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Abstract
In this work, we present a novel downscaling procedure for compositional quantities based on the Aitchison geometry. The

method is able to naturally consider compositional constraints, i.e. unit-sum and positivity, accounting for the scale

invariance and relative scale of these data. We show that the method can be used in a block sequential Gaussian simulation

framework in order to assess the variability of downscaled quantities. Finally, to validate the method, we test it first in an

idealized scenario and then apply it for the downscaling of digital soil maps on a more realistic case study. The digital soil

maps for the realistic case study are obtained from SoilGrids, a system for automated soil mapping based on state-of-the-art

spatial predictions methods.

Keywords Geostatistics � Block sequential Gaussian simulation � Area-to-point kriging � Isometric log-ratios

1 Introduction

Uncertainty Quantification (UQ) is a crucial aspect for

numerical tools intended to simulate physical processes,

since it is important to provide an extensive analysis of the

uncertainty of the outputs related to the variability of the

inputs. Classical methods to perform this task are based on

Monte Carlo (MC) simulations (Kalos and Whitlock 2009).

Here, an ensemble of realizations of the input parameters is

used to feed a mathematical/numerical model, aiming to

assess the distribution of the response in the face of

uncertain inputs. In this broad framework, whenever

parameters are characterized by a spatial distribution,

geostatistical stochastic simulation can be employed to

generate input scenarios for the model (Brown et al. 2002).

The geostatistical approach allows one to account for the

spatial dependence characterizing the input parameters and

to model the spatial structure expected for the realizations

(range of variability, degree of smoothness) through a

spatial covariance function. Nonetheless, sound geostatis-

tical simulation needs to take into account the possible

constraints of the data, particularly when these represent

compositional information. For instance, soil moisture

retention plays an important role in models that simulate

hydrogeological processes and depends on a number of

terrain properties, such as the soil texture. The latter in turn

is determined by particle-size fractions (psfs), i.e. the rel-

ative percentages, in terms of soil composition, of clay, silt

and sand, the three categories in which grains of fine earth

are divided depending on their size, see e.g. Martı́n et al.

(2017). When some sparse samples are available, geosta-

tistical techniques such as Kriging and conditional Gaus-

sian (co)simulation can be used to interpolate the available

observations and assess the associated uncertainty. How-

ever, neglecting the inherent characteristics of these data

may result in inappropriate results, such as prediction of

negative components or modeling spurious correlations

(Kim 1999). These serious limitations hinder the use of

classical geostatistical methods based on the Euclidean

geometry in the presence of compositional data (see, e.g.

Aitchison 1982; Buccianti and Grunsky 2014).

In the last decades, an increasing attention has been

devoted to developing analytics tools able to account for
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the features of compositional data, starting from the work

of Aitchison (1982). Nowadays, Compositional Data

Analysis (CoDa, Egozcue et al. 2003; Pawlowsky-Glahn

et al. 2015b) is a well-established area of statistics, which

studies models and methods for compositional data,

grounded on the Aitchison geometry for the simplex. The

Aitchison geometry is based on the foundational idea that,

in compositional vectors, only the log-ratios among com-

ponents represent a meaningful information to be accoun-

ted for in the statistical analysis. In a geostatistical setting,

this foundational idea led to the development of new

kriging methods for compositional data, which were suc-

cessfully applied in several applied studies (e.g., in the

mining context, Pawlowsky-Glahn and Olea 2004; Tolo-

sana-Delgado et al. 2019).

In this work, we focus on the problem of geostatistical

downscaling of compositional quantities. This is relevant in

applications where no (or limited) direct observation is

available within the study area—because of cost or envi-

ronmental constraints—but low-resolution information is

available across the region. This is the case of our moti-

vating study, which focuses on the stochastic characteri-

zation of soil texture within a mountain river catchment,

aiming to model the hydrogeological instability—and

consequent natural hazard—of the region. In this case, no

direct observation of particle-size fractions is available, but

low-resolution data are reported in public databases, such

as SoilGrids (Hengl et al. 2014, 2017). In this case, char-

acterizing the spatial distribution of the soil texture requires

to operate a change of support of the available (composi-

tional) information and to assess the corresponding

uncertainty.

To the authors’ knowledge, none of the available

methods for (geostatistical) downscaling allows to account

for compositional constraints. For instance, methods of

area-to-point kriging and stochastic simulation available in

the literature (Kyriakidis 2004) inevitably are subject to the

limitations of the Euclidean methods. We here propose an

extention of Area-To-Point Regression CoKriging

(ATPRCoK)—and associated stochastic simulation—to

compositional vectors that, based on the Aitchison geom-

etry, allows to overcome such issues and provide stochastic

scenarios for the target compositional parameters.

The remaining part of this work is organized as follows.

In Sect. 2 we recall the area-to-point regression (co)kriging

method; in Sect. 3, we present the downscaling prediction

framework for compositional data; in Sect. 4 we recall the

definition of psfs, which are used in Sect. 5 to exemplify

and test the features of the method in a first to synthetic

case and then in a real scenario. Finally, we apply the

method to a case study within the Caldone catchment in the

Northern Italy city of Lecco, where we show how the

method is able to provide psfs data at a length-scale most of

the time very difficult or impossible to be determined.

2 Area-to-point regression kriging

In this section, we recall the main features of Area-To-

Point Regression Kriging (ATPRK) and Area-To-Point

Regression Cokriging (ATPRCoK); for further details see

e.g. Wang et al. (2015), Xiao et al. (2018). Let us consider

a scalar continuous random field fZðxÞ; x 2 Dg defined

over a geographical region D � Rd. Let us discretize ZðxÞ
as

Zj ¼
1

jmjj

Z
mj

ZðxÞ gðdxÞ;

where Zj denotes the discretized element at pixel j, mj
defines the geographical support of the j-th pixel having

center xj 2 D, jmjj denotes the measure of the support mj ,
and g is a positive measure on D (e.g., the Lebesgue

measure). We assume the measure of the pixel support to

be equal for all the pixels covering the region D and con-

sider two levels of spatial resolution, one coming from a

coarse discretization, denoted by the index K ¼ 1; . . .;M,

and another coming from a fine discretization, denoted by

the index k ¼ 1; . . .;N. The measure of the coarse support

is a multiple of that of the fine support, s.t. we can define an

integer number P ¼ jmK j
jmk j. Moreover, when using a Euclidean

geometry for the data—which is the standard setting for

which ATPRK is developed—the low-resolution random

field is assumed to be obtained as an arithmetic mean of the

high-resolution one, i.e., for K ¼ 1; . . .;M,

ZK ¼ 1

P

X
k:xk2mK

Zk: ð1Þ

Starting from one complete realization of the low-resolu-

tion field ZK , we want to estimate the high-resolution field

Zk, i.e. perform downscaling. ATPRK allows one to com-

pute an estimate of the field Zk as a (linear) combination of

two parts: regression and Area-To-Point Kriging (ATPK,

see e.g. Atkinson 2013; Goovaerts 2008; Kyriakidis 2004;

Kyriakidis and Yoo 2005). It uses a linear regression model

on a set of covariates for the mean term of Zk, and kriging

to interpolate the residuals from the regression model. The

ATPRK predictor bZk of the field Zk at a given fine scale

pixel mk is defined as

bZk ¼
X
l

bl ulk þ
X
K

kK eK ; ð2Þ
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with bl; l ¼ 1; . . .; L and kK ;K ¼ 1; . . .;M unknown real

quantities. The first sum in (2) is a classical linear regres-

sion term, describing the mean of Zk

E½Zk� ¼
X
l

bl ulk; ð3Þ

where ulk, l ¼ 1; . . .; L and k ¼ 1; . . .;N are a set of known

fine-resolution regressors. Given a realization of the field

ZK , one may linearly upscale Eq. (3) to obtain a linear

regression model for ZK , i.e.,

E½ZK � ¼
X
l

bl ulK ; ð4Þ

where ulK are the upscaled regressors, i.e.

ulK ¼ 1

P

X
k:xk2mK

ulk: ð5Þ

By combining Eqs. (1)–(4)–(5), the regression coefficents

bl can be thus estimated by using a standard fitting pro-

cedure (e.g. Ordinary Least Squares (OLS) method) on the

low-resolution field ZK , see e.g. Hengl et al. (2007), Min-

asny and Mcbratney (2007).

The second term in Eq. (2) is the Area-To-Point-Kriging

(ATPK) term. It is the best linear unbiased predictor from

the coarse residuals eK , defined as eK ¼ ZK � E½ZK �. In

ATPK, the residual at a given fine pixel k is predicted as

the best linear combination of the coarse residuals, subject

to unbiasedness, i.e., bek ¼PK kK eK , where bek is the fine

resolution predicted residual and kK solve

min
kK2R

E½ðbek � ekÞ2� s.t. E½bek� ¼ E½ek�: ð6Þ

In practice, the ATPK predictor is often computed from a

subset of M\M of residuals (typically selected in a

neighborhood of the target pixel), to reduce the computa-

tional burden of the procedure. The optimal weights k ¼
ðk1; . . .; kMÞ

0
are computed by minimizing the prediction

error variance, which yields the following kriging linear

system

R 1

1T 0

� �
k

l

� �
¼

r

1

� �
: ð7Þ

Here, the element in position ðK1;K2Þ of matrix R is the

block-block covariance between the residuals at the coarse

pixels centered at xK1
and xK2

; the K-th element of r is the

point-block covariance of the residuals between fine and

coarse pixels respectively centered at xk and xK , and l is a

Lagrange multiplier.

Note that, in practice, neither the residuals nor their

covariance are observed, but need to be estimated from the

data. Residuals are typically estimated by difference from

the estimated regression term. Estimating the covariance

structure is more critical. Under the assumption that the

residual field ek is stationary and isotropic and denoting

with Ck1;k2 the covariance between pixels k1 and k2 of the

residual at fine scale, we can compute the block-block

covariance as

RK1;K2
¼ 1

P2

XP
i¼1

XP
j¼1

Ci;j; xi 2 mK1
; xj 2 mK2

: ð8Þ

The point-block covariance is then given by

rK ¼ 1

P

XP
i¼1

Ci;k; xi 2 mK : ð9Þ

The critical point of the ATPK method is thus the deter-

mination of the covariance structure at the fine scale, which

cannot be directly estimated, as the data are given at the

coarse scale only. The problem of estimating the fine-scale

semi-variogram ck1;k2

ck1;k2 ¼ Ck1;k1 � Ck1;k2 ¼
1

2
E½ðek2 � ek1Þ

2�;

from coarse-scale data is known as a deconvolution prob-

lem. We shall not focus on this problem in this work, as it is

completely analogous to that in the Euclidean setting—for

which a number of methods are available. We refer to

Goovaerts (2008) for more details on the deconvolution

method used in this work.

In case of multi-dimensional random fields, the ATPRK

framework changes slightly in order to take into account

possible cross-correlations among field components. Gen-

eralization of ATPRK to the multivariate case is analogous

to cokriging, and yields Area-To-Point-Regression-CoK-

riging (ATPRCoK), see e.g. Xiao et al. (2018). In ATPR-

CoK the coarse residuals appearing in (2) are replaced by

the residuals of all the components of the multi-dimen-

sional random field, in order to consider possible cross-

correlations among their components. If we consider a p-

dimensional random field fZðxÞ, x 2 Dg, its ATPRCoK

discrete prediction is,

bZk ¼
X
l

ulkb
l þ
X
K

KKeK ;

where bl 2 Rp are the vectors of the unknown regression

coefficients. The matrix KK 2 Rp�p contains the unknown

cokriging coefficients and eK 2 Rp is the vector of the

coarse scale residuals. The optimal weights KK are found

by solving a system analogous to (7), but considering

covariances and cross-covariances within/among fields

components, as in a standard cokriging setting.
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3 Compositional ATPRCoK

In this section, we consider the problem of downscaling

compositional data and we propose a method which

extends ATPRCoK to the Aitchison geometry, and natu-

rally takes into account the compositional nature of the

data.

3.1 Compositional data in the Aitchison simplex

A compositional data point Z ¼ ðZ1; . . .; ZpÞ is typically

represented as a vector whose elements are proportions (or

percentages) of a whole, named total. In this case, com-

positional vectors are characterized by the unit-sum con-

straint
P

i Zi ¼ 1, where we denote with Zi � 0 the i-th

component of compositional data point. More generally,

compositional vectors are data which convey relative

information, being subject to a constant-sum constraint.

Here the total is typically of no interest for the analysis, in

the sense that expressing the data w.r.t. a different total

(i.e., in proportion, percentages or ppm) should not change

the results of the analysis (i.e., scale invariance). In fact,

analyses of compositional data should also account for

other features of these data, such as their relative scale. For

a broader discussion, we refer the reader to Pawlowsky-

Glahn et al. (2015a). Because of the range limitation and

the possible spurious correlation of compositional vectors

(Kim 1999; Pawlowsky 1984), the Euclidean-based statis-

tical framework was proved to be ineffective for the spatial

prediction of this type of data, although a number of

authors have ignored this aspect, see e.g. Delbari et al.

(2011). Other works (e.g. Walvoort and De Gruijter 2001)

tried to account for the particular nature of regionalised

variables expressing relative fractions by proposing an

extension of kriging called Compositional Kriging (CK).

CK predictions respect the constraints of positivity and

constant sum value. However, the CK algorithm is based

on empirical considerations rather than a coherent proba-

bilistic model, and is therefore not suited for stochastic

simulation. Our developments follow the direction of

research on compositional kriging explored by Pawlowsky

(1989), Tolosana-Delgado et al. (2011), who formulated

geostatistical models and methods based on the Aitchison

geometry for the simplex (see Pawlowsky-Glahn and

Egozcue 2016; Tolosana-Delgado et al. 2019 for recent

reviews).

Presently, the standard approach to the statistical anal-

ysis of compositional data is the one pioneered by Aitch-

ison (1982), which is based on the particular geometry of

the simplex (Aitchison 1986; Pawlowsky-Glahn et al.

2015b; Pawlowsky-Glahn and Egozcue 2001; Billheimer

et al. 2001). A p-dimensional compositional vector Z ¼

ðZ1; . . .; ZpÞ is an element of the p-dimensional standard

simplex, Sp, which is defined as

Sp ¼ ðZ1; . . .; Zp : Zi � 0;
Xp
i¼1

Zi ¼ 1

( )
: ð10Þ

In Aitchison (1986), Pawlowsky-Glahn and Egozcue

(2001) group operations are defined to give the simplex a

structure of a real vector space. These are the perturbation

� (sum) and powering 	 (product by a constant) opera-

tions, defined, for x; y 2 Sp, and a 2 R, respectively as

x� y ¼ C x1y1; . . .; xpyp
� �

;

a	 x ¼ C xa1; . . .; x
a
p

� �
:

Here, Cð�Þ denotes the closure operation

CðxÞ ¼ x1Pp
i¼1 xi

; . . .;
xpPp
i¼1 xi

� 	
x 2 R

p
þ:

The space Sp can be equipped with a (finite-dimensional)

Hilbert space structure when considering the Aitchison

inner product, defined, for x; y 2 Sp as

hx; yia ¼
1

2p

Xp
i¼1

Xp
j¼1

ln
xi
xj
� ln yi

yj
x; y 2 Sp:

The inner product induces a norm k � ka :¼
ffiffiffiffiffiffiffiffiffiffiffi
h�; �ia

p
, which

in turn induces a distance daðx; yÞ ¼ kx
 yka; x; y 2 Sp,

where x
 y denotes the perturbation of x with the recip-

rocal of y, i.e., x
 y ¼ x� ðð�1Þ 	 yÞ. The Hilbert space

structure identified by these operations is called Aitchison

geometry, or Aitchison simplex (Pawlowsky-Glahn and

Egozcue 2001).

3.2 ATPRCoK in the Aitchison geometry

The statistical approach proposed by Aitchison (1982) and

following authors (Pawlowsky-Glahn et al. 2015b; Paw-

lowsky-Glahn and Egozcue 2002) consists of analyzing

compositional data in the context of the Aitchison geom-

etry. Here, a large number of multivariate statistical

methods (e.g., principal component analysis, regression)

can be properly reformulated to account for the inherent

properties of compositional data (e.g., scale invariance,

relative scale), research in this field is still ongoing, see e.g.

Rodrı́guez-Dı́az et al. (2020). From an operational view-

point, the standard procedure of analysis consists of

transforming the original data by applying an isomorphism

from the p-dimensional Aitchison simplex to the classical

Euclidean space Rp�1 (or in some cases Rp), perform the

statistical analysis on the transformed data and finally

back-transform the results in the original space. This

strategy was proved to be fully equivalent to working
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directly in the Aitchison simplex for a number of statistical

methods (see, e.g. Filzmoser et al. 2018). In this section,

we shall formulate ATPRCoK in the Aitchison simplex,

and then, using the principle of working on coordinates

(Mateu-Figueras et al. 2011), prove that one may equiva-

lently perform the analysis by relying on the so-called

Isometric Log-Ratio (ILR) transformation, which is an

isometry that maps the simplex to Rp�1. The latter asso-

ciates to a compositional vector z 2 Sp the coordinates of

this vector with respect to an orthonormal basis of the

simplex ðw1; . . .;wp�1Þ, i.e.,

ILRðzÞ ¼ hz;w1ia; . . .; hz;wp�1ia
� �0

: ð11Þ

Note that the ILR is a linear transformation, see e.g.

Egozcue et al. (2003). For several compositional methods

(e.g., principal component analysis, regression, see, e.g.,

Pawlowsky-Glahn et al. 2015b), it was shown that the

choice of the basis does not influence the results of the

analysis. However, specific choices for the basis can lead to

practical advantages. For instance, the basis could be

chosen in such a way as to grant uncorrelation of the

resulting transformed data, or to ease the interpretation of

the results (see, e.g. Fišerová and Hron 2011).

In Dobarco et al. (2016) the authors used ATPCoK to

downscale psfs data transformed with Additive-Log Ratio

(ALR), using the silt fraction as a reference for the ratios.

ALR was there used as a practical solution to account for

the compositional nature of the data, but the modelling

assumptions were not explicitly stated, and the results were

interpreted only in terms of prediction accuracy with

respect to a given test set. Recent works highlighted some

limitation of the ALR transformation, as this is not iso-

metric, thus does not preserve the Aitchison geometry (see,

e.g., Pawlowsky-Glahn et al. 2015b, p. 60). In this section,

we propose a general method for the statistical downscal-

ing and simulation of compositional data which extends the

ATPRCoK to the context of the Aitchison simplex. We call

the method ILR-ATPRCoK to recall the computational

strategy we propose to perform ATPRCoK in the Aitchison

simplex, which is based on the ILR transformation. Here,

we shall also prove that the strategy based on ILR is fully

equivalent to working directly in the simplex itself. We

remark that this would not be the case for the ALR trans-

formation, as our developments strongly relies on the iso-

metric property of ILR, as further discussed in the

following sections.

In the following, we denote by fZðxÞ; x 2 Dg a random

field valued in Sp, defined over a Euclidean region

D � Rd . To indicate the Aitchison center of the field (i.e.

the mean value in Aitchison geometry), the Aitchison

covariance and the integral operator of ZðxÞ over a region

m � Rd, we use respectively the same notation used in

Menafoglio et al. (2014), Pawlowsky-Glahn and Buccianti

(2011), that is

• Aitchison center,

lðxÞ ¼ CenðZðxÞÞ ¼ argminz2SpE½d2aðZðxÞ; zÞ�;

• Aitchison covariance operator, acting on a (non-

random) element z 2 Sp, for x1; x2 2 D, as

Caðx1; x2Þz ¼ Cen½hZðx1Þ 
 lðx1Þ; zia 	 ðZðx2Þ 
 lðx2ÞÞ�;

• Aitchison integral over a spatial region m,Z �

m
ZðxÞgðdxÞ ¼ C e

R
m
lnðZ1ðxÞÞgðdxÞ; . . .; e

R
m
lnðZpðxÞÞgðdxÞ

� �
;

denoting by g a positive measure over D.

We refer to Aitchison (1986), Egozcue et al. (2003) for an

insight of the geometry of the random compositions in the

Aitchison simplex, and to Bosq (2000) for a recall on

covariance operators in Hilbert spaces.

For the element ZðxÞ of the compositional field at

x 2 D, we assume the following model

ZðxÞ ¼ lðxÞ � eðxÞ; ð12Þ

with eðxÞ the residual term. We model the center of the

field through a linear model in Sp

lðxÞ ¼ a
l
ulðxÞ 	 bl; ð13Þ

where bl 2 Sp; l ¼ 1; . . .; L are the vectors of unknown

regression coefficients and ulðxÞ 2 R; x 2 D, are the

covariates. Furthermore, we assume that the residual is

second-order stationary, see Tolosana-Delgado et al.

(2019), i.e., that the covariance structure (in Aitchison

geometry) for a random composition ZðxÞ; x 2 D, only

depends on the increment among locations

Caðx1; x2Þ ¼ eCaðx1 � x2Þ; x1; x2 2 D:

To simplify the notation, we shall indicate the stationary

covariance function eCa simply by Ca.

With a notation analogue to that used in Sect. 2, we

consider the discretized versions of the field fZðxÞ; x 2 Dg,
denoted by Zk (resp. ZK) and obtained at a fine (resp.

coarse) discretization scale, namely

Zk ¼
1

jmkj
	
Z �

mk

ZðxÞgðdxÞ; ZK ¼ 1

jmK j
	
Z �

mK

ZðxÞgðdxÞ:

Here, the powering by 1
jmk j and

1
jmK j is intended as acting

element-wise.

Given the realization of the coarse-scale field ZK , and by

analogy with (2), we define the ILR-ATPRCoK predictor

of the fine-scale field Zk 2 Sp as
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bZk ¼ a
l
ulk 	 bl �a

K
KK�eK ; ð14Þ

where KK 2 Rp�p is a matrix of ATPCoK unknown

weights to be optimized, � is the matrix-by-composition

multiplication—consistent with perturbation and powering,

as defined in Pawlowsky-Glahn et al. (2015b) (p. 55), i.e.,

denoting by eK;i; i ¼ 1; . . .; p the elements of eK 2 Sp and

by kK;i;j; i; j ¼ 1; . . .; p the elements of KK

KK�eK ¼ C
Yp
j¼1

e
kK;1;j
K;j ; . . .;

Yp
j¼1

e
kK;p;j
K;j

" #
:

The residuals eK 2 Sp represent the upscaled residuals of

(12), defined as

eK ¼ 1

jmK j
	
Z �

mK

ðZðxÞ 
 lðxÞÞgðdxÞ: ð15Þ

Under the assumption that the regression coefficients bl

and the covariance function Ca are known, the optimal

weights Kk in (14) are found as to guarantee that the ILR-

ATPRCoK is the Best Linear Unbiased Predictor (BLUP)

in Sp, i.e., by solving the following constrained mini-

mization problem:

Area-to-Point Regression Cokriging in the Aitchison

simplex

arg min
KK2Rp�p

E d2a a
K
KK�eK ; ek

� �� �
s.t.

Cen a
K
KK�eK

� �
¼ l;

ð16Þ

where l is the spatially constant residual mean.

Note that the operator defined by KK in Eq. (16) is a

linear endomorphism, hence enjoys of the properties

described in Pawlowsky-Glahn et al. (2015a) (p. 56). In

particular, the rows and columns of KK add to zero, for

further details see ‘‘Appendix A’’. The following result

states that, by applying the ILR transformation (i.e. map-

ping from the Aitchison simplex to an Euclidean space, via

an isometric isomorphism), one obtains an equivalent for-

mulation of problem (16) that can be solved using the

standard ATPRCoK presented in Sect. 2. The proof of

Proposition 1 is given in ‘‘Appendix A’’.

Proposition 1 Given a compositional random field ZðxÞ
valued in Sp and a random field YðxÞ valued in Rp�1

defined as YðxÞ ¼ ILRðZðxÞÞ for x 2 D, the BLUP in Sp

for Zk—found by solving (16)—coincides with the ILR-

back-transformed ATPRCoK predictor for Yk defined in

(2), i.e.,

bZk ¼ ILR�1ðbYkÞ: ð17Þ

Even though bl is rarely a priori known, an estimate of

bl can be obtained by back-transforming the corresponding

estimate of the coefficient vectors blY referred to the ILR-

transformed field YðxÞ (see, e.g., Pawlowsky-Glahn et al.

2015b). Similarly, an estimate of the covariance operator

Ca can be obtained from the estimated (Euclidean)

covariance operator CY of the vector field YðxÞ. In this

work, for blY we shall consider OLS estimates, whereas for

CY the estimates obtained by Goovaerts’ deconvolution

(Goovaerts 2008) of classical cross-variograms.

Note that the equivalence between the ATPRCoK in the

Aitchison simplex and the Euclidean ATPRCoK on ILR-

transformed data (as stated in Proposition 1), implies the

possibility to analogously perform Block Sequential

Gaussian Simulation (BSGS, Benndorf 2004, 2003), as

BSGS grounds on the same hypothesis as ATPRCoK, and

it is indeed based on the latter method. In the context of

Uncertainty Quantification (UQ), BSGS is key to propagate

the uncertainty in numerical models that take as input

downscaled compositional data, as we discuss in Sect. 6.

Finally, one should note that, since the assumptions are

made with respect to the Aitchison geometry, the mass-

preserving property as stated in the Euclidean framework,

i.e. (see Kyriakidis 2004),

ZK ¼ 1

P

X
k:xk2mK

bZk;

does not hold. In a discrete prediction setting, as in Sect. 2,

the Aitchison geometry predictions respect the following

centre-preserving property
Fig. 1 Soil texture triangle: soil texture classification according to the

USDA classification system, based on relative fractions of clay, silt

and sand. Figure taken from Groenendyk et al. (2015)
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ZK ¼ 1

P
	a

k:xk2mK
bZk: ð18Þ

Indeed, since P ¼ jmK j
jmk j 2 Zþ, as defined in Sect. 2, one has

ZK ¼ C
YP
k¼1

bZ1;k

 !1
P

; . . .;
YP
k¼1

bZn;k

 !1
P

0
@

1
A: ð19Þ

This means that, in the Aitchison simplex, coarse areal data

coincide with the geometric mean of the predicted fine

areal values (normalized to having unit-sum).

In the following sections we exemplify the proposed

methodology through its application to particle-size frac-

tions, whose definition is recalled in the next Sect. 4.

4 Particle size fractions

Soil texture is a classification instrument used to determine

soil classes. More specifically, soil texture is quantitatively

determined on the basis of the relative fractions of the fine

particles of different sizes that compose the terrain. Soil

particles under 2 mm are divided in three groups

• clay: particles with a diameter less than 2 lm;

• silt: particles with a diameter between 2 and 50 lm;

• sand: particles with a diameter between 50 lm and

2 mm.

Fractions of clay, silt and sand are usually indicated as

particle-size fractions (psfs). Soil texture classes are

determined by the relative percentages of psfs, according to

a standard that may vary depending on the country.

The most common classification is that used by the

United States Department of Agriculture (USDA Schaefer

Fig. 2 One realization of the initial psfs field ZðxÞ with CenðZðxÞÞ ¼ ð1
3
; 1
3
; 1
3
Þ and r2 ¼ 0:1
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et al. 2007), which distinguishes twelve major soil texture

classes shown in Fig. 1. The classes are typically named

after the primary constituent particle-size or a combination

of the most abundant particles sizes, e.g. sandy clay or silty

clay. A fourth term, ‘‘loam’’, is used to describe equal

proportions of sand, silt, and clay in a soil sample, and

leads to the naming of even more classes, e.g. clay loam or

silt loam.

5 Validation

The geostatistical method outlined in the previous sections

has been implemented in R-3.6 (R Development Core

Team 2008) using the libraries gstat (Gräler et al. 2016;

Pebesma 2004) for ATPK and geostatistical simulation and

compositions (Boogaart and Tolosana-Delgado 2008) for

the analysis of compositional data. In particular, for the

variogram deconvolution we use the Goovaerts’ procedure

(Goovaerts 2008, 2010). We define a continuous random

field ZðxÞ ¼ ðZ1ðxÞ; Z2ðxÞ; Z3ðxÞÞ where
Z1ðxÞ ¼ % of part 1 at location x of the domain D;

Z2ðxÞ ¼ % of part 2 at location x of the domain D;

Z3ðxÞ ¼ % of part 3 at location x of the domain D:

In our analysis, compositional data are transformed using

the function ILR of the package compositions, see e.g.

Boogaart and Tolosana-Delgado (2008). The basis used for

the transformation is the one introduced in Egozcue et al.

(2003), based on the partition of the vector of composi-

tional variables in two sub-compositions, i.e.,

fw1;w2g ¼ C exp

ffiffiffi
1

2

r
;�

ffiffiffi
1

2

r
; 0

 !" #
;

(

C exp

ffiffiffiffiffiffi
1

2 p

s
;

ffiffiffiffiffiffi
1

2 p

s
;�

ffiffiffi
2

p

s !" #)

For the sake of illustration and in view of the motivating

study, we shall interpret ZðxÞ as the psfs at x (i.e., Z1ðxÞ,
Z2ðxÞ, Z3ðxÞ represent the composition in clay, silt and

sand, respectively). Nonetheless, the validity of the

bFig. 3 Synthetic data results: a boxplots of the sample mean error.

Blue points and red segments are respectively the spatial mean and

spatial standard deviation of the sample mean error. b the mean

(across realizations) number of pixels that violate the positivity and

unit-sum constraint for the four methods considered. c relative

violation of the unit-sum constraint. A value of 1% on the x-axis

indicates that the reconstructed psfs sums e.g. to 1.01. The histograms

related to methods AA and EA are not reported since the ILR-

ATPRCoK method by construction guarantees that resulting psfs sum

to 1
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simulation study here presented is clearly not limited to the

specific case of psfs.

5.1 Synthetic data

To assess the performance of the proposed method, we

consider a simulated dataset ZðxÞ; x 2 D, with support

measure jmkj ¼ 20� 20m2, on a given rectangular domain

D with area jDj ¼ 10000� 9160m2. The compositional

vector ZðxÞ is modelled as a process with a given spatially-

constant center CenðZðxÞÞ ¼ l and stationary-isotropic

covariance structure. From the operational viewpoint, the

mean l ¼ C½ðl1; l2; l3Þ0� is set based on independent uni-

form distributions li �Uð0; 1Þ; i ¼ 1; 2; 3. Compositions

were simulated by back-transforming through ILR�1 two-

dimensional Gaussian random vectors Y, with constant

mean lY ¼ ILRðlÞ, and stationary-isotropic marginal var-

iograms from the spherical model without nugget (Chilès

and Delfiner 2012; Cressie 1993). For the following sim-

ulations, the components of Y are always assumed to be

uncorrelated, and the marginal ranges are both set to

2000 m. In each simulation, the common sill r2 is sampled

according to a uniform distribution U[0.025, 2.5]. In Fig. 2

we show an example of realization of the psfs distribution.

Starting from this set of synthetic psfs, we perform a

sequence of upscaling-downscaling procedures, as follows.

Downscaling is done using either ATPRCoK or ILR-

ATPRCoK and upscaling either in Euclidean or Aitchison

Fig. 4 Validation on synthetic data. a, b Boxplots of the errors

between initial and predicted psfs data. c Histograms of the maximum

of the violation of the unit-sum constraint experienced during the

tested variances s2. In panel c the histograms corresponding to AA

and EA are not reported, since the ILR-ATPRCoK method by

construction guarantees that the resulting psfs sum to 1
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geometry, so that four different possibilities arise. In the

following, we call AA the upscaling in the Aitchison

simplex and downscaling via ILR-ATPRCoK, EE the

upscaling in the Euclidean space and downscaling via

ATPRCoK whereas EA, AE are the mixed methods,

referring respectively to upscaling in the Euclidean space

and to downscaling via ILR-ATPRCoK and upscaling in

the Aitchison geometry and downscaling via ATPRCoK.

Given that, usually, little information is available on how

the coarse-scale map relates with the fine-scale map (i.e.,

how a block value is obtained from smaller cells), we test

the performance of both ATPRK and ILR-ATPRCoK on

both Aitchison and Euclidean upscaling.

For each method, we consider a set of 100 realizations

of the fine scale compositional field, each yielding a

reconstructed field after the upscaling-downscaling pro-

cess. The upscaling factor P is set each time by randomly

and independently sampling in the discrete range

f22; 32; . . .; 302g. For each method and each realization we

compute the sample mean error, i.e. the average of the

Euclidean distance between initial and reconstructed psfs

fields—the average being taken over the realizations. We

use the Euclidean distance as a metric for comparison,

since the ATPRCoK produces vectors that do not neces-

sarily belong to the simplex due to the absence of the

closure operation for this method. In those cases, the

Aitchison distance is not well defined, and thus cannot be

used for comparison purposes.

Even if the distribution of the sample mean error

between the considered methods, reported in Fig. 3a,

would suggest a substantial equivalence among the meth-

ods, Fig. 3b, c clearly show that, unlike ATPRCoK, ILR-

ATPRCoK is able to produce psfs maps that are consistent

with the unit-sum and positivity constraints. Indeed, the

Fig. 5 SoilGrids psfs data within the study region. The considered data refer to the mean value of psfs as reconstructed in the SoilGrids repository
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ATPRCoK shows a violation of the positivity constraint in

about 103 pixels on average, representing roughly 0.5% of

the study area.

We then perform a sensitivity analysis with respect to

random perturbations of the initial data of the downscaling

procedure, for the four methods described above. This case

is representative of input data characterized by a given

degree of uncertainty. We thus consider a realization of the

synthetic psfs field in case of l ¼ ð1
3
; 1
3
; 1
3
Þ and sill r2 ¼ 0:1

(i.e. as in Fig. 2) and we set the upscaling factor to

P ¼ 225. Let us indicate with K ¼ 1; . . .;M the elements of

the coarse maps. The upscaled maps ZK are then perturbed

with a set of i.i.d. Gaussian random errors �K . Similarly as

before, these perturbations were generated on the ILR

transforms, by adding a zero-mean independent Gaussian

error with variance s2, ranging from 10 to 100% of the sill

r2.
In Fig. 4a, b we report the boxplots of the errors for each

value of s2. The errors are computed, for each pixel, as the

Euclidean distance between initial and predicted psfs. We

note that both ATPRCoK and ILR-ATPRCoK are quite

robust even in case of relatively high perturbations of the

initial data. In Fig. 4c we show the histograms of the

maximum, across simulations, of the violation of the unit-

sum constraint. For instance, a vertical bar in correspon-

dence of the range [1,1.2] indicates the count of pixels

whose maximum discrepancy (across simulations) from

unity of the sum of psfs is between 1% and 1.2% (i.e., the

sum is in [1.01,1.012] or [0.988,0.99]). These results

Fig. 6 Downscaling on SoilGrids data. a, b Boxplots of the errors

between SoilGrids and predicted psfs data. c Histograms of the

maximum of the violation of the unit-sum constraint experienced

during the tested upscaling factors. In panel c the histograms

corresponding to AA and EA are not reported, since the ILR-

ATPRCoK method by construction guarantees that resulting psfs sum

to 1
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clearly show the ability of ILR-ATPRCoK method to

produce results consistent with the unit-sum constraint ,

unlike the ATPRCoK method which yields maps with a

significant violation of the aforementioned constraint. Note

that, beside the constraints, ILR-ATPRCoK allows

accounting for the relative scale of compositional data,

avoiding to model spurious correlations (Pawlowsky-Glahn

et al. 2015b, p. 23).

5.2 Downscaling SoilGrids data

In this section, we test the performances of the proposed

method in downscaling psfs from soil digital maps publicly

available. This case is considered to analyse compositional

random fields having a realistic spatial distribution. For this

purpose and in view of our case study, we consider Soil-

Grids, which is a system for automated digital soil mapping

based on state-of-the-art spatial predictions methods

(Hengl et al. 2014, 2017) released in 2014 by ISRIC (In-

ternational Soil Reference and Information Centre)—

World Soil Information, a non-profit organization funded

by the Dutch government. SoilGrids predictions are based

on globally fitted models using soil profile and environ-

mental covariate data. When first released, SoilGrids pro-

vided a collection of soil properties and class maps of the

world at 1 km spatial resolutions, produced using

automated soil mapping based on statistical regression

models. In 2017, the resolution has been increased to

250 m and the accuracy of the predictions has been greatly

improved by using machine learning algorithms instead of

the previously employed linear regression (Hengl et al.

2017). In 2020, SoilGrids released a version where, among

other updates, soil map predictions are provided with a

mean value together with an uncertainty level map. Soil-

Grids data are available publicly under the Open DataBase

License. Among SoilGrids predicted variables, relevant to

this work are clay, silt and sand percentages at different

soil depths. In this section, the values considered for geo-

statistical downscaling are those referred to the topsoil, i.e.

depth of 0 cm.

We focus on a geographical domain with area

jDj ¼ 15750� 16000m2, located in a pre-Alpine area,

more specifically the basin of Pioverna river in the Lom-

bardy region in Northern Italy near the city of Lecco. This

region was selected as it is similar, from the geomorpho-

logical viewpoint, to the area analyzed in the case study

presented in Sect. 6. The psfs as available in SoilGrids are

reported in Fig. 5. Based on these data, we test the per-

formance of the ILR-ATPRCoK method, at different levels

of the upscaling factor P. Following the procedure

described in Sect. 5.1, we consider a sequence of upscal-

ing-downscaling operations, both in Aitchison and Eucli-

dean geometry, of the SoilGrids data in Fig. 5. For each

upscaling factor P in the range f22; 32; . . .; 102g and for

each pixel in D, we compute the Euclidean distance of the

psfs estimates from the initial SoilGrids data, yielding a set

of error (one for each value of P). These are displayed

through boxplots in Fig. 6a, b. We note that, mainly at high

uspcaling factors, the ILR-ATPRCoK method shows

slightly better behaviour with respect to the classical

ATPRCoK, producing solutions that are closer to the ref-

erence ones w.r.t the results produced via ATPRCoK

downscaling.

In Fig. 6c we report the histograms of the maximum of

the violation of the unit-sum constraint experienced during

the set of upscaling factors, for the four cases being con-

sidered. Interpretation of these histograms is fully analo-

gous to that in Fig. 4. These results confirm that the ILR-

ATPRCoK method is able to produce downscaled maps

that are consistent with the unit-sum constraint, as opposed

to the ATPRCoK downscaling method. Finally, we do not

report any violation of the positivity constraint for

ATPRCoK, differently from what shown in the tests

reported in Sect. 5.1.
Fig. 7 Aerial view of the case study area
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6 A case study

Our case study considers an application to a domain D

centered on the city of Lecco, located in the Lombardy

region in Northern Italy, which is crossed by three streams

(Bione, Caldone, and Gerenzone) that have the typical

characteristics of the pre-Alpine area (see Fig. 7). The

hydrographic basin of the Caldone water course is 24 km2

wide, with an altitude ranging from 197 m a.m.s.l. to

2118 m a.m.s.l. at the top of Grigna Meridionale mountain.

Geologically, the basin is characterized by rocky outcrops

in the higher part (mainly limestone and clastic rock),

while downstream towards the city the river flows through

a floodplain. The average precipitation over the city of

Lecco is about 1400 mm/year.

The combination between a short hydrologic response

time, high slope, intense sediment transport and flow

within a densely urban area makes the Caldone river a

suitable case study for hydrogeological instability and

hazard. This motivates the development of numerical

models intended to simulate hydrogeological processes,

such as the SMART-SED simulation tool (Sustainable

Management of sediment transpoRT in responSE to cli-

mate change conDitions, Gatti et al. 2020) which is able to

simulate sediment transport resulting from slope erosion.

These models typically need to be initialized with psfs

maps, with a resolution consistent with the Digital Terrain

Model (DTM), to be able to model properly the hydro-

logical processes taking place in the study region. How-

ever, field measurements of psfs are not available at the

Fig. 8 Clay, silt and sand maps coming from SoilGrids. In black is shown the polygon delimiting the hydrographic Caldone basin
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study site, which motivates the use of public repositories to

obtain indirect information on these input data (Fig. 8).

SoilGrids psfs at the study region have a pixel support

with measure jmK j ¼ 250� 250m2. In terms of the USDA

classification, the soil texture of the SoilGrids data for the

present case study falls into the loam category. This kind of

soil texture, according to Rosso (2004), is classified as

fairly permeable soil with moderate infiltration rates and

moderate runoff potential. In the following, these coarse-

scale data are downscaled to the resolution of the DTM

employed for the SMART-SED model, i.e. 5 m, using ILR-

ATPRCoK, following the methodology described in

Sect. 3. Together with ILR-ATPRCoK results, we here aim

to provide random realizations of the psfs fields—obtained

via Block Sequential Gaussian Simulation (BSGS)—as

demonstration of the ability of the method to produce

stochastic compositional maps compatible with coarse

scale data.

Based on SoilGrids psfs data, we define the following

coarse resolution maps

ðILR1;K ; ILR2;KÞ
0
¼ ILRð ðZ1;K ; Z2;K ; Z3;KÞ0 Þ;
K ¼ 1; . . .;M:

In the ILR-ATPRCoK model, we consider as covariates ulk,

l ¼ 1; . . .; L, the elevation DTMk—as given by the DTM at

the fine resolution of 5 m—and its square, driven by the

parabolic relation displayed in the scatterplot in Fig. 9. For

the fine map predictions dILR1;k, dILR2;k we thus consider

the model

dILR1;k ¼ bð1Þ0 þ bð1Þ1 � DTMk þ bð1Þ2 � DTM2
k þ

X
K

kKe1;K ;

dILR2;k ¼ bð2Þ0 þ bð2Þ1 � DTMk þ bð2Þ2 � DTM2
k þ

X
K

kKe2;K :

The fitted values are plotted against the observed values in

Fig. 10.

To perform ILR-ATPK, the spatial correlation structure

of the fine residuals e1;k and e2;k is estimated by applying

the Goovaerts’ deconvolution procedure to the variograms

fitted to the coarse residuals e1;K and e2;K (based on a

spherical model with nugget), and by assuming e1;k and e2;k
to be uncorrelated, see Fig. 11. The latter assumption is

supported by the residuals’ analysis, see Fig. 10c, d. Once

the fine variograms of the residuals have been estimated, it

is possible to solve the ATPK linear system, according to

(7). The downscaled ILR are then backtransformed in the

Aitchison space in order to get downscaled psfs, see

Fig. 12, left column.

Finally, in Fig. 12, right column, we show a sample

realization for the downscaled psfs, obtained via BSGS.

These stochastic maps shall form the cornerstone to eval-

uate the propagation of the uncertainty associated with the

psfs through the SMART-SED model, and eventually

assess the sensitivity of the sediment transport model to

this information.

7 Conclusions

We have presented a novel downscaling method for com-

positional data, based on the ATPRCoK method in the

Aitchison geometry, with application to the geostatistical

downscaling of psfs data. We have tested the method first

in the case of synthetic data and then on a dataset from the

SoilGrids online repository. In particular, we have shown

the ability of the method to automatically handle the

compositional nature of the considered data. Indeed, the

proposed method produces maps that respect the unit-sum

and positivity constraints and the relative scale of compo-

sitions property, as opposed to the classical ATPRCoK

method that produces maps which are not consistent with

the compositional constraints.

Validation on both synthetic and SoilGrids data show

good performances of the method in downscaling, as well

as robustness to the uncertainty of the input data. This is

critical to the use of data from public repositories in local

analyses, when point observations are not available, as they

Fig. 9 Scatter plots, histograms and Pearson coefficients of the ILRs

and the DTM at coarse resolution
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are naturally prone to uncertainty at a fine scale. While a

full account of SoilGrids uncertainty will be the scope of

future work, a relevant feature of ILR-ATPRCoK

method—similarly as ATPRCoK in the Euclidean set-

ting—is the possibility to easily incorporate point obser-

vations collected at the site, thus anchoring the downscaled

maps (either kriged or simulated) to such observations

(Park 2013). For instance, at the time of writing, a cam-

paign of data acquisition is under way in the Caldone basin,

and will support the definition of (possibly improved)

random psfs maps, to be used as input to the SMART-SED

model discussed in Sect. 6.

Fig. 10 a, b Scatter plots of the observed values and the fitted values

of the regression model. In red, the line of equation

E½dILRi;K � ¼ ILRi;K ; i ¼ 1; 2. The Pearson coefficient is 0.67 for

E½dILR1;K �; ILR1;K and 0.43 for E½dILR2;K �; ILR2;K . c Scatter plots of

the coarse residuals e1;K and e2;K . d Empirical semi-variograms and

cross-variograms of coarse residuals e1;K and e2;K
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Proof of ILR-ATPRCoK proposition

In the following we propose a proof of Proposition 1, i.e.

the equivalence of the ILR-ATPRCoK predictor (in the

simplex Sp) to the classical ATPRCoK predictor (in the

space Rp�1) by applying an isometric isomorphism. The

equivalence must be intended in the predictor, unbiased-

ness and optimality conditions. In the following we make

extensive use of the ILR properties defined in Pawlowsky-

Glahn et al. (2015b), pp. 37–43, and of the perturbation-

linear combination of compositions (a matrix product),

defined as follows (Pawlowsky-Glahn et al. 2015b, pp. 54–

55). If we consider a column vector y 2 Rp�1 and a matrix

W such that each row belongs to Sp, then

y0 	W ¼ C
Yp�1

i¼1

wyi
i;1; . . .;

Yp�1

i¼1

wyi
i;p

" #
:

We shall also use the fact that ILR : Sp ! Rp�1 extract the

Fourier coordinates of a basis projection for the vector

z 2 Sp, i.e.,

y ¼ ILRðzÞ
z ¼ a

p�1

i¼1
hz;wiia 	 wi ¼ ðy0 	WÞ

0
¼ ILR�1ðyÞ

where the rows of W ¼ ½wi;j�
j¼1;...;p
i¼1;...;p�1 are (compositional)

vectors identifying an orthonormal basis of the simplex

fw1; . . .;wp�1g and y ¼ ½yi�i¼1;...;p�1 2 Rp�1 is the vector of

coordinates (i.e. of the Fourier coefficients) of the identi-

fied basis of the simplex.

Let us start with the predictor, applying the ILR to the

ATPRCoK predictor defined in the Aitchison space

Sp (14), we get

bYk ¼
X
l

ulkb
l
Y þ

X
K

ILRðKK�ððeYKÞ
0 	WÞ

0
Þ:

where bl ¼ ILR�1ðblYÞ and eK ¼ ððeYKÞ
0 	WÞ

0
. Being eYK;i,

the i-th element of the vector eYK , i ¼ 1; . . .; p� 1, we have

ILRðKK�ððeYKÞ
0 	WÞ

0
Þ

¼ ILRðððeYKÞ
0 	W�K

0

KÞ
0
Þ

¼ ILRðððeYKÞ
0 	 ½w0

i�K
0

K �i¼1;...;p�1Þ
0
Þ

¼ ILR a
p�1

i¼1
eYK;i 	 w

0

i�K
0

K

� �0� 	

¼
Xp�1

i¼1

eYK;iILRðw
0

i�K
0

KÞ
 !0

¼ ððeYKÞ
0
½ILRðw0

i�K
0

KÞ�i¼1;...;p�1Þ
0

¼ ½hKK�wi;wjia�i;j¼1;...;p�1e
Y
K ¼ KY

Ke
Y
K :

Note that the matrix KK represents an endomorphism in
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Fig. 11 Results of the Goovaerts’ deconvolution (red line) procedure

applied to the empirical variograms (blue dots) starting from an initial

fit (green line). The empirical variograms are fitted to a spherical

variogram model. Fitted models: a Sill: 0.00956, Range: 2130 m,

Nugget: 0.00032; b Sill: 0.00665, Range: 2190 m, Nugget: 0.00016
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Fig. 12 Clay, silt and sand maps results of the ILR-ATPRCoK on the left and on the right results of BSGS. The black polygon delimits the

hydrographic Caldone basin

Stochastic Environmental Research and Risk Assessment (2021) 35:1223–1241 1239

123



the simplex, as it can be linked to KY
K , through a linear

transformation. Indeed, consider the CLR transformation

(Pawlowsky-Glahn et al. 2015b, p. 35), defined as

CLRðxÞ ¼ lnðxiÞ
ð
Qp

j¼1 xjÞ
1=p

" #

i¼1;...;p

;

and define the contrast matrix Wc, whose columns are the

CLRðwiÞ; i ¼ 1; . . .; p� 1 (see also Pawlowsky-Glahn

et al. 2015b, p. 36). In this context, KY
K is recast as

KY
K ¼ ½hKK�wi;wjia�i;j¼1;...;p�1

¼ ½hKKCLRðwiÞ;CLRðwjÞi�i;j¼1;...;p�1

¼ ½CLRðwjÞ
0
KKCLRðwiÞ�i;j¼1;...;p�1 ¼ W

0

cKKWc

The properties of an endomorphism matrix are listed in

Pawlowsky-Glahn et al. (2015b), p. 56.

In this way, we obtain the ATPRCoK predictor in the

Euclidean space Rp�1, i.e.,

bYk ¼
X
l

ulkb
l
Y þ

X
K

KY
Ke

Y
K :

Regarding the unbiasedness and optimality conditions,

calling lY ¼ ILRðlÞ, dð�; �Þ the Euclidean distance and

considering ILR properties, one easily obtains that the

same conditions hold in Rp�1,

E d2a a
K
KK�eK ; ek

� �� �
¼ E d2

X
K

KY
Ke

Y
K ; e

Y
k

 !" #
; ð20Þ

ILR Cen a
K
KK�eK

� �� �

¼ E ILR a
K
KK�eK

� �� �
¼ E

X
K

KY
Ke

Y
K

" #
¼ lY:

ð21Þ

The first equality (20) (i.e. the optimality condition)

derives from the property of the ILR to preserve distances

(as opposed e.g. to ALR); in this way the optimality con-

dition holds in Rp�1.

Finally from an ‘‘energy’’ point of view the two for-

mulation are equivalent. Indeed if we consider the quad-

ratic form associated with the covariance structure

Caðx1; x2Þ, x1; x2 2 D, denote by z a non-random element

of Sp, and use the ILR properties, we obtain

n ¼ hZðx1Þ 
 lðx1Þ; zia ¼ hILRðZðx1Þ 
 lðx1ÞÞ; yi ¼
¼ hYðx1Þ � lYðx1Þ; yi:

Using the latter expression, one has

hCaðx1; x2Þz; zia ¼ hILRðCaðx1; x2ÞzÞ; yi
¼ hE½n ILRðZðx2Þ 
 lðx2Þ�; yi
¼ hE½n ðYðx2Þ � lYðx2ÞÞ�; yi
¼ hCYðx1; x2Þy; yi:

Hence, the covariance structure in the Euclidean space

Rp�1, reads, CYðx1; x2Þ ¼ E½hYðx1Þ � lYðx1Þ; yi ðYðx2Þ�
lYðx2ÞÞ�. This means that the knowledge of the covariance

structure in the Aitchison simplex Ca implies the knowl-

edge of the covariance structure in the Euclidean space CY

and viceversa. This result, together with the relation stated

above among the regression coefficients

(bl ¼ ððblYÞ
0 	WÞ

0
), and the equivalence of predictor,

optimality and unbiasedness conditions, are sufficient to

prove Proposition 1.
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