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Abstract
Stream gauging stations are important in hydrology and water science for obtaining water-related information, such as

stage and discharge. However, for efficient operation and management, a more accurate grouping method is needed, which

should be based on the interrelationships between stream gauging stations. This study presents a grouping method that

employs community detection based on complex networks. The proposed grouping method was compared with the cluster

analysis approach, which is based on statistics, to verify its adaptability. To achieve this goal, 39 stream gauging stations in

the Yeongsan River basin of South Korea were investigated. The numbers of groups (clusters) in the study were two, four,

six, and eight, which were determined to be suitable by fusion coefficient analysis. Ward’s method was employed for

cluster analysis, and multilevel modularity optimization was applied for community detection. A higher level of cohesion

between stream gauging stations was observed in the community detection method at the basin scale and the stream link

scale within the basin than in the cluster analysis. This suggests that community detection is more effective than cluster

analysis in terms of hydrologic similarity, persistence, and connectivity. As such, these findings could be applied to

grouping methods for efficient operation and maintenance of stream gauging stations.
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1 Introduction

Stages or water levels are widely used in various fields,

such as hydrology, water resource management, and

environmental science, and one of the primary hydraulic

structures for stage measurement is a stream gauging sta-

tion (Sauer and Turnipseed 2010). Stage and flow data

observed at stream gauging stations provide important

water information for flood forecast warnings, operation of

multipurpose dams, identification of available water

resources, and operation of agricultural reservoirs.

Consistent efforts have been made to achieve accurate

stage measurements and quality control as high-quality

stage data affect the reliability of flood, drought, water

quality, and ecological management (Joo et al. 2019a, b),

which require efficient management of stream gauging

stations.

The operation and management of stream gauging sta-

tions require basin-scale analysis based on up-and-down

streams, mainstreams, and tributaries. Specifically, stream

gauge networks with small or mid-sized groups of gauging

stations that share common characteristics within a basin

are more favorable for the operation and management of

the stations. More efficient management of stage data could

be possible with accurate grouping methods based on the

characteristics of stream gauging stations. In other words,

an operation and maintenance strategy tailored to each

group of stream gauging stations would allow for the

management of stage data in problem situations. This

requires a reasonable comparison and review of the

grouping methods for stream gauging stations within a

basin.

Popular grouping methods in hydrology include the

well-known cluster analysis technique. Cluster analysis is
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based on statistics and can identify differences between

groups by bringing similar objects together and organizing

them into a group. Cluster analysis based on time series

data has been widely used in the field of hydrology (Kumar

et al. 2015; Lin and Chen 2005; Kyung et al. 2007; Ouyang

et al. 2010; Corduas 2011). Kumar et al. (2015) performed

a cluster analysis to distinguish between seasonal periods

accurately using a metric function based on the error dis-

tribution of seasonal data. Lin and Chen (2005) developed

a time series prediction model for groundwater based on

the self-organizing map (SOM), which is a two-dimen-

sional map that directly identifies the number of clusters

hidden in the radial basis function network (RBFN).

Kyung et al. (2007) used cluster analysis to create a

Korean version of the hydrological drought severity-area-

duration (SAD) curve, and high levels of severity were

observed in the north and central areas along the eastern

coast of the Korean Peninsula. Ouyang et al. (2010) per-

formed a K-means cluster analysis on the mean monthly

discharge, monthly maximum discharge, monthly ampli-

tude, and monthly standard deviation from 1961 through

2000 for the Shaligunlanke Station in the Tarim River

basin of China. The results showed that the annual process

of daily discharge could be classified into five segments.

Corduas (2011) performed a cluster analysis based on the

bond energy algorithm (BEA), which is applicable to

complex data arrays. The analysis was based on 89

hydrological time series data of mean daily discharge from

rivers in Oregon and Washington in the United States.

Cluster analysis has also been conducted for catchment

and hydrologic similarity classification, prediction of

ungauged hydrological data, flood frequency analysis,

hydrological modeling, and flood forecasting (Archfield

et al. 2014; Auerbach et al. 2016; Boscarello et al. 2015;

Isik and Singh 2008; Iyigun et al. 2013; Jingyi and Hall

2004; Kahya et al. 2008; Kileshye et al. 2012; Kuentz et al.

2017; Latt et al. 2015; Ouarda et al. 2008; Rao and Srinivas

2006; Rhee et al. 2008; Tercek et al. 2012; Unal et al.

2003). These studies were conducted using hierarchical

clustering to combine similar clusters until eventually form

a single group.

Network theory, which was invented in the eighteenth

century (Euler 1741), was evolved to a next stage with

complex network studies such as small-world networks,

scale-free networks, network motifs, and community

structure during the last two decades. It is one of the

important tools that the actual application of complex

network theory can describe a complicated and varied

phenomenon (Sivakumar and Woldemeskel 2015). Com-

plex network theory has also been applied recently in the

field of hydrology (Rinaldo et al. 2006; Malik et al. 2012;

Boers et al. 2013; Scarsoglio et al. 2013; Halverson and

Fleming 2015; Sivakumar and Woldemeskel 2014; Fang

et al. 2017; Han et al. 2018; Alarcòn and Lozano 2019;

Kim et al. 2019). Community detection is a method based

on network theory for grouping nodes that share similar or

common goals. Fang et al. (2017) applied community

detection in hydrology and organized communities using

six methods (edge between centrality, greed algorithm,

multilevel modularity optimization, leading eigenvector

method, label propagation method, and the Walktrap

method). The analysis was based on the similarity of daily

streamflow for 1663 gauging stations across the Mississippi

River in the United States. Halverson and Fleming (2015)

organized communities of stream gauging stations located

in the Coast Mountains of British Columbia and the Yukon

in Canada according to seasonal flow regimes for each

region and geographical proximity. Alarcòn and Lozano

(2019) used Interbasin Transfer (IBT) for Spanish river

basins to build a community structure consisting of seven

small groups of two or three nodes.

Grouping methods have been used in the field of

hydrology, including existing stream gauging stations, to

identify differences in hydrological properties between

groups. However, there have been insufficient efforts to

review the accuracy and reliability of such grouping

methods. Moreover, grouping methods have been recog-

nized as a secondary process performed before the primary

analysis. Comprehensive maintenance should be ensured

across the board for stream gauging stations in the same

group by applying more accurate grouping methods.

Hydrologic aspects of gauging stations are directly affected

by upstream gauging stations, and no individual station is

independent.

The aim of this study is to present a grouping method

using community detection based on complex networks.

The proposed grouping method was compared with a sta-

tistical cluster analysis approach to verify its adaptability.

This paper is organized as follows. Section 2 describes

community detection and clustering methods. Multilevel

modularity optimization and Ward’s method that are used

in this study and the methodology to select optimal number

of group were also described. Section 3 constructs the

stream gauge network that is consisting of the Node and

Link using 39 stream gauging stations in the Youngsan

River basin in South Korea and analyzes its community

detection characteristics. Hierarchical cluster analysis was

conducted according to the similarity between water levels.

The grouping result and its characteristics were also ana-

lyzed. Based on the basin hydrology, the applicability of

the complex network-based community detection method

is compared with the statistical-based cluster analysis

method. Finally, Sect. 4 provides a summary of the study.
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2 Methods for community detection
and cluster analysis

2.1 Network theory and community detection

2.1.1 Basic network theory

A network or graph is a set of points that are connected by

a series of lines, as shown in Fig. 1. Points are called

vertices or nodes, and lines are called edges or links. A

network can be expressed as G = {P, E}, where P is a set

of N nodes (P1, P2, …, PN), and E is a set of n links.

Figure 1 shows a network consisting of N = 7 nodes and

n = 8 links. This network has a set of nodes P = {1, 2, 3, 4,

5, 6, 7} and a set of links E = {(1,7), (2,7), (3,5), (3,7),

(4,7), (5,6), (6,7)}.

Figure 1 shows the simplest form of a network that may

appear in a more complex form. Examples of more com-

plex networks include: (1) a network with one or more

different types of nodes and links, (2) a network with dif-

ferent weights for different nodes and links, depending on

the nodes and connection strength, (3) a network with

cyclic or acyclic links, (4) a network with multi-links, self-

links, and hyper-links, and (5) a network with two nodes

that are separated from different types and operated inde-

pendently in a separate type. Sivakumar (2015) provide a

more detailed description of such networks.

Network characteristics can be studied in different ways.

The key concepts of a network in the context of the modern

theory of complex networks include centrality analysis, the

clustering coefficient, degree distribution, and community

detection. This study uses community detection for

grouping the stream gauging stations within a basin.

2.1.2 Community detection

In complex networks, nodes cluster together and form a

group. The nodes in a group are closely connected, and the

attributes of a group are typically independent of other

groups. These groups are called communities, and finding

communities is called community detection.

A community can also be called a cluster in a broad

sense. However, the difference between clustering and

community detection is that groups are formed only by the

similarity of data in cluster analysis, while groups are

formed by data similarity and by network theory and

structure in the community detection method. Modularity is

first used when constructing communities. The use of

modularity allows us to quantify the differences between

the number of connections in a community and the number

of random connections, assuming a community within the

entire network. The modularity equation proposed by

Newman (2004) is commonly cited:

Q ¼ 1

2m

Xn

i;j

aij �
kikj
2m

� �
d ci; cj
� �

ð1Þ

where m is the total number of links, n is the total number

of nodes, aij is the connectivity between nodes i and j, and

ki is the number of all connections to the nodes i and j. In

addition, d ci; cj
� �

is one when ci and cj are in the same

community and zero when they are in different

communities.

Modularity requires time-consuming calculations. Pos-

sible methods for overcoming this disadvantage include

edge between centrality (Newman and Girvan 2004), the

greedy algorithm (Clauset et al. 2004), the Walktrap

method (Pons and Latapy 2005), the leading eigenvector

method (Newman 2006), the label propagation method

(Raghavan et al. 2007), and multilevel modularity opti-

mization (Blondel et al. 2008). The aim of all methods is to

improve modularity to optimize community detection.

The multilevel modularity optimization (or Louvain

method) is the most recently developed modularity opti-

mization and was employed for this study because it is

designed to address the mentioned problems. For example,

the greedy algorithm method and the multilevel modularity

optimization method have the fastest community detection

but poor optimization as they tend to create super com-

munities. Multilevel modularity optimization consists of

two phases that are repeated iteratively, which can be

expressed as (Blondel et al. 2008):

Fig. 1 Diagram of a network consisting of N = 7 nodes and n = 8

links
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DQ ¼
P

in þki;in
2m

�
P

tot þki
2m

� �2
" #

�
P

in

2m
�

P
tot

2m

� �2

� ki
2m

� �2
" #

ð2Þ

where
P

in is the sum of the weights of the links inside the

community,
P

tot is the sum of the weights of the links

incident to nodes in community, ki is the sum of the

weights of the links incident to node i, ki;in is the sum of the

weights of the links from i to nodes in the community, and

m is the sum of the weights of all the links in the network.

Phase 1 forms communities using the improved modular-

ity, and Phase 2 combines the communities created in

Phase 1 into a block that is treated as a node. Next, the

algorithm in Phase 1 again merges the newly modified

networks. The model stops when no further changes occur

in Phase 1 following Phase 2.

2.2 Cluster analysis

A cluster is based on the similar properties present in the

interconnection between nodes. The task of classifying

clusters based on similarity is called cluster analysis or

clustering. Cluster analysis is based on statistics and can be

classified into two types: hierarchical (agglomerative)

clustering and partitional (divisive) clustering. Hierarchical

clustering yields different cluster results step by step

without predetermining the number of clusters. Partitional

clustering is a method of specifying the number of clusters

in advance. Based on these methods, the general procedure

for network clustering is shown in Fig. 2.

Cluster analysis was employed to split stream gauging

stations into groups based on stage data obtained from the

stations. Hierarchical cluster analysis was applied because

it can derive clusters of stream gauging stations without a

predetermined number of clusters (Kaufman and Rous-

seeuw 2005). Several methods can be used to form clusters,

such as single linkage, complete linkage, average linkage,

and Ward’s method.

Ward’s method was used in this study. Unlike other

methods, it is less sensitive to noise and outliers in data.

Ward’s method is very efficient and is widely used in many

fields of science (Yoo et al. 2011). Other methods, such as

single linkage, complete linkage, and average linkage,

establish a group based on the similarity of each group

using euclidean squared distance (L2). But, Ward’s method

measures similarity using error sum of squares (ESS) when

the two groups are combined. In other words, it conducts

grouping that intends to minimize the increase of the ESS.

In the initial clustering, all nodes are clustered one by one,

and it can be expressed as ESSi ¼ 0 for all i. The ESS

increases as further clustering occurs, which can be written

as:

ESS ¼
Xg

i¼1

ESSi ¼
Xg

i¼1

Xni

j¼1

Xp

k¼1

ðXi
kj � �

Xl

l

kj

Þ2
" #

ð3Þ

where Xkj
i is the mean cluster for Xk in the ith cluster.

3 Application and results

3.1 Study area

The Yeongsan River basin is located in Southwestern

South Korea (N 34� 400 1600–35� 290 0100, E 126� 260 1200–
127� 060 0700). The need for maintenance based on stages at

a stream gauging station has long been recognized for the

Yeongsan River basin. Yeongsan River is one of the four

major rivers in South Korea. It has a basin area of 3455

km2 and a river length of 129.5 km and accommodates 39

stream gauging stations. Of the 39 stream gauging stations,

14 are deployed in the Yeongsan River, which is the main

stream, and 25 are in the tributaries. These stations are

under the supervision of the Ministry of Environment (ME)

at the national level and reflect the importance of stream

gauging station management and stage data. Figure 3

shows the location and the corresponding number of stream

gauging stations within the basin.

3.2 Stage data setting

The data collection period must be predetermined as the

complex network configuration for cluster analysis, and

community detection is based on time series stage data

obtained at each stream gauging station. To ensure the

reliability of the stage data, a large amount of data for an

extended period is needed (e.g., 30 years, which is gener-

ally considered suitable for hydrological analysis).

Fig. 2 General cluster analysis procedure
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However, the required time period presents several chal-

lenges: (1) not all gauging stations have long period of

data, (2) stage data of each gauging station are collected for

different periods of time, (3) most gauging stations have

missing data for one or more periods, and (4) data collected

over a certain period of time at some gauging stations

contain errors.

This study employs a grouping method based on the

similarity of stage data, which requires an analysis of data

collected over the same period of time from all stream

gauging stations (Fang et al. 2017). Considering all the

data, this study employed daily stage data collected over

five years (January 2011 to December 2015), which pro-

vided consistent data for stream gauging stations. Figure 4

summarizes the distribution of stage data for each stream

gauging station in a box plot.

Water levels remained constant at most stream gauging

stations but showed high degrees of variability at some

stations. Stream gauging stations exhibited higher vari-

ability in water levels over short and long periods of time,

which can be attributed to the fact that the stations are

located directly downstream of dams or near weirs (Sta-

tions 1, 5, 13, 17, 23, and 30), which are operated for flow

control. Moreover, most outliers observed at each gauging

station resulted from a rapid rise in the stage caused by

localized heavy rainfall during the flood season. Water

level events that vary significantly with regional, meteo-

rological, and manmade factors were also included for

analysis as these events have effects on other gauging

stations at the watershed level.

3.3 Community detection of stream gauging
stations based on network theory

In complex networks, stream gauging stations can be rep-

resented as nodes without links that connect them. Stream

gauging stations are installed along a water system that

only serves as a means of accommodating the stations, not

as a link to connect them. Therefore, links should be

constructed to connect each stream gauging station based

on the correlation of stage data. This requires a focus on the

network configuration that changes with threshold values

(T) of similarity in stage data to investigate the diverse

communities. Therefore, a complex network was con-

structed with threshold values based on the correlation

between 0.1 and 1.0, and community formation was carried

out for the 39 stream gauging stations using multilevel

modularity optimization (Fig. 5). The results showed that

networks configured differently depending on the threshold

values also had different community formation.

The number of communities based on threshold value

could be up to 39 that is the total number of stream gauging

Fig. 3 Map of the Yeongsan River Basin and its stream gauging station locations (red triangles)
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stations. The proper number of communities could be

estimated when the modularity are maximized on the

multilevel modularity optimization method. The appropri-

ate number of communities could be estimated when the

modularity is maximized on the multilevel modularity

optimization method (see Eq. 2). The maximum modular-

ity (Q = 0.518) is calculated when communities are eight,

and this study employs 2, 4, 6, and 8 communities to

consider each event of community number. It is equivalent

to 0.2, 0.4, 0.5 and 0.6 in threshold values.

Groups of four events represented different types of

links and exhibited the typical structure of complex net-

works. Figure 6 shows the community results for different

stream gauging stations, where boxes of the same color

indicate that they belong to the same community group.

Figure 7 shows the community results for different loca-

tions of the stream gauging stations. The solid lines

between stream gauging stations are based on threshold

values and determine the network structure.

The results of community detection showed that clus-

tering mostly took place in a group (the green group) across

all group events, similar to the cluster analysis. However,

the results were more centralized in community detection.

Furthermore, stream gauging stations (nodes) that are not

connected by links did not always organize into different

communities. In addition to nodes, community formation

in the network involves other factors, such as the number of

links for neighboring adjacent nodes and the degree and

intensity of connection between links. In other words, even

if nodes are not linked to each other due to a lack of

similarity in stage data, they can still be organized into the

same community if indirectly connected by other nodes.

3.4 Cluster analysis of stream gauging station
based on stage data

A hierarchical cluster analysis was performed for the 39

stream gauging stations. The resulting dendrogram is

Fig. 4 Distribution of daily stage data obtained from 39 stream gauging stations (January 2011 to December 2015)

Fig. 5 Change in number of communities according to threshold

values (T)
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shown in Fig. 8. The maximum number of clusters is 39,

which is the total number of stream gauging stations

investigated. The clustering can be divided into 10 steps

depending on the number of groups.

Determining the number of clusters is extremely chal-

lenging in a typical cluster analysis. This also applies to the

case where the number of clusters is determined using the

similarity of stage data for efficient management of stream

gauging stations. Many studies have been conducted to

determine the appropriate number of clusters (Aaker et al.

2001). When using Ward’s method, the ESS variance with

the number of clusters is represented by the fusion coeffi-

cient (Eq. 3). The fusion coefficient derived at every stage

of clustering was effectively used for this purpose. The

fusion coefficient is estimated by considering the distances

between clusters at each stage of clustering, so its value can

be used to determine how newly made clusters differ from

each other. That is, if the fusion coefficient shows a

Fig. 6 Community detection for stream gauging stations (number of groups: two, four, six, and eight)

Fig. 7 Diagram of community structure according to the relative location of stream gauging stations (number of groups: two, four, six, and eight)
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significant increase when decreasing the number of clus-

ters, two relatively different clusters can be made into a

single cluster at the current stage (Aldenderfer and Blash-

field 1984; Yoo et al. 2011).

Figure 9 summarizes the derived fusion coefficients.

Like community detection, the results show that a signifi-

cant change in the fusion coefficient is observed when the

number of clusters is equal to eight, which suggests that the

appropriate number of clusters will be eight or less.

Therefore, the changes in four events were investigated,

which consisted of two, four, six, and eight clusters

(groups) for the same comparison with the result of com-

munity detection.

The results of cluster analysis performed on four events

based on fusion coefficients are illustrated in Figs. 10 and

11. The boxes of the same color in Fig. 7 indicate that they

belong to the same cluster group, while Fig. 8 shows the

clustering results according to the relative location of the

stream gauging stations.

The results show that clustering mostly took place in a

group (the green group) across all group events. This can

be interpreted as indicating possible similarity of stage data

at the basin level. However, at the same time, it indicates

that stream gauging stations in the target basin have

somewhat unclear clustering without distinguishing char-

acteristics compared community detection (comparing

Figs. 8 and 11). For nearby stream gauging stations, water

levels are often similar to each other in general. In contrast,

stream gauging stations within the target river basin were

often found to belong to different groups, despite their

proximity. This can be attributed to different stage data

resulting from topographic conditions, such as river bed

elevation, despite the close proximity of stream gauging

stations. A more quantitative analysis is required to provide

a more detailed comparison between community detection

and cluster analysis.

3.5 Comparison and discussion of grouping
methods based on basin hydrology

The grouping methods for stream gauging stations based on

cluster analysis and community detection were compared

in terms of basin hydrology and evaluated for suitability.

Fig. 8 Derivation of clustering dendrogram for stream gauging stations

Fig. 9 Changes in the fusion coefficient according to the number of

clusters
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As shown in Table 1, when the number of groups is two,

four, six, and eight, the number of stream gauging stations

that can be included in communities and clusters is 156 in

total (39 stations 9 4 events). As mentioned in Sect. 3.4,

gauging stations were found to belong to one group (the

green group) in most cases and for both grouping methods.

Stations were more likely to belong to one group for

communities than clusters, and very few stations changed

to another group as grouping took place. This indicates that

community detection in the stream gauge networks at the

basin level resulted in relatively high levels of similarity—

that is, both direct and indirect cohesion occurred among

stream gauging stations, in contrast to cluster analysis.

For hydrologic comparison by group and grouping

method, it is necessary to investigate the groups connected

by the same stream links between gauging stations.

Therefore, the changes in stream gauging stations accord-

ing to grouping method were studied for a total of 12

stream links. The main stream of the Yeongsan River

within the basin was set as stream link Index A, and the

Fig. 10 Cluster analysis of stream gauging stations (number of groups: two, four, six, and eight)

Fig. 11 Cluster analysis of stream gauging station (number of groups: two, four, six, and eight)
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Table 1 Number of stream gauging stations selected by group and grouping method

No. of 

groups

Community Cluster

2 33 6 – – – – – – 24 15 – – – – – –

4 29 6 3 1 – – – – 24 6 5 4 – – – –

6 26 6 3 1 2 1 – – 21 4 5 4 3 2 – –

8 25 4 3 1 2 1 1 2 21 4 3 3 3 2 2 1

Sub sum 113 22 9 3 4 2 1 2 91 29 13 10 6 4 2 1

Total sum 156 156

Table 2 Grouping and gauging

station structure for different

stream links (Column �: the

number of gauging stations in

the group with the most stations;

Column `: the number of other

gauging stations)

Stream link index No. of groups: two No. of groups: four

Community Cluster Community Cluster

Total � ` Total � ` Total � ` Total � `

A 15 14 1 15 12 3 15 13 2 15 12 3

B 1 1 0 1 1 0 1 1 0 1 1 0

C 1 1 0 1 1 0 1 1 0 1 1 0

D 1 1 0 1 1 0 1 1 0 1 1 0

E 3 3 0 3 2 1 3 2 1 3 2 1

F 2 2 0 2 2 0 2 2 0 2 2 0

G 4 4 0 4 2 2 4 3 1 4 2 2

H 5 5 0 5 4 1 5 4 1 5 4 1

I 2 2 0 2 1 1 2 1 1 2 1 1

J 2 2 0 2 1 1 2 2 0 2 1 1

K 2 2 0 2 1 1 2 2 0 2 1 1

L 1 1 0 1 1 0 1 1 0 1 1 0

Stream link index No. of groups: six No. of groups: eight

Community Cluster Community Cluster

Total � ` Total � ` Total � ` Total � `

A 15 12 3 15 9 6 15 12 3 15 9 6

B 1 1 0 1 1 0 1 1 0 1 1 0

C 1 1 0 1 1 0 1 1 0 1 1 0

D 1 1 0 1 1 0 1 1 0 1 1 0

E 3 2 1 3 2 1 3 1 2 3 2 1

F 2 2 0 2 1 1 2 1 1 2 1 1

G 4 3 1 4 2 2 4 3 1 4 2 2

H 5 4 1 5 4 1 5 4 1 5 4 1

I 2 1 1 2 1 1 2 1 1 2 1 1

J 2 1 1 2 1 1 2 1 1 2 1 1

K 2 1 1 2 1 1 2 1 1 2 1 1

L 1 1 0 1 1 0 1 1 0 1 1 0
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Community Cluster

Classified into two groups

Classified into four groups

Classified into six groups

Classified into eight groups
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remaining tributaries were set as stream links B through L

(Table 2 and Fig. 12). Table 2 shows the stream gauging

stations located in stream links A through L and the group

structure based on cluster and community.

The total value in Table 2 represents the number of

stream gauging stations located in each stream link. In

addition, column (1) represents the number of gauging

stations in the group that has the largest number of stations.

This value can be used to analyze the cohesion between

gauging stations for different stream links in comparison to

the entire stations. Column (2) represents the remaining

stations other than those listed in column (1). Therefore,

the sum of the number of gauging stations in the group

consisting of the most stations and the number of the

remaining stations is the total number of gauging stations

located in each stream link.

As shown in Table 2, the numbers of stream gauging

stations located in stream links A through L are 15, 1, 1, 1,

3, 2, 4, 5, 2, 2, 2, and 1, respectively. This indicates that the

majority of gauging stations in the Yeongsan River Basin is

located in the main stream (stream link A) of the Yeongsan

River. In the stream link A, the number of stream gauging

stations (column (1)) in the group consisting of the most

stations was 12, 12, 9, and 9 for groups two, four, six, and

eight, respectively. These values are smaller than those of

the community detection method (14, 13, 12, and 12). This

indicates that the stream gauging stations in stream link A

are densely connected by the stream link and exhibit rel-

atively strong cohesion in the application of community

detection.

In contrast, when the number of groups was eight, the

number of stream gauging stations in the group consisting

of the most stations in the E stream link was two for cluster

analysis and one for community detection. This indicates

that cluster analysis identifies gauging stations with strong

group cohesion. As a result of community detection, three

gauging stations were organized into different groups.

Figure 12 shows a diagram and basin map of gauging

station grouping for different stream links. In both meth-

ods, stream gauging stations such as 1, 17, 25, and 39 often

did not belong to the same group as the nearby stations,

which can be attributed to the dissimilarity of the stage due

to the topographic attributes rather than meteorological

effects. Moreover, stream gauging station 8 located in

stream link D could not be grouped into the main stream of

the Yeongsan River (stream link A) in the cluster analysis

due to lack of similarity in stage data between the two

stream links.

In contrast, station 8 was organized into the same group

in the community detection method based on network

theory. This indicates that stream link D affects the main

stream of the Yeongsan River despite the lack of similarity

in stage data. This also suggests that station 8 must be

operated and managed in connection with gauging stations

located on the main stream in community detection.

To make a quantitative comparison between the two

methods at the stream scale cohesion among the gauging

stations was expressed as:

Gc ¼
SM
ST

� �
� 100 ð4Þ

where GC is the cohesion according to grouping methods,

SM is the number of gauging stations in the group con-

sisting of the most stations in a certain stream link, and ST
is the total number of gauging stations in a certain stream

link, which can be expressed as (column (1)/Total) 9 100

based on Table 2. The cohesion calculated using this

method is shown in Table 3; the stream links consisting of

a single station (B, C, D, and L) were excluded because the

stream-scale comparison was irrelevant in this case.

The results showed that community detection identified

highly cohesive gauging stations in most stream links

compared to cluster analysis. This appears more evident in

the stream links containing many gauging stations, such as

bFig. 12 Diagram and basin map based on cluster analysis and

community detection

Table 3 Calculation and

comparison of cohesion by

group and method (italic cells

mean higher cohesion in the

same group)

Stream link index Community (%) Cluster (%)

2 4 6 8 2 4 6 8

A 93.3 86.7 80 80 80 80 60 60

E 100 66.7 66.7 33.3 66.7 66.7 66.7 66.7

F 100 100 100 50 100 100 50 50

G 100 75 75 75 50 50 50 50

H 100 80 80 80 80 80 80 80

I 100 50 50 50 50 50 50 50

J 100 100 50 50 50 50 50 50

K 100 100 50 50 50 50 50 50
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A and G, throughout the entire group. In other words,

gauging stations in the same stream link are more likely to

be grouped together in the community detection method.

Other groups (groups three, five, seven) that were not

considered in this study show the same results. This indi-

cates that community detection based on the network

structure of nodes and links is more suitable than cluster

analysis in hydrology.

The streamflow in a stream link generally exhibits a

high degree of hydrologic similarity, persistence, and

connectivity, indicating that gauging stations are not

independent but are closely related to each other. There-

fore, a network-based community detection method that

deals with communities with high cohesion would be a

better alternative to the cluster analysis method, which is

simply based on data correlation. In the community

detection method, stream gauging stations that are not

organized into major groups at the stream link scale require

special maintenance tailored to the attributes of the non-

major groups. The results of this study are expected to

serve as an appropriate selection method for a small

number of stream gauging stations with different

characteristics.

4 Conclusions

This study evaluated the adaptability of community

detection based on complex networks as a grouping

method for efficient operation and maintenance of stream

gauging stations. To achieve this goal, 39 stream gauging

stations in the Yeongsan River Basin of South Korea were

investigated using the community detection method. These

results were compared with statistical cluster analysis

results. For community detection and cluster analysis,

multilevel modularity optimization and Ward’s method

were employed. The number of groups was set to two, four,

six, and eight based on modularity and fusion coefficient

analysis, respectively.

The results showed that communities are more likely to

be arranged into a group in the community detection

method than in the cluster analysis. This indicates that the

grouping of stream gauging stations at the basin scale has

higher levels of cohesion in community detection than in

cluster analysis. For comparison purposes in terms of

hydrological conditions, the changes of the stream gauging

stations located in a total of 12 stream links (A through L)

and including the main stream of the Yeongsan River were

investigated for different groups and methods. Higher

levels of cohesion among the gauging stations were

observed in the community detection method in most

stream links.

High cohesion in a stream link means a high degree of

hydrologic similarity, persistence, and connectivity. In

turn, this makes the community detection method a better

candidate for grouping as it can successfully simulate the

general stream attributes. The present findings are expected

to serve as a grouping method for the comprehensive

management of stream gauging stations. This study ana-

lyzed only for water level. However, we may need further

work for the integrated grouping of water level and other

hydrologic components such as water utilization, flow

control, environment, and gauging station impact.
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