous properties. This is summarized in Fig. 6

where the maximum Pearson correlation coefficient, in

absolute value, is found with respect to Elevationl, being

equal to � 0.56, and distant from the common 0.7 corre-

lation threshold deemed to bring collinearity issues (Cas-

tro Camilo et al. 2017).

3.3 Landslide susceptibility via generalized
additive model

A Generalized Additive Model (GAM) is an extension of

the common Generalized Linear Model used in the vast

majority of landslide susceptibility studies (Reichenbach

et al. 2018). The added value corresponds to the ability of

estimating both linear and nonlinear relationships between

covariates and landslide occurrences. Nonlinearities can be

modeled as pure categorical, or more precisely as

Table 4 List of covariates used

for the modeling phase. The

Covariate Name we report

corresponds to the covariate we

computed at the pixel level,

followed by its Resolution or

Scale. The Reference describes

the method to compute it and

the Acronym reports how we

will refer to each covariate

throughout the text

Covariate name Scale/resolution References Acronym

Elevation 30 m – Elevl

Elevr

Slope 30 m Zevenbergen and Thorne (1987) Slopel

Sloper

Profile curvature 30 m Heerdegen and Beran (1982) PRCl

PRCr

Planar curvature 30 m Heerdegen and Beran (1982) PRCl

PLCr

Eastness 30 m Lombardo et al. (2018b) ENl

ENr

Northness 30 m Lombardo et al. (2018b) NNl

NNr

Relative slope position 30 m Böhner and Selige (2006) RSPl

RSPr

Topographic wetness index 30 m Beven and Kirkby (1979) TWIl

TWIr

Peak ground acceleration 500 m Allen et al. (2008) PGAl

PGAr

Distance to fault 30 m – Dist2Fl

Dist2Fr

Distance to stream 30 m – Dist2Sl

Dist2Sr

Geology 1:50,000 (Cui et al. 2005) Geo

Bedding 30 m Santangelo et al. (2015) B

Table 5 Overview of bedding types listed with the same acronyms

used throughout the manuscript. The rational corresponds to the

relationship we used to calculate the bedding, where Asp is the slope

aspect [0�,360�), Dip is the dip direction [0�, 360�). From these two

values we compute the absolute difference AbsDiff ¼ jAsp� Dipj
and reclassify it to obtain the strata attitude or bedding

Bedding acronym Bedding type Bedding angle range

B1 Lateral slope 60–120 and 240–300

B2 Reverse slope 150–210

B3 Reverse oblique slope 120–150 and 210–240

B4 Dip slope 0–30 and 330–360

B5 Down-dip slope 30–60 and 300–330
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independent and identically-distributed random variables

(iid), as well as ordinal, corresponding to a model with

adjacent inter-class dependence, which we here imple-

mented as a First Order Random Walk (RW1), details

provided in Bakka et al. (2018); Krainski et al. (2018).

Such implementation allows one to obtain different

regression coefficients for each of the considered portions

of a covariate reclassified from a continuous property while

simultaneously constraining the ordinal dependence

between adjacent classes via a spline interpolation. This

procedure has been recently introduced and explained in

(Lombardo et al. 2018a) in a similar setting although

similar modeling approaches have already been tested for

landslide susceptibility via machine learning routines such

as Multivariate Adaptive Regression Splines (see, Con-

oscenti et al. 2016).

Here we summarize some definitions that will be useful

later through the text. A Generalized Linear Model which

assumes a Bernoulli probability distribution as the under-

lying stochastic process can be summarized as follows:

gðPÞ ¼ b0 þ b1x1 þ � � � þ bjxj þ f ðXmÞ ð1Þ

where g is the logic link, b0 is the global intercept, b are

regression coefficients estimated assuming a linear rela-

tionship between landslide occurrence and the given

covariate xj. and f can be any function we implement to

model discrete covariates (Xm). In this work we used a iid

implementation in case of discrete classes independent

from each other, and a RW1 implementation for ordinal

cases, where adjacent classes retain a ordered structure

which we want to account for in the modeling stage.

It is important to note that the right term of Eq. (1) is

referred to as the ‘‘linear predictor’’ and corresponds to the

combination of each model component, or in other words,

to the sum of all the terms namely, intercept, fixed (co-

variates linearly modeled) and random effects (covariates

nonlinearly modeled).

Once the model estimates the linear predictor, the con-

version into probabilities is obtained via the logic link g as

follows:

P ¼ eb0þb1x1þ���þbjxjþf ðXmÞ

1þ eb0þb1x1þ���þbjxjþf ðXmÞ
ð2Þ

The estimated probabilities can then be intersected with a

known (for calibration) and unknown (for validation)

vector of presence/absence cases to assess the performance

of any model. Here we calibrated over each SU in the area.

And, we implemented a 10-fold cross validation

scheme where the model is trained with 90% of the

available SUs but constraining the random sampling of the

complementary 10% to extract each SU only once. In turn,

the combination of the 10 subsets used for validation

returns the whole study area, producing a fully predicted

map.

Before moving to the explanation of the statistical

simulations, we remind here the reader that any Bayesian

model returns a distribution of potential values for each

model component, be it the global intercept, each class of a

discrete property (both iid and RW1), the regression coef-

ficients of covariates used linearly and even the outcome

(here a probability of landslide occurrence) itself (Lom-

bardo et al. 2020b).
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between the ground motion and

the other continuous properties
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3.4 Statistical simulations

Once a statistical model is estimated, one can always

generate any number of simulations from it by randomly

sampling from the distribution of each model component

and solving for the specific predictive equation.

This is particularly intuitive in the Bayesian setting

where each model component is expressed with a distri-

bution of values. Therefore, a posteriori, one can generate

any number of regression coefficient values following the

estimated distribution, compute the series of products and

sums to calculate the linear predictor and finally transform

the result into susceptibilities via the logit link fuction. In

this work, we use the same structure explained above.

However, we apply some changes to retrieve the coseismic

susceptibility patterns according to past ground shaking,

for which we have digital information throughout the his-

tory of the Jiuzhaigou area.

More specifically, we developed an initial model fitted

and validated by using coseismic landslides and the set of

covariates listed in Table 4, where the PGA corresponded

to the Jiuzhaigou earthquake. Once we tested the prediction

skill of the model (reported in Sect. 4) we implemented the

following simulation stages, also graphically summarized

in Fig. 7:

• We simulated 1000 realizations of the linear predictor

estimated from our binomial GAM implementation for

each of the SUs, from the initial model where the

ground motion effect onto the coseismic susceptibility

map was carried by the product of the PGA regression

coefficient and the PGA values. Each simulation

essential draws one random sample from all regression

coefficients’ distributions, multiply the sample for the

corresponding covariate value and sum all separate

model components together.
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Fig. 7 Graphical sketch of the

simulation routine
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• From the 1000 simulations we subtracted the product

between each randomly generated bPGAl2017
sample and

the PGAl2017 values for each SU.

• We added the product between the each randomly

generated bPGAl2017
sample and the vector of PGAl

values for each SU, this time coming from one of the 7

past alternatives of PGA pattern listed in Table 2.

• We stored the 1000 simulations, converted them all into

coseismic susceptibilities by using Equation (2).

• We calculated the mean coseismic susceptibility of the

1000 simulations for each SU and each past earthquake.

• We calculated the 95% Credible Interval (the difference

between the 97.5% and the 2.5% percentiles of the 1000

simulations) for each SU and each past earthquake.

• We calculated the mean and 95% Credible Interval of

all the mean coseismic susceptibility maps obtained

from 1933 to 2017.

4 Results

This section includes the assessment of the 10-fold cross-

validation routine. This is followed by the description of

the significant covariate effects (for which the model is at

least 95% certain that the contribution is either positive or

negative, i.e., the estimated distribution does not contain

zero). This is complemented by summarizing the reference

coseismic susceptibility model for the 2017 Jiuzhaigou

earthquake in map form and the resulting descripting

statistics for the 1000 simulations for each of the 7 earth-

quake under examination. Ultimately, we show the sum-

mary maps for the coseismic susceptibility model which

combines the signal of all possible susceptibility arrange-

ments for the period between 1933 and 2017.

4.1 Predictive performance

Figure 8 shows the 10-fold cross-validation we performed,

which classifies as outstanding according to Hosmer and

Lemeshow (2000). The x-axis reports the False Positive

Rate (FPR or 1-Sensitivity) whereas the y-axis corresponds

to the True Positive Rate (TPR or Specificity), measured at

various probability cutoffs (for more details, see Fluss

et al. 2005; Rahmati et al. 2019). The 10 AUCs (computed

as the integral under the ROC curves) we obtained are all

confined above 0.9 (with a median of approximately 0.93).

And, the variability associated with each cross-validated

subset is small. This can be seen both in Fig. 8a where the

ROC curves do not spread over the 2D space defined

between sensitivity and specificity. The same is also valid

for Fig. 8b where the interquartile distance is approxi-

mately 0.03 and the difference between minimum and

maximum AUC is only 0.07.

4.2 Covariates’ effects

This section reports the covariates effects for which we

recall that positive regression coefficients contribute to

increase the coseismic landslide susceptibility and negative

coefficients contribute to reduce it. As for regression

coefficients equal or near the zero value, these are repre-

sentative of covariates estimated to play a negligible role

with respect to the coseismic landslide susceptibility. Being

the modeling routines framed in a Bayesian formulation,

the description made above needs to be considered with

respect to the whole regression coefficients’ distributions.

Figure 9 shows the significant fixed effects, or the

regression coefficients of those covariates that have been

used linearly.

The distribution of all regression coefficients appears

quite narrow despite the relatively small sample size, and

well determined by the model. The most striking charac-

teristics is associated to the bPGA2017
which appears to

Fig. 8 Left panel shows the ten

cross-validated Receiver

Operating Characteristics

curves of the reference model

featuring the PGA from the

Jiuzhaigou earthquake. The

right panel summarizes the

associated AUC distribution
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dominate the coseismic susceptibility pattern. In fact, being

the covariates rescaled (see, Sect. 3.2), the fixed effects

reported in Fig. 9 are directly comparable, which makes

the PGA contribution, in absolute value, much larger than

any other covariate, taking aside the Elevl, which has an

opposite role to the PGA.

With regards to the random effects, or those that have

been modeled nonlinearly, Fig. 10 shows the descriptive

statistics of two categorical and two ordinal cases.

Overall, both Bedding and Geology do not appear to be

significant (the zero lines cross the distribution of each

categorical class) although certain classes have a posterior

mean quite far (both positively and negatively) from being

null. Therefore, despite the overall non-significance, on

average some classes can still contribute to the spatial

pattern of the final coseismic susceptibility model/map. A

similar consideration can be made for Slopel and RSPl.

Both covariates have their distribution crossed by the zero

line. However, the posterior mean of RSPl is clearly
Fig. 9 Significant fixed effects shown through their estimated

posterior distributions summarized with mean (blue rhombi) and

95% CI (in black)

Fig. 10 The first row reports the

random iid effects, for each

class of Bedding and Geology

(the acronyms are explained in

Tables 5 and 1 ), through their

estimated posterior distributions

summarized with mean (blue

rhombi) the 95% CI (in black).

The second row shows the

random ordinal (RW1) effects,

of Slopel and RSPl (Relative

Slope Position), via their

posterior distributions where the

mean is highlighted in blue and

the the 95% CI in black
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aligned with zero making its impact negligible with respect

to the final coseismic susceptibility model/map. As for the

posterior mean of Slopel, this is constantly quite far from

zero and shows a clear, nonlinear and increasing trend from

low to high slope steepness values. More specifically, the

Slopel contribution becomes increasingly positive for

slopes above 27 degrees of steepness.

4.3 Coseismic landslide susceptibility mapping

Figure 11 shows the summary statistics of the reference

model for the 2017 Jiuzhaigou earthquake in map form

(posterior mean and 95% CI), together with the error plot.

The mean coseismic landslide susceptibility map for the

Jiuzhaigou earthquake shows a southward decreasing trend

due to the dominant contribution of the PGAl2017 . The

uncertainty associated to the mean appears relatively small

in the southernmost sector of the study area although it

shows a much larger spread to the north. The error plot or

mean versus 95% CI (Fig. 11c) is meant to evaluate whe-

ther these estimates are reasonable. In fact, an ideal model

should reliably predict very low and very high probability

values. In other words, the left and right tail of the posterior

mean probability distribution should be associated to a very

limited uncertainty. Conversely, the central portion of the

posterior mean probability distribution is intrinsically

much more difficult (i.e., uncertain) to be determined

(Reichenbach et al. 2018) and therefore a larger spread can

be reasonably accepted (Rossi et al. 2010).

4.4 Statistical simulations

For each of the seven other earthquakes (see Table 2) that

occurred in the study area before the Jiuzhaigou earth-

quake, we also simulated 1000 realizations of the coseismic

susceptibility patterns by replacing the PGA map of the

2017 Jiuzhaigou earthquake with the ones for the particular

earthquakes. To summarize the 1000 simulations we show

in Fig. 12 the main statistical moment as well as the 95%

CI, separately for each scenario.

As a result, the coseismic susceptibility pattern clearly

changes as a function of the various PGA patterns of the

earthquake, some of which are located to the south of the

study area. More specifically, being the majority of past

epicenters located to the south, the largest coseismic sus-

ceptibility values are shown near the catchment outlet.

And, similarly to the spatial patterns shown in Fig. 11, the

uncertainty closely follows the coseismic susceptibility

trend by increasing as the probability increases and

decreasing towards the highest mean probability again.

This is expected because being the PGA map the largest

and positive contributor to the reference model (see Fig. 9),

i.e., whenever the PGA levels are low, the slopes are

estimated with proportionally low coseismic susceptibili-

ties. The opposite is also true, for whenever the PGA levels

are high, this effect dominates the coseismic susceptibility

and the other model components have a negligible effect,

hence low variations. Conversely, whenever the PGA is in

between these two extreme situations, the model becomes

more uncertain because the contributions from the other

model components becomes more relevant and lead to an

increased variability, hence larger uncertainty around the

mean coseismic susceptibility behavior.

Fig. 11 Posterior mean (panel a) and 95% CI (panel b) of the

reference coseismic susceptibility model generated with the Peak

Ground Acceleration of the Jiuzhaigou earthquake. Panel c shows the
error plot where the two maps in the first and second panel are plotted

against each other, the colorbar indicates the point density per pixel in

the two-dimensional space defined between the posterior mean and

95% CI
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Ultimately, we generated a combined probability which

would account for all the possible variations in the

coseismic susceptibility patterns as a result of the contri-

butions of the ground motions experienced from 1933 to

Fig. 12 Mean simulated coseismic susceptibility maps (a to g) and 95% CI maps (A to G), for each of the seven earthquakes occurred in the area

prior to the Jiuzhaigou earthquake
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2017. To achieve this, we combined the mean coseismic

susceptibility map of the reference model calibrated on the

Jiuzhaigou earthquake (Fig. 11) and the mean simulated

coseismic susceptibility of the other seven earthquakes

(Fig. 12). Ultimately, to compress the information carried

by the multiple scenarios, we compute the mean and 95%

interval across the whole time series. This is shown in Fig.

13 where we choose to show the 95% CI in its separate

components, i.e., the 2.5 percentile and the 97.5 percentile

to plot the best and worst case scenarios that the area would

exhibit across the considered time span. As for most rep-

resentative pattern since 1933, the mean map delivers such

information.

5 Discussion

5.1 Reference model interpretation

In this work, we attempted to combine the ground motion

patterns into an overall earthquake-induced landslide sus-

ceptibility map for the time period between 1933 and 2017.

The reference model which was validated for the Jiuzhai-

gou earthquake performs with outstanding results (Hosmer

and Lemeshow 2000) suggesting that the influence of each

model component is well determined (Fig. 8). We prove

this in Fig. 9 where the regression coefficients can be easily

interpreted with respect to the slope instability process,

although the same cannot be said for the categorical cases

corresponding to the Geology and Bedding. This could be

an effect due to the complexity of representing thematic

information at the SU level. In fact, one of the most

difficult tasks when creating susceptibility models with

mapping units different from the grid-cell case consists of

the loss of high-resolution information. In fact, at the SU

level or catchment or any large mapping unit, one needs to

approximate the distribution of properties that vary at small

spatial scales (e.g., Dreyfus et al. 2013). For a continuous

factor such as Slope or any other terrain derivative, this

comes relatively easy by computing some descriptive

statistics such as the mean and standard deviation (same as

we did here) or a much finer description into quantiles

(e.g., Amato et al. 2019). However, for a geological map or

a bedding measurement, representing these two properties

at the SU level is more complex. One could opt to assign to

a given SU the most representative categorical class (same

as we did here) or one could compute the percentage extent

of each categorical class with respect to the given SU (e.g.,

Castro Camilo et al. 2017; Guzzetti et al. 2006). Here, we

opted for the most representative class to minimize the

model complexity due to the subsequent simulations

stages. However, this may have neglected a more infor-

mative use of the Bedding and Geology in the model,

which we remind here, outstandingly performed

nevertheless.

With respect to each model component, the mean dis-

tance to all the tectonic lines shows a negative contribution

(mean bDist2Fl
¼ �0:60). This is generally counter-intu-

itive as one would expect the closer the seismogenic fault,

the higher the probability of landslide occurrence. How-

ever, this assumption is not valid for two reasons. The first

is that the proximity to the rupturing fault is already part of

the PGA information. Therefore, we computed the distance

from any fault dissecting the carbonate rocks in the area.

Fig. 13 Quantile 0.025 (a), mean (b) and quantile 0.975 (c) of the distribution of all the possible posterior means featuring different ground

motion scenarios from 1933 to 2017
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As a result, the weakening effect of the fault traces onto the

rock mass strength, increases the chance that the loose

material draping over the landscape gets removed by reg-

ular or common erosion. The regression coefficient of the

mean Elevation per SU appears to be negative (mean

bElevl ¼ �2:17). This could be a characteristic of the

landslides in study area, which have mostly been recog-

nised in the lower portions of the topography range (see

Figs. 1 and 4 ). It is also worth noting that the PGA map,

does not account for topographic amplification. Therefore,

some confounding effect may still be present between

Elevation and PGA. A much more reliable model could

actually be obtained by using a ground shaking parameter

which includes topographic and possibly soil amplification.

By doing this, any landslide predictive model should

experience an increase in performance and should provide

a much clearer interpretation of each covariate role.

The mean planar (mean bPLCl
¼ �0:63) and profile

(mean bPRCl
¼ 0:62) curvatures show an opposite contri-

bution to the model, where the former favors slope insta-

bility in SUs which are predominantly sidewardly concave

and the latter contributes to increase the coseismic sus-

ceptibility in SUs which are upwardly concave.

The standard deviation of the RSP appears to play a

major role in explaining the slope instability, with a sig-

nificant and positive mean coefficients which implies that

as the RSPl increases, the co-seismic landslide suscepti-

bility increases as well. Being the RSP a normalized ele-

vation where the minimum values is assigned to the

theoretical floodplain and the maximum value assigned to

local ridges, a large standard deviation of this covariate in a

given SU implies a large topographic roughness. As a

result, the large and positive mean regression coefficient

(mean bRSPr
¼ 0:69) is a reasonable result. A similar signal

is carried by the standard deviation of the slope steepness

per SU. This covariate is also a proxy for topographic

roughness and here (Fig. 9) it is reasonably shown to

positively contribute to slope instability (mean

bSloper ¼ 0:38). The topographic wetness index expresses

the morphometric effect to retain water as a function of

local slope steepness values and the upslope contributing

area. Hence, as the TWI increases it generally expresses

locations in the landscape corresponding to flat areas where

water flows receiving water flows from upslope, i.e., rivers

or floodplains. In this work, we have used the most recent

version of the software r.slopeunits by Alvioli et al. (2016),

which directly removes flat topographies from the SU

calculations. And yet, due to the extremely rough land-

scape, no SUs have been removed. By removing flood-

plains, one could expect the TWI effect to be positive and

to express the effect in pore pressure increase in portion of

the slope hanging in the highest sectors of the landscape.

However, because r.slopeunits could not remove any large

flat area, a negative contribution of the TWI may hint for

localized conditions near to the river network. This is why

we interpret the negative role of the TWI as reasonable in

our model (mean bTWIl ¼ �0:65). Ultimately, the PGA

effect is shown to have the largest impact on the coseismic

susceptibility estimates with a positive contribution (mean

bPGAl
¼ 2:51). Because the model recognizes its contri-

bution to be significant and with a narrow credible interval

around the mean regression coefficient, we enabled the

simulations for previous earthquake occurrences.

Contrary to our expectations, the covariates related to

the Lithology (Geology) and structural geology (Bedding)

did not appear to be significant. We initially expected a

much stronger and significant lithological and structural

contributions on the basis of the analyses reported in Fan

et al. (2018). There, for the Jiuzhaigou earthquake, albeit

for a much larger area, they highlight that a lithological

control on landslides stands out in their data, especially for

limestones which show the highest values of landslide

densities. The differences between the results shown in Fan

et al. (2018) and ours, may be due to the different size of

the study area but they may also be related to the different

approaches and below we will provide a brief interpretation

on this matter. First of all, our choice of a SU partition

requires an aggregation step from the pixel based resolu-

tion. Here we opted to assign the most representative

lithology to each SU. Therefore, other lithotypes that may

occupy just a small portion of a SU will not be assigned to

it, although they may still be responsible for the initial

failure mechanism. As for the structural information, three

causes may have ‘‘diluted’’ its effect on the final coseismic

susceptibility. The first one may corresponds to the number

of measurements used to generate the structural geological

classes (B1 to B5). We collected 1490 measurements of

strike angle, dip angle and dip direction, but they still

might have been too limited with respect to the whole study

area. The second reason may be due to the procedure we

used to regionalize the data into meaningful bedding

classes. In the end, any model produces some degrees of

errors and uncertainties. And, the aggregation required by

the mapping unit we chose may have also played a role,

smoothing out this signal when we assigned the most

representative bedding to each SU. Some improvements

can be made by collecting more information, increasing the

density of measurements over the study area. For similar

reasons, other relevant factors such as soil types and soil

depth could not be taken into account due to lack of input

data. Overall, Bedding and Geology did not appear to be

significant across each respective classes, which could also

be sue to the shallow nature of the landslides we mapped.

Nevertheless, taking the significance aside, some of the
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classes showed a posterior mean quite different from zero,

which implies that the contribution to the posterior

coseismic susceptibility mean would still be sensitive to

such classes. It is worth to note that significance strongly

depends on sample size and being the SU 1234 in number,

a relatively large credible interval is to be expected.

Therefore, here we try to provide an interpretation of the

Bedding and Geology roles solely based on the posterior

mean contribution, disregarding the rest of the posterior

distribution of each class.

For Bedding, the largest contribution to the the mean

coseismic susceptibility is carried by B5, or Down-Dip

slope (see Fig. 14 and Table 5), with a mean regression

coefficient of 0.24. Despite the limited contribution com-

pared to the other classes in absolute value, B3 (or Reverse

oblique slope) also increases the mean coseismic suscep-

tibility with a mean regression coefficient of 0.10. This is

surprising because the most intuitive bedding type would

have been B4, also in consideration of the vast majority of

landslides being rock-slides. However, the meaning of a

nonsignificant covariate indicates that the model is not

certain of the covariate role (negative or positive) and

therefore, being also the Bedding coefficients close to zero

across classes, we can disregard these limited differences

and their interpretation with respect to the expected bed-

ding behaviour.

Similarly, Geology highlights two positive classes, on

average, these being C, or Carboniferous limestone, and

Cp, or Carboniferous-Permian limestone (see Table 1),

with respective mean coefficients of 0.25 and 0.10. This

result is well in line with Fan et al. (2018). Overall the area

essentially comprises calcareous formations whose

difference is mainly driven from the fracture system dic-

tated from the tectonic compressive regime. As a conse-

quence, we may infer from a positive mean regression

coefficient that lithologies C and Cp may have a higher

degree of weathering and fracture network.

A common test in susceptibility studies to assess how

reasonable a model is consists of checking the regression

coefficient of the slope steepness. If the slope is estimated

to contribute negatively to the model, then either the model

is wrong or some variable interaction effects need to be

dealt with prior to the modeling phase. Our reference

model for the Jiuzhaigou earthquake estimates a positive

contribution of the mean slope per SU (see Fig. 10), sup-

porting our assumption that the model reliably recognizes

the functional relations between causative factors and

landslides. Being the Slopel modeled as a nonlinear ordinal

covariate, the posterior mean and 95% CI trends support

this choice. More specifically, the slope classes between 9

and 20 degrees contributes negatively to the coseismic

susceptibility; and, as of 20 degrees to 34 the contribution

to slope instability increases quite linearly becoming pos-

itive at 27. From 34 degrees to 46 the contribution does not

substantially change. This nonlinear trend well aligns with

the observations made by Parise and Jibson (2000). There,

the authors summarized the slope distribution for the

landslides triggered by the 1994 Northridge earthquake and

showed that, for steeper slopes, the curve rolls over

because very steep slopes are composed made of hard

rocks.

The RSPl appears to be not significant and even the

posterior mean aligns along the zero line (Fig. 10), which

in turn means that taking aside the significance, the average

Fig. 14 Graphical sketch of Bedding types obtained in the study area
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contribution of this covariate to the coseismic susceptibility

is negligible. This position index is a variable that should

capture whether landslides are located closer to ridges

(high values), mid slope, or lower on the slopes. Therefore,

for positions close to the ridge, the RSP should be sensitive

to slope failures where topographic amplification occurs

(see, Meunier et al. 2008). The fact that the relation is

weak may be due to the Slope Unit scale. In fact, within a

slope unit, the RSP signal can be disrupted because of the

aggregation step from pixels to Slope Units. Smoothing the

the original pixel-based RSP signal to an extent where the

link between landslides and their triggering location along

the topographic profile gets lost.

5.2 Coseismic susceptibility overview

The coseismic susceptibility map associated to the Jiuz-

haigou earthquake shows a spatial pattern well correlated

to the Jiuzhaigou PGA (Fig. 11), implying the dominance

of the shaking signal onto the final model. We could only

build and validate our model for the Jiuzhaigou case

because the only earthquake-induced landslide inventory

available in the area corresponds to the coseismic Jiuz-

haigou landslides. Therefore, this model is our reference

which we used to infer the PGA effect in the study area

over the landslide occurrences and retro-project it to the

previous seven earthquakes. It is important to note, that we

could have modeled the PGA as a nonlinear ordinal

property by reclassifying it and using a RW1 same as we

did for the Slopel and RSPl. However, in doing this we

would have calibrated the model on a predefined PGA

range, specific of the Jiuzhaigou earthquake (range

between 0.08 and 0.36 g). As a result, it would have been a

complex task to extrapolate the PGA effect for the other

PGA maps (overall range between 0.02 and 0.2 g) outside

the Jiuzhaigou PGA classified values. For this reason, here

we opt to use the Jiuzhaigou PGAl as a linear property, to

extrapolate the PGA effect outside the Jiuzhaigou PGAl

limit. Thanks to this we simulated by using one single

parameter distribution for the PGA effect and retrieved one

thousand simulated scenarios for each past earthquake (see

Fig. 12). As mentioned before, being the past epicenters

mostly located to the south of the study area, there the

mean simulated coseismic susceptibility show the highest

values.

This is also reflected in the combined coseismic sus-

ceptibility maps shown in Fig. 13. The novelty in the

simulation procedure we propose is clearly highlighted in

this maps which, unless simulated could have not been

produced otherwise. In fact, by incorporating different

PGA contributions, our combined coseismic susceptibility

essentially shows the best, average and worst susceptibility

scenarios that the study area has theoretically experienced

for almost a century. It is important to note that since the

other covariates we have used are static (do not signifi-

cantly change over time), we consider this approach to be

valid. However, if other factors such as landuse, roads (cuts

and embankments) and buildings (cutslopes) would be

incorporated, these would have experienced significant

changes in the period since 1933, as the development of the

national park has led to many human interventions that

might also have contributed to landslide occurrence.

Therefore, we suggest that whether simulations in different

periods would encompass time-varying covariates, their

variation through time should also be expressed and

included in the modeling procedure.

Nevertheless, the combined map we present in Fig. 13 is

not exactly a conventional susceptibility map as it can be

found in many other studies (e.g., Ercanoglu and Gok-

ceoglu 2004; Lee et al. 2004; Van Westen et al. 2008). Our

combined susceptibility incorporates a temporal dimension

(limited to the availability of past scenarios) which makes

it much closer to the definition of a landslide hazard map.

By definition, the landslide hazard should include a return

time or the expected frequency of a widespread landsliding

event. Here, we propose a map which delivers the slope

instability at the SU level for a period of 84 years

(1933–2017). However, if a significant earthquake would

occur in the direct surroundings of the study area, the

landslide pattern might be still quite different, so the map

can still not be considered a full predictive map for the

coming century.

6 Conclusions

Projecting statistically-derived landslide susceptibility

maps over temporal scales different from the one respon-

sible for the specific event for which the model is calibrated

is quite uncommon in the landslide literature (Lombardo

and Tanyas 2020b). The very few cases where this is

performed correspond to future times, where the land use is

expected to change. This is the example of Reichenbach

et al. (2014) and Pisano et al. (2017), however the imple-

mentation they propose neglects the uncertainty that affects

the estimation of any regression parameters whereas our

implementation follows a greater statistical rigor.

Our proposed approach is able to depict time-varying

susceptibility patterns as a function of the space-time

ground motion variability. However, we could only vali-

date the reference model over one specific coseismic

inventory. To test, whether simulations could be reliably

made over different temporal scales, more earthquake-in-

duced landslide inventories for the same area should be

included to validate the simulations. And, a further
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improvement could also be made by accounting for addi-

tional ground motion effects such as topographic and soil

amplifications.

Notably, our approach differs not only from traditional

statistically-based susceptibility approaches but also from

traditional PSHA methods used in ground-motion proba-

bility assessment. The latter includes an analogous plug-in

scheme while using fixed empirical relations derived for

physically-based properties. As a result, models that fea-

ture empirical relations suffer from uncertainty in the

empirical relations but also in terms of model parameteri-

zation, as demonstrated by Wang and Rathje (2015). Our

work derives statistical relations instead of empirical ones

and essentially translates the uncertainty estimation routine

in Wang and Rathje (2015) into the binomial GAM

context.

Nevertheless, implementing statistical simulations for

earthquake scenarios was never tested so far and especially

in the study area, where the main landslide trigger is due to

the strong seismicity. Therefore, our proposed method may

deliver a much more relevant information to local author-

ities compared to traditional susceptibility models, espe-

cially in the case where the scarcity of data on soil and rock

characteristics limit the application of physically-based

methods for earthquake-induced landslide hazard assess-

ment, such as those presented by Wang and Rathje (2015).

In fact, the usual procedure consists of building a suscep-

tibility model trained by using past landslides and either

including the responsible ground motion (thus being overly

specific) or without it (thus neglecting the spatial depen-

dence in the model induced by the shaking levels).

We also stress here that retrieving past coseismic sus-

ceptibility patterns are just one application of statistical

simulations. In fact, one could also project the simulations

towards the future by incorporating scenario-based ground

motion. By doing so, one could estimate future landslide-

prone areas prior to a potential earthquake occurrence and

plan ahead structural design of infrastructure. An example

that goes in this research direction can be found in the

companion paper submitted by Lombardo and Tanyas

(2020a).
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