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Abstract
Correlations in models for daily precipitation are often generated by elaborate numerics that employ a high number of

hidden parameters. We propose a parsimonious and parametric stochastic model for European mid-latitude daily pre-

cipitation amounts with focus on the influence of correlations on the statistics. Our method is meta-Gaussian by applying a

truncated-Gaussian-power (tGp) transformation to a Gaussian ARFIMA model. The speciality of this approach is that

ARFIMA(1, d, 0) processes provide synthetic time series with long- (LRC), meaning the sum of all autocorrelations is

infinite, and short-range (SRC) correlations by only one parameter each. Our model requires the fit of only five parameters

overall that have a clear interpretation. For model time series of finite length we deduce an effective sample size for the

sample mean, whose variance is increased due to correlations. For example the statistical uncertainty of the mean daily

amount of 103 years of daily records at the Fichtelberg mountain in Germany equals the one of about 14 years of

independent daily data. Our effective sample size approach also yields theoretical confidence intervals for annual total

amounts and allows for proper model validation in terms of the empirical mean and fluctuations of annual totals. We

evaluate probability plots for the daily amounts, confidence intervals based on the effective sample size for the daily mean

and annual totals, and the Mahalanobis distance for the annual maxima distribution. For reproducing annual maxima the

way of fitting the marginal distribution is more crucial than the presence of correlations, which is the other way round for

annual totals. Our alternative to rainfall simulation proves capable of modeling daily precipitation amounts as the statistics

of a random selection of 20 data sets is well reproduced.

Keywords Data model for daily precipitation � Non-Gaussian long-range correlated processes � Nonlinear transformation of

ARFIMA

1 Introduction

For simulations and forecasts numerical weather generators

require amongst others precipitation data as an input. The

occurrence and intensity of precipitation is affected by a

multitude of atmospheric processes, which evolve on many

different temporal and spatial scales. Stochastic precipita-

tion generators are, hence, convenient to capture the out-

come of such highly complex physical dynamics.

Two essential aspects of the statistics of precipitation

amounts are their distribution and temporal correlations.

There is ongoing discussion on the most appropriate choice

of a model distribution for daily precipitation amounts. In

particular, their tail behavior is crucial for the estimation of

large precipitation events. Most global studies with focus

on the large amounts find tails heavier than exponential

(Nerantzaki and Papalexiou 2019; Papalexiou et al. 2013;

Serinaldi and Kilsby 2014). By arguments from atmo-

spheric physics, Wilson and Toumi (2005) deduced a

stretched exponential tail with a universal shape parameter

as an approximation for the extreme regime. The geo-

graphic location and the climatic zone might have strong

influence on which distribution is most realistic. Case

specific suggestions range from the light-tailed exponen-

tial, mixed-exponential or gamma distribution (Richardson
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1981; Li et al. 2013) and the heavy-tailed generalized

gamma (Papalexiou and Koutsoyiannis 2016) or log-nor-

mal (Liu et al. 2011) distribution to fat-tailed Burr-type

distributions (Papalexiou and Koutsoyiannis 2012) and q-

exponentials (Yalcin et al. 2016). As a remark, since none

of the aforementioned distributions is stable under convo-

lution with itself, it is also evident that the distribution will

change if the period of accumulation is changed, i. e.,

hourly data will follow a different distribution than daily

data. In most studies the distribution is fitted by maximum

likelihood or method of moments approaches. As the tail is

naturally represented only poorly in empirical data, this

may lead to an underestimation of extremal events (Bennett

et al. 2018). Such an effect was addressed by for example

entropy based parameter estimation (Papalexiou and

Koutsoyiannis 2012).

In terms of correlations one differentiates between

essentially two kinds. Short-range correlations typically

decay exponentially with effects on short time scales only.

Long-range correlations, however, asymptotically vanish

such slowly that the sum of all autocorrelations becomes

infinite as for example for power-law decay with small

exponent. Note that in real-world data the temporal horizon

is always finite, such that it is impossible to decide about

the origin of persistent empirical correlations. It may lie in

strong short-range correlations or long-range dependencies

that will survive beyond. Nevertheless, the concept of long-

range correlations helps modeling the fluctuations in a

system. For example in the presence of long-range corre-

lations statistical quantities like the sample mean show

noticeable slower convergence, so that larger sampling

errors may occur. Long-range correlations have been

observed for precipitation amounts accumulated over time

windows of different lengths, such as minutes (Peters et al.

2001; Matsoukas et al. 2000), months (Montanari et al.

1996) and years (Hamed 2007; Pelletier and Turcotte 1997;

Bǎrbulescu et al. 2010). This kind of dependency in the

data is stronger and more prominent for smaller periods of

accumulation and looses intensity for larger ones. Due to

the abundance of data on daily precipitation amounts, we

concentrate here on time series of 24h accumulated

amounts (Bennett et al. 2018).

A classical approach to modeling daily precipitation

statistics are two-part models, in which the occurrence or

absence of precipitation and its positive amounts are gen-

erated independently (Wilks and Wilby 1999; Liu et al.

2011; Li et al. 2013). Correlations between different

occurrences are commonly introduced by a Markov chain

of first or second order. Recent studies explicitly address

correlations between different precipitation amounts by

modified Markov chain approaches (Chowdhury et al.

2017; Oriani et al. 2018).

To include dependencies between precipitation amounts

as well transformed Gaussian processes, so-called meta-

Gaussian processes, have been applied (Bardossy and Plate

1992; Bárdossy and Pegram 2009) (and references below).

A prescribed distribution can for example be generated by

inverse sampling based on the probability integral trans-

form by applying the quantile function and the cumulative

distribution function of a desired marginal distribution to a

Gaussian process. The intermittency that precipitation time

series naturally exhibit is automatically incorporated into

such a model by applying truncated, so-called mixed-type,

distributions, that generate a point mass at zero (or a

specific threshold). Correlations can directly be defined by

the underlying Gaussian process, which is then transformed

adequately to obtain a certain distribution. Recent studies

include also physical knowledge in the sense that the

underlying (spatio-temporally correlated) Gaussian process

describes atmospheric dynamics, which are then trans-

formed appropriately. On that account, truncated-Gaussian-

power transformations of short-range correlated Gaussian

processes have been used to model the distribution of

precipitation amounts and their dynamics (Sanso and

Guenni 1999; Ailliot et al. 2009; Sigrist et al. 2012).

Without explicitly pointing out the property of long-range

correlations, Baxevani and Lennartsson (2015) use an

underlying Gaussian process with a temporally hyperboli-

cally (and spatially exponentially) decaying spatio-tempo-

ral autocorrelation function. Transforming a process,

however, does not preserve its temporal correlations, so

that additional adjustments of the correlations are neces-

sary to attain prescribed correlations.

One approach to directly estimating the autocorrelations

of the underlying Gaussian process is expanding the

transformation in Hermite polynomials. A historical note

on Hermite series in precipitation modeling is given in

Papalexiou and Serinaldi (2020). Guillot (1999) applies

this method to the spatial behavior of rainfall events with

an exponentially decaying autocorrelation function and a

truncated gamma distribution for the rainfall amounts.

Alternatively, Papalexiou (2018) fits a function that maps

the autocorrelations of the transformed to the autocorrela-

tions of the underlying Gaussian process. Depending on the

shape of the mapping between the two a proper functional

form has to be chosen.

Major algorithmic effort arises for the synthesis of meta-

Gaussian model time series with desired correlations.

Serinaldi and Lombardo (2017) generate surrogate data by

Davies and Harte’s algorithm based on spectral properties.

In Papalexiou (2018), the Yule–Walker equations or an

approximation by a finite sum of first-order autoregressive

processes are proposed. Introducing long-term correlations

into synthetic time series of large sample size is also pos-

sible by specifying correlations on the a larger time scale,
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e. g. annual, and then disaggregating the data to the smaller

(daily) time scale (Papalexiou et al. 2018) or by a copula-

based method (Papalexiou and Serinaldi 2020). Hosseini

et al. (2017) give an approach to explicitly accounting for

temporal dependencies on an annual basis between differ-

ent daily rainfall amounts by considering a high number of

previous amounts. By conditional probabilities for gamma

distributed amounts they insert temporal correlations

directly without the implicit correlations of a transformed

Gaussian. The model process essentially represents a

Markov process of high order. All the aforementioned

methods for the numerical generation of long-range cor-

related non-Gaussian or, in particular, meta-Gaussian

sample data require sophisticated algorithms with a high

number of hidden parameters.

An appropriate data model for daily precipitation time

series should cover both the non-Gaussianity of the data

and their short- and long-range temporal correlations. With

this goal, as the references mentioned above but with very

different methodology for generating prescribed correla-

tions, we present here a general and parsimonious meta-

Gaussian framework for modeling daily precipitation with

long-range correlations. We generate Gaussian long-term

correlated data by synthesizing samples from a Gaussian

ARFIMA(p, d, 0) model. These autoregressive fraction-

ally-integrated moving average processes provide direct

access to short- and long-range correlations. Only one

parameter d is needed to determine the long-term correla-

tions of the system and p 2 N (we apply p ¼ 1) parameters

control the short-term correlations. For determining how

the long-term behavior of the correlations change under

transforming the process we apply the Hermite approach,

whereas the autoregressive parameter we fit by conditional

probabilities. The resulting model is parametric, which

means that its overall five parameters have a well defined

meaning within the model and can be easily interpreted.

The article is organized as follows. In Sect. 2, we recall

the notion of long-range temporal correlations along with

the properties of the ARFIMA model. We further sum-

marize how to verify and quantify the presence of long-

range correlations in observed data. Then we discuss how

analytical control about the asymptotics of the correlations

of a nonlinearly transformed Gaussian long-range corre-

lated process is retained by the Hermite polynomial

approach. In the last part of this section, we elaborate the

theory of effective sample sizes and how the presence of

long-range correlations influence the estimates of statistical

quantities. Section 3 is devoted to formulating our model

and its scope of daily precipitation time series. In partic-

ular, we include a discussion of how to match the short-

term correlations of data with the auto-regressive part of

the ARFIMA model by the usage of conditional probabil-

ities, which is a way to cope with the non-Gaussian

statistics of our data. The methodology is completed by the

formulation of step-by-step procedure for the application of

our model approach. In Sect. 4, we apply our model to 20

stations and depict three of them in detail. We thoroughly

validate our findings that the marginal distribution of the

empirical data sets in terms of daily mean, annual totals

and maxima, the short- and long-term correlations and the

waiting-time distribution of the empirical data is well

modeled by a truncated-Gaussian-power of a long-range

correlated ARFIMA process. Along with that we demon-

strate the influence of the chosen method for fitting the

marginal distribution on the statistics of annual total and

extreme precipitation amounts.

Throughout our article, we use the notation Xt to con-

textually refer to either a stochastic processes X :¼
ðXtÞt2N� 0

or its components. Properties of the process like

the mean will be indexed by X.

2 Long-range temporal correlations

Long-range dependence in time series was established by

Hurst in 1951 in his seminal work on water-runoffs of the

river Nile (Hurst 1951, 1956). More recently, such mem-

ory-like behavior has been found in data from various

fields of research, not only in geophysics but also in biol-

ogy and chemistry, e. g. , for DNA sequences (Peng et al.

1994), neural oscillations (Hardstone et al. 2012) and

molecular orientation (Shelton 2014), in atmospheric

physics for wind speeds (Kavasseri and Seetharaman 2009)

and air pollution (Kai et al. 2008) and even in computer

science (Leland et al. 1993; Scherrer et al. 2007), eco-

nomics (Baillie 1996) and finance (Feng and Zhou 2015;

Sánchez Granero et al. 2008).

A time-discrete and (second-order) stationary stochastic

process Xt is said to have long memory (LM) or, more

precisely, to exhibit (temporal) long-range correlations

(LRC) if its autocorrelation function (ACF)

.XðkÞ :¼
CovðXt;XtþkÞ

r2
ð1Þ

with r2 ¼ VarðXtÞ, is not absolutely summable as

s :¼
X1

k¼0

.XðkÞj j ¼ 1: ð2Þ

Note that for stationary processes the ACF (1) depends on

the time lag k only and not on the particular point t in time.

If the sum in definition (2) is finite though, then the time

series is said to have short memory (SM) or to exhibit

short-range correlations (SRC). The sum in (2) is the time-

discrete analogue of the correlation time of a time-
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continuous stochastic process. For LM processes a mean

correlation time, thus, a typical temporal scale, does not

exist.

A conventional behavior of the ACF leading to diver-

gent correlation times is a power law

.XðkÞ / k�c ðk ! 1Þ ð3Þ

with an exponent 0\c� 1. An ACF that decays to zero

more rapidly (e. g. exponentially) or is constantly zero

(uncorrelated), so that a correlation time exists in defini-

tion (2), yields a SM process. If the ACF does follow a

power law but with an exponent c[ 1 in (3), it is sum-

mable and is called to have intermediate memory (IM). As

we discuss in Sect. 2.3, a Gaussian process with long

memory can become a process with intermediate memory

by a transformation of the process, since the ACF is not

invariant under coordinate transform.

2.1 The ARFIMA process

Hosking (1981) and Granger and Joyeux (1980) general-

ized SM autoregressive-integrated-moving-average

(ARIMA) models (Box et al. 2008) to autoregressive-

fractionally-integrated-moving-average (ARFIMA) mod-

els to get hands on time-discrete stationary Gaussian LM

processes. We use the ARFIMA(1, d, 0) process to model

the ACF of empirical daily precipitation data without

pronounced seasonality.

The ARFIMA(0, d, 0) process is a time discrete version

of fractional Gaussian noise (fGn), which was introduced

by Mandelbrot and Van Ness (1968) as the increments of

fractional Brownian motion. Both the ARFIMA(0, d, 0)

and the fGn process exhibit temporal LRC. The asymptotic

power-law decay

.XðkÞ / k2d�1 ðk ! 1Þ ð4Þ

of the ACF .X of an ARFIMA process Xt is controlled by

the parameter d as described below.

ARFIMA processes are Gaussian stochastic processes.

This means that the joint distribution of any finite ensemble

ðXt1 ; . . .;XtsÞ, s 2 N, ti 2 N� 0, i ¼ 1; . . .; s, of points in

time is a multivariate Gaussian distribution. Stationary

Gaussian processes are uniquely determined by their first

moment E½Xt� and their ACF CovðXt;XtþsÞ=r2 which does

not depend on a specific point t in time. Therefore, the

modeling of arbitrary types of temporal correlations by

Gaussian processes is straightforward (Graves et al. 2017).

Another advantage of Gaussian processes stems from the

stability of the Gaussianity of their marginal distribution

under convolution among different points of the process.

On that account, Gaussian processes can be easily defined

through iterative schemes driven by Gaussian noise, which

itself is chosen as an un- (white) or correlated (colored)

Gaussian process, yielding time series models which are

easy to handle.

An ARFIMA(0, d, 0) process has the infinite moving-

average representation

Xt ¼
X1

j¼0

wjet�j with wj :¼
Cðd þ jÞ

Cð1 þ jÞCðdÞ ; ð5Þ

where et is a zero-mean Gaussian white-noise process with

variance r2
e . The ARFIMA(1, d, 0) process can be under-

stood as an AR(1) process driven by ARFIMA(0, d, 0)

perturbations (Hosking 1981). Hence, its auto-regressive

part explicitly specifies short-range correlations by a single

additional parameter. The time series model of the

ARFIMA (1, d, 0) process reads

Xt ¼ uXt�1 þ ~Xt ð6Þ

with an ARFIMA(0, d, 0) process ~Xt and juj\1. The AR

parameter u accounts for SM effects that decay exponen-

tially while the LM parameter d describes the asymptotic

power-law decay (4) of the ACF .X. For every d 2
ð0; 1=2Þ the ARFIMA process is stationary, causal and

invertible (if juj\1) and obeys positive LRC. Due to

0\c ¼ 1 � 2d\1, it is a LM process in the sense of

definition (2).

The ACF . ~X of an ARFIMA(0, d, 0) process ~Xt and .X

of an ARFIMA(1, d, 0) process Xt are analytically known

and read (Hosking 1981)

. ~XðkÞ ¼
Cð1 � dÞ
CðdÞ � Cðk þ dÞ

Cðk � d þ 1Þ and

.XðkÞ ¼
. ~XðkÞ

ð1 � uÞ2F1ð1; 1 þ d; 1 � d;uÞ

�
�

2F1ð1; d þ k; 1 � d þ k;uÞ

þ 2F1ð1; d � k; 1 � d � k;uÞ � 1Þ:

ð7Þ

Therein, the function 2F1 is the hypergeometric function.

We apply these formulae for the calculation of effective

sample sizes in Sect. 2.4 and conditional probabilities in

Sect. 3.4.

2.2 Quantifying long-range correlations
and the estimation of d

When analysing dependencies in time series, temporal

correlations can be taken into consideration but have to be

estimated. For the particular case of a power-law decaying

ACF, several methods have been proposed (Taqqu et al.

1995), among them the rescaled-range or R=S statistics

(Hurst 1951), the detrended fluctuation analysis (DFA)

(Peng et al. 1994), and wavelet transforms (Abry and
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Veitch 1998). These methods can estimate LRC much

more robustly than a direct estimation of the power-law

decay in a double-logarithmic plot of the ACF. Fluctua-

tions of the ACF around zero, in particular, logarithms of

negative values, impede reliable inferences about the rate

of the decrease of the ACF.

For comparison we employ all three methods, R=S-

statistics, DFA and wavelet analysis, to our empirical

precipitation data. Since there are only very weak non-

stationarities in most of the data sets, the detrending of

DFA and the one implicitly contained in the wavelet

analysis do not alter much the results obtained by R=S

statistics. Also the spread of the estimates when later

quantifying the long-range correlations for ensembles of

model data are very similar, so that in the current setting all

three methods appear to be equivalent. Indeed, as it was

argued in Höll and Kantz (2015), Løvsletten (2017),

wavelet transform and DFA can both be re-written as

kernel transforms of the ACF. The algorithmic imple-

mentation of DFA and wavelet analysis are described in

detail in Kantelhardt et al. (2001), Taqqu et al. (1995),

Abry and Veitch (1998); Abry et al. (2003) and many other

publications, and an algorithm for the R=S statistics is

described in Beran et al. (2013), so we do not repeat these

here.

Given a time series of length N, all three methods select

time scales s\N, and perform an estimate of the strength

FðsÞ of fluctuations in this time scale. The resprective

quantities, i. e., the fluctuation function (DFA), the rescaled

ranges (R=S statistics), and the wavelet coefficients

(wavelet analysis), are time averages over all disjoint

intervals of length s contained in the data set, whereas the

methods differ in the way how the strength of fluctuations

is measured. When representing the strength FðsÞ of the

fluctuations versus the time scale s in a double-logarithmic

plot, the asymptotic scaling of

FðsÞ / sa ðs ! 1Þ ð8Þ

identifies the correlation structure of the process. The

exponent a is commonly referred to as the Hurst exponent.

If the process has a finite correlation time in definition (2),

then a ¼ 1=2, while a ¼ 1 � c=2 for LRC processes with

0\c\1 in the power law (3). This is true independently of

the marginal distribution of the data and in particular even

if the distribution has power-law tails (Taqqu et al. 1995).

For ARFIMA processes one can show (Taqqu et al. 1995;

Mielniczuk and Wojdyłło 2007) that a ¼ d þ 1=2.

Note that possible bias in the estimation of the Hurst

parameter a has several origins. First, non-Gaussianity and

non-stationarity may influence the estimate, which we take

account of by comparing results from different methods.

Second, the estimate of LRC in finite size data confines to

the empirical horizon. The source of observed LRC may lie

in strong SRC throughout the observed time window and

does not transfer beyond automatically. Nevertheless,

involving LRC in finite time modeling serves for repro-

ducing certain statistics directly, as we do in Sect. 2.4. We

discuss the results of such analyses on daily precipitation

time series and the fit of the parameter d in Sects. 3.2 and

4.1.

2.3 Correlations under transformation

We aim at modeling the distribution of daily precipitation

along with LRC in the data by applying a nonlinear

transformation to a Gaussian LM process. How the ACF of

the original process changes under the transformation can

be determined by an Hermite polynomial approach (Beran

et al. 2013; Samorodnitsky 2016).

Let Xt be a time-discrete (second-order) stationary and

zero-mean Gaussian process with ACF .X and stationary

probability density function (PDF)

fXðxÞ :¼
1ffiffiffiffiffiffiffiffiffiffi

2pr2
p exp � x2

2r2

� �
:

By a nonlinear transformation g : R �! R of the process

Xt, we obtain a stochastic process Yt :¼ gðXtÞ. Some

authors refer to such pointwise transformations as

memoryless.

Every transformation g which keeps the second moment

E½gðXtÞ2� of the stationary marginal distribution of the

process Xt finite can be expanded to an Hermite series. For

r ¼ 1 and j 2 N� 0 the Hermite polynomials are defined as

HjðxÞ :¼ ð�1Þj dj

dxj
e�

x2

2

� �
e
x2

2 ð9Þ

and generalized to Hr2

j ðxÞ :¼ rjHjðx=rÞ, j 2 N� 0, for

arbitrary variances r2. The Hermite polynomials are

orthogonal in the L2-Hilbert space equipped with the

Gaussian PDF fX. Hence, with respect to the generalized

Hermite polynomials Hr2

j the transformation g can be

represented uniquely by

g ¼
X1

j¼0

aj
r2jj!

Hr2

j with

aj :¼
Z

R

gðxÞHr2

j ðxÞfXðxÞ dx:

ð10Þ

The smallest index J[ 0, for which the Hermite coefficient

aJ 6¼ 0 is non-vanishing, is called the Hermite rank of the

transformation g. This number J determines the asymptotic

behavior of the ACF .Y of the transformed process as

follows. Using Mehler‘s formula, it can be shown that
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.YðkÞ ¼
1

VarðYtÞ
X1

j¼1

a2
j

r2jj!
.XðkÞ

j: ð11Þ

Note that a0 ¼ E½gðXtÞ�. As .XðkÞ ! 0 ðk ! 1Þ, by

Eq. (11), we obtain .YðkÞ / .XðkÞ
J ! 0 ðk ! 1Þ. Hence,

the transformed process Yt of a Gaussian LM process in the

sense of definition (3), has a power-law ACF that in leading

order decreases as

.YðkÞ / k�cJ ðk ! 1Þ: ð12Þ

If the exponent c of the underlying LM process Xt satisfies

c 2 ð0; 1=J�, then the transformed process Yt obeys LM as

well. Otherwise, if c2ð1=J; 1�, we find IM. In the language

of ARFIMA, processes with d 2 ½1=2 � 1=2J; 1=2Þ main-

tain LM but map to IM for d 2 ð0; 1=2 � 1=2JÞ. The higher

the Hermite rank of a transformation is, the larger is the

range of LM processes that become IM processes. As a

remark, since a1 ¼
R
R
gðxÞxfXðxÞ dx, every transformation

g, that is not even, obeys the Hermite rank J ¼ 1. There-

fore, without further symmetry assumptions on g the

transformation does not change the asymptotic memory

behavior of a Gaussian LM process. For example, the

square has Hermite rank two, while the exponential func-

tion has Hermite rank one.

2.4 Effective sample size and variance

The presence of correlations in data affects the rate of

convergence of statistical quantities. The distribution of the

sample mean SN :¼ 1=N
PN

t¼1 Yt of N 2 N independent

and identically distributed (i. i. d.) samples Y1; . . .; YN with

finite variance r2
Y\1 for large N is approximately

Gaussian with mean E½Yi� and variance r2
SN

¼ r2
Y=N by the

central limit theorem. For stationary processes Yt with ACF

.Y, however, we have (von Storch and Zwiers 1984)

r2
SN

¼ r2
Y

N
sDðNÞ with ð13Þ

sDðNÞ ¼ 1 þ 2
XN�1

k¼1

1 � k

N

� �
.YðkÞ [ 1: ð14Þ

By (13), we observe an effective sample size

Neff :¼
N

sD

; such that r2
SN

¼ r2
Y

Neff

; ð15Þ

which emphasises that the statistics of the sample mean of

N correlated data points behaves like the one of Neff i. i. d.

samples does. We may call r2
SN

the effective variance and

sD :¼ limN!1 N=Neff the decorrelation time. Note that

Neff �N by inequality (14). For SM processes sD is finite,

so that Neff increases proportional to N (sD ¼ 1 þ u=1 � u

for AR(1)). In case of LM, sD ¼ 1, and by Eq. (3), the

asymptotic behavior of the effective sample size reads

Neff � aNc ðN ! 1Þ: ð16Þ

For transformations Yi ¼ gðXiÞ of Gaussian LRC pro-

cesses Xi the decorrelation time sD and the prefactor a in

(16) can be calculated by applying (7) and (11) to (14).

Moreover, the Hermite rank J of the transformation g

determines the limit distribution of the sample mean, which

is Gaussian in case J ¼ 1 (Beran et al. 2013). As a remark,

for J[ 1 we have non-Gaussian limits such as the

Rosenblatt distribution for J ¼ 2. In Fig. 1, we visualize

the effective sample sizes and asymptotic Gaussian distri-

butions of the sample mean for SM and LM examples.

In Sect. 4, we apply the effective sample size approach

to the distribution of the sample mean and annual sums of

daily precipitation.

3 Semi-analytical parametric modeling
of measured daily precipitation data

The model we present for station measurements of daily

precipitation is intended to reproduce both the marginal

distribution and the temporal correlations of observed data.

In the following subsection we formulate and explain the

model and give a sketch of the algorithm for the estimation

of the model parameters.

3.1 Fundamentals of the model choice

Long-range correlations in hydrological time series have

been discussed intensively before. In particular for daily

precipitation time series they could be explained by storage

and evaporation effects in the ground, that might cause

previous precipitation events affecting later occurrences

and amounts of precipitation on larger time scales (Feder

1988, p. 161). By applying R=S statistics, DFA, and

wavelet transforms, we consistently observe LRC in our

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
0

5

10

Fig. 1 Asymptotic normal distributions with theoretical (r2
SN

by (15))

and fitted (r2
SN

) variance of the sample mean SN of N ¼ 1000 i. i. d.,

AR(1) (u ¼ 0:3) and ARFIMA(1, 0.2, 0) standard Gaussian dis-

tributed samples
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precipitation data sets with Hurst exponents larger than 1=2

and smaller than 1 (Fig. 2 and Table 4), with very good

agreement of the values obtained by the different methods.

Some earlier studies (Rybski et al. 2011; Kantelhardt et al.

2006) have found LRC in daily precipitation as well, and

point out that in general this memory is rather weak but

still significant (Kantelhardt et al. 2003). We tested the

significance of our finding by repeating the analysis for

several randomly shuffled versions of the time series. For

these data sets with removed correlations we obtain Hurst

exponents close to 1=2 in compliance with their expected

SM. We conclude that LRC can be prominent in daily

precipitation time series on the observed time horizons and

apply this property in our model for respective locations.

Unlike for example temperature measurements with

their clear positive trends, most European mid-latitude

daily precipitation records do exhibit only a moderate

annual cycle and essentially no trend over the years. We

therefore formulate a stationary model.

We combine reproducing daily precipitation amounts by

powers of truncated Gaussian distributions and generating

correlations by a LM ARFIMA process (Sect. 3.2). The

truncated-Gaussian-power (tGp) transformation has Her-

mite rank 1, i.e., the estimated exponent c of LRC in the

empirical data can be used directly to model LRC by the

ARFIMA model. What remains is the adjustment of SRC

through the AR(1) part (6) of the ARFIMA model

(Sect. 3.4).

3.2 The truncated-Gaussian-power model
with long-range correlations

Let Xt be a stationary ARFIMA(1, d, 0) process with AR

parameter juj\1 and Gaussian marginal distribution

Nð0; r2Þ as defined in (6). From this we obtain a process

Yt :¼ gðXtÞ that has a tGp marginal distribution by the

transformation

gðxÞ :¼ xþ mð Þnþ; ð17Þ

where xþ :¼ maxðx; 0Þ projects onto the positive part. Note

that by the transformation (17) the zero-mean ARFIMA

process Xt is shifted to a mean m[ 0 before its negative

part is mapped to zero. In that way, a point mass in zero is

created that accounts for the probability of the absence of

precipitation. These zero values in time series of this model

are crucial for the reproduction of intermittency and the

study of correlations. Overall, the model employs five

parameters, n, m and r for the distribution and d and u for

the long and short memory, respectively.

Let fX and FX denote the Gaussian PDF and CDF,

respectively, of the marginal distribution of the underlying

Gaussian process Xt. By a coordinate transform the PDF fY
and CDF FY of the stationary marginal distribution of the

transformed process Yt read

fYðyÞ ¼ dðyÞFXð�mÞ þ
fXð

ffiffiffi
yn

p � mÞ
ny

n�1
n

Ið0;1ÞðyÞ

FYðyÞ ¼ FXð
ffiffiffi
yn

p � mÞ I½0;1ÞðyÞ;
ð18Þ

where dð:Þ is the Dirac delta function and IA denotes the

indicator function that equals 1 on A and 0 outside. From

this we can directly conclude that the tail of the PDF of the

tGp transformed process in leading order decreases as

fYðyÞ / e�
y
2=n

2r2 y
1�n
n ðy ! 1Þ; ð19Þ

so that the stretched exponential part quickly dominates the

shape. For n[ 2 the tail of the model PDF behaves like a

stretched exponential function and, hence, decays slower

than exponentially but faster than every power law. It is a

heavy-tailed distribution in the sense of Embrechts et al.

(1997) since the moment generating function E½esYt � is

infinite for all s[ 0, t 2 N� 0, but not fat-tailed since all

moments of Yt are finite.

Note that the parameter m and the underlying variance r2

do not only determine the probability of the absence of

precipitation but also influence the location and shape of

the tail of the model PDF (18), respectively. The power

n 2 R, however, adjusts the tail of the distribution only.

10 1 10 2 10 3 10 4 10 5
10 -4
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10 -2

10 -1

10 0

10 1
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Fig. 2 Estimation of the Hurst exponent: straight line with slope 1=2

(thick line) for comparison. The grey shadow visualizes the results for

25 model time series, each synthesized by the fitted models according

to Table 1
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Since the tGp transformation has Hermite rank 1, by

subordinate (4) and resulting (12) power law, we have

.YðkÞ / k�c ¼ k2d�1 ðk ! 1Þ: ð20Þ

By the relation (20), we estimate the LM parameter d of the

ARFIMA(1, d, 0) Xt, so that

d ¼ a� 1=2 ð21Þ

provides the fit of the LM parameter d based on the esti-

mated Hurst exponent a of the data by the methods

described in Sect. 2.3.

3.3 Model estimation: distribution

Precipitation amounts span several magnitudes, which

cannot be expected all to be modeled equally well by a

single tGp. We aim at properly reproducing the mean

precipitation amount, the correct fraction of days with very

little precipitation along with the durations of such periods,

and the extremal events as these quantities are of particular

importance for risk assessment.

Since classical rain gauges allow for measurements with

a precision of 0.1 mm, historical records in the range of one

millimeter and below have to be treated with care, due to

measurement errors. Mainly evaporation strongly affects

measurements of this magnitude. Modern measurement

instruments increase the accuracy by applying laser

detection. As a remark, rainfall of single-digit millimeter

amounts per hour represents drizzling rain or only weak

showers.

Accepting that our model might be slightly less accurate

for very small amounts, our approach is dedicated to

modeling accurately precipitation that exceeds about 4 mm

a day. Please, see Sect. 4.2 for comments on the choice of

this threshold. For mid-latitude daily precipitation, how-

ever, about 75 to 85 percent of the daily records are smaller

than 4 mm (cp. Table 1), so that we face the issue of

modeling statistics while allowing for deviations in the

probabilities for the majority of the measurements. Inspired

by a generalized Kolmogorov-Smirnov test (Mason and

Schuenemeyer 1983) we determine the parameters n, m and

r for the tGp distribution (18) by a least square fit of the

model survival function 1 � FY to the empirical survival

function in semi-logarithmic scaling. In doing so, high

probabilities for small amounts are discriminated and low

probabilities for large amounts in the tails are highlighted.

As a result, deviations might occur in the estimated prob-

ability of non-zero precipiation. Fitting an additional

parameter to this quantitity could eliminate such modeling

errors. As we argue, however, in Sects. 3.3 and 4.3 , these

errors are neglectable, so that we abstain from another

parameter for the sake of parismony. Besides maximum

likelihood techniques, a very common approach for the fit

of distributions is the method of moments (Bennett et al.

2018). Such a fit aims at matching the mean and variance

of the empirical data along with the exact probability of

non-zero precipitation. Hence, the very small amounts are

emphasized with the cost of a worse representation of the

tail of the distribution, so that typically, high-frequency

amounts are represented well with deviations in low-fre-

quency amounts.

We apply the fit by the survival function and compare

the results to those one gets by the method of moments in

Sect. 4.2.

3.4 Model estimation: short-range correlations

The presence of additional short-range correlations can be

inferred from the violation of the long-term scaling of the

strength FðsÞ of fluctuations (cp. Sect. 2.2) for small s, as

shown, e. g. , in Höll and Kantz (2015). Identifying the AR

parameter for the ARFIMA(1, d, 0) model from the data is

not straightforward though. There is no closed form of the

transformed ACF (11), in particular, it cannot be inverted

easily for small time lags k.

For the identification and estimation of Gaussian

ARIMA models based on the ACF and partial autocorre-

lations Box and Jenkins established a method in their

seminal work on time series analysis (Box et al. 2008). Our

data and the corresponding model, however, have a non-

Gaussian, strongly asymmetric marginal distribution, so

that we formulate a different approach to the estimation of

the AR parameter u in Eq. (6).

We gain insight into the short-range dependencies in our

daily precipitation data by exploring empirical conditional

probabilities as follows. Let D0; . . .;DN�1, N2N, be the

recorded daily precipitation time series. We define the

empirical conditional probability pcDðkÞ of the occurrence

Table 1 Comparison of main statistical quantities of the empirical

data and the fitted models according to Fig. 3; in the bottom part the

probabilities of the absence of precipitation in the data and in the

model and of an amount less or equal to 4 mm each are collected

Station Mean Mean Variance Variance

(data) (model) (data) (model)

(a) 3.141 3.349 36.003 33.939

(b) 2.508 2.540 30.501 29.943

(c) 1.783 1.805 9.595 9.295

Pðdata ¼ 0Þ PðY ¼ 0Þ Pðdata� 4Þ PðY � 4Þ
(a) 0.411 0.179 0.760 0.753

(b) 0.531 0.485 0.813 0.811

(c) 0.301 0.291 0.856 0.860
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of a day with an accumulated precipitation amount of more

than c 2 R[ 0 millimeters k days after a day of the same

kind by

pcDðkÞ :¼ PðDt [ c j Dt�k [ cÞ: ð22Þ

Also for a tGp transformed ARFIMA process Yt we con-

sider the conditional probabilities

pcYðkÞ :¼ PðYt [ c j Yt�k [ cÞ: ð23Þ

We estimate u by equating the empirical conditional

probability (22) and the respective conditional probability

(23) of the model for time lag k ¼ 1. For that purpose we

numerically solve the equation

pcDð1Þ � pcYð1Þ ¼ 0 ð24Þ

for u by applying an optimization algorithm to obtain as

much agreement in the conditional probabilities as possi-

ble. As the process Yt is obtained by the transformation of a

Gaussian process, pcYðkÞ is analytically known for k2N� 0

as

pcYðkÞ ¼
RR1ffiffi

cn
p

�mfðXt ;Xt�kÞðx; yÞ dðx; yÞ
R1ffiffi

cn
p

�m fXðxÞ dx
; ð25Þ

where fðXt ;Xt�kÞ denotes the joint PDF of the two variates Xt

and Xt�k, which follow a zero-mean bivariate Gaussian

distribution N
0

0

� �
;R

� �
with covariance matrix

R ¼ r2
1 .Xð1Þ

.Xð1Þ 1

� �
ð26Þ

and Hosking (1981)

.Xð1Þ ¼
ð1 þ u2Þ � 2F1ð1; d; 1 � d;uÞ � 1

u 2F1ð1; d; 1 � d;uÞ � 1ð Þ
ð27Þ

for unity time lag. Since for fixed parameters n; m; r and d

by the covariance matrix (26) the joint probability (25)

depends on the AR parameter u only, the solution to

Eq. (24) serves as an estimator of u.

3.5 Step-by-step modeling procedure

Before applying our method to empirical data sets, we

assemble a ready-to-use procedure. Details on the several

fits and the results for real data we show in Sect. 4. Our

algorithm for modeling mid-latitude daily precipitation

reads:

1. Estimation of the parameters n, m and r of the tGp

distribution in virtue of the distribution (18) by a least

square fit of the model survival function to the

empirical survival function

2. Estimation of the LM parameter d ¼ a� 1=2 with

Hurst exponent a in the asymptotics of the fluctuation

function (8) by applying R=S analysis, DFA or a

wavelet analysis to the empirical data

3. Estimation of the short-memory parameter u in Eq. (6)

by the conditional probabilities in Eq. (24) under usage

of the estimated values of n, m, r and d

4. Synthesis of model time series by the generation of an

ARFIMA(1, d, 0) time series with variance r2 and AR

parameter u and transformation of this series by the

tGp transformation (17) with parameters n and m

For synthesizing model time series for specific values of

the parameters we follow the algorithm formulated in

Hosking (1984). The ARFIMA(1, d, 0) time series Xt,

t 2 N[ 0, is generated directly by relation (6) under

omission of L 2 N with jujL � 0:001 transients

X�L; . . .;X�1 to eliminate the influence of the initialization.

For modeling of precipitation data of about 70 to 100 years

25, 000 to 36, 000 time steps are required. The asymptotic

LM structure in synthetic time series of such lengths is

reliably generated by applying the moving average (5). By

using 2N values as the input Nð0;r2
e Þ white noise sequence

ðetÞN�1
�N and omitting N transients ~X�N ; . . .; ~X�1, we obtain

the ARFIMA(0, d, 0) process ~X. More sophisticated

methods for the generation of ARFIMA processes are

presented in Tschernig (1994). For an FFT-based syn-

thetization of long-memory processes see Crouse and

Baraniuk (1999). The variance r2
e of the input white noise

can be calculated by the identity (Hosking 1981)

r2

r2
e
¼ Cð1 � 2dÞ

Cð1 � dÞ2
� 2F1ð1; 1 þ d; 1 � d;uÞ

1 þ u
ð28Þ

with the fitted values r2, d and u. The right hand side of

Eq. (28) equals the variance .Xð0Þ for r2
e ¼ 1. Note that for

an ARFIMA(0, d, 0) process ðu ¼ 0Þ the equality (28)

reduces to r2
=r2

e ¼ Cð1 � 2dÞ=Cð1 � dÞ2
.

4 Results

We have tested our modeling approach for daily precipi-

tation records (Klein Tank et al. 2002) of land-based sta-

tions in Europe and give the results for 20 stations. The

criterion for choosing these data sets was the fact that their

recordings should cover more than 70 years without sig-

nificant gaps and that they represent different geographic

locations in Europe. We exemplify our fitted model for

three of the data sets we present in the appendix, namely

for the (a) Fichtelberg, 1916–2018, in Germany (Deutscher

Wetterdienst (DWD) 2018), the (b) Bordeaux, 1946–2018,

in France (European Climate Assessment and Dataset
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2018) and the (c) Central England, 1931–2018, (Met Office

Hadley Centre 2018) data set. Graphical visualizations of

the results are very similar for all stations in Table 2, so

that based on Table 3 any of the stations would illustrate

well our modeling approach and so do the three chosen

ones.

4.1 Reproducing long-range correlations

For the estimation of memory in our precipitation time

series we applied R=S analysis, DFA and the wavelet

transform (cp. Sect. 2.2). The three related quantifications

of the strength F of fluctuations for the three selected

stations are shown in Fig. 2. It turns out that the Hurst

exponents obtained by the different methods for the same

data set are very similar, while there are variations from

data set to data set. The LM parameter d we fit by the

relation (21) based on the exponent a we obtain by

DFA(3).

The gray shadow in Fig. 2 shows each F evaluated for

25 synthetic time series obtained by our fitted models

establishing two facts: first, the spread which reflects the

statistical error is rather small. Second, the observed data

are well within the spread of the synthetic data, which

validates that our model is able to reproduce the temporal

correlations of the observed data very well.

4.2 The marginal distribution

The fitted survival functions and the values of the fitted

parameters for the three chosen data sets are depicted in

Fig. 3. Comparing the statistics of the empirical data and

our fitted model, we see great agreement in the daily mean,

the daily variance and the probability of our benchmark of

4 mm (Table 1) and also in the empirical and model PDFs

and CDFs (Fig. 3). We point out that the smallest quantile

for which the deviation between the empirical and the

model CDF is smaller than a certain prescribed error, can

be determined precisely as apparent from Fig. 3. We do not

elaborate on this further and keep the treshold of 4 mm for

simplicity.

A q-q plot for the comparison of the quantiles of the

model and the data shows the high coincidence of the tails

of the distributions (Fig. 4), which is one of the essential

purposes of our model. By the good representation of the

data by our model we substantiate the appropriateness of

the tGp distribution for daily precipitation amounts, in

agreement with heavy-tailed (Liu et al. 2011; Papalexiou

and Koutsoyiannis 2016) and contrary to light-tailed (Li

et al. 2013) and fat-tailed (Papalexiou and Koutsoyiannis

2012; Yalcin et al. 2016) models. We point out that the

power n, which determines the asymptotic decay of the tail

of the tGp distribution, depends on the particular station

(cp. Fig. 3 and Table 2). Wilson and Toumi (2005)

Table 2 Fitted model parameter

values for 20 mid-latitude

European locations and

effective sample sizes by (15)

Station Country Period Length

N
Neff n m r d u

Aachen GER 1891–2010 38261 9335 2.831 0.745 0.95 0.063 0.3

Cottbus GER 1947–2018 26295 7206 7.25 0.886 0.262 0.081 0.222

Fichtelberg GER 1916–2018 37621 5074 4.083 1.048 0.521 0.096 0.284

Greifswald GER 1978–2018 14975 3953 3.906 0.747 0.58 0.081 0.213

Hamburg GER 1936–2018 30316 4575 3.405 0.844 0.671 0.095 0.278

Jena GER 1920–2018 36098 9583 4.453 0.794 0.483 0.076 0.208

Karlsruhe GER 1876–2008 48517 9299 4.139 0.888 0.53 0.083 0.249

Magdeburg GER 1947–2018 26297 5980 3.917 0.648 0.605 0.092 0.196

Schwerin GER 1947–2018 26296 6235 6.084 0.927 0.292 0.079 0.229

Trier GER 1947–1998 18993 3179 2.441 0.544 1.254 0.094 0.281

Central England GBR 1931–2018 32142 4472 2.967 0.843 0.696 0.099 0.222

Southeast

England

GBR 1931–2018 32142 3054 1.854 0.279 1.913 0.12 0.247

Bordeaux FRA 1946–2018 26641 2778 2.33 0.43 1.569 0.111 0.356

Luxembourg LUX 1947–2018 26280 3972 2.11 0.355 1.736 0.094 0.3

Valencia ESP 1938–2018 29585 12598 3.678 -0.401 1.222 0.052 0.44

Zaragoza ESP 1941–2018 28489 12490 2.503 -1.009 1.779 0.047 0.356

Sarajevo BIH 1901–2018 43099 16697 2.372 0.341 1.627 0.04 0.289

Vaernes NOR 1946–2018 26663 2408 2.826 0.846 0.893 0.121 0.283

Malmø SWE 1945–2018 27028 7504 3.828 0.793 0.569 0.073 0.189

Bollerup SWE 1945–2018 27028 5820 3.123 0.681 0.817 0.087 0.2
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physically reasoned a universal approximate stretched

exponential tail behavior of daily rainfall amounts with a

shape parameter c � 2=3. Into our fit, however, we include

not only the large but the entire range of the samples. By

(18), the parameter n controls the shape of the PDF for the

power-law part for small events along with the stretched

Table 3 Comparison between the statistics of the empirical data of the stations in Table 2 and the respective fitted models

Station Country Mean Mean Variance Variance P(data P(model P(data P(model

(data) model) (data) (model) ¼ 0) ¼ 0) � 4) � 4)

Aachen GER 2.237 2.269 20.548 19.96 0.462 0.376 0.82 0.825

Cottbus GER 1.567 1.674 16.983 16.564 0.54 0.273 0.881 0.893

Fichtelberg GER 3.141 3.349 36.003 33.939 0.411 0.179 0.76 0.753

Greifswald GER 1.645 1.689 14.379 14.07 0.523 0.37 0.869 0.879

Hamburg GER 2.071 2.159 18.013 17.094 0.469 0.308 0.832 0.837

Jena GER 1.616 1.697 15.024 14.51 0.521 0.341 0.877 0.882

Karlsruhe GER 2.177 2.325 23.436 22.014 0.52 0.277 0.828 0.832

Magdeburg GER 1.401 1.425 12.573 12.42 0.535 0.44 0.894 0.9

Schwerin GER 1.737 1.905 15.906 14.313 0.508 0.203 0.86 0.87

Trier GER 2.089 2.096 18.875 18.529 0.536 0.451 0.829 0.835

Central England GBR 1.783 1.805 9.595 9.295 0.301 0.291 0.856 0.86

Southeast England GBR 2.026 1.969 14.193 14.407 0.362 0.502 0.83 0.831

Bordeaux FRA 2.508 2.54 30.501 29.943 0.531 0.485 0.813 0.811

Luxembourg LUX 2.319 2.302 22.624 22.526 0.505 0.496 0.815 0.818

Valencia ESP 1.236 1.246 42.509 44.495 0.812 0.778 0.935 0.936

Zaragoza ESP 0.897 0.884 12.794 13.052 0.787 0.786 0.938 0.939

Sarajevo BIH 2.532 2.604 36.073 35.103 0.572 0.509 0.822 0.814

Vaernes NOR 2.327 2.394 19.481 18.824 0.441 0.326 0.805 0.811

Malmø SWE 1.68 1.778 14.375 13.532 0.537 0.333 0.863 0.871

Bollerup SWE 1.81 1.881 16.831 16.037 0.586 0.402 0.851 0.859
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Fig. 3 Fitted models and parameter values for the stations a
Fichtelberg, 1916–2018 (Germany), b Bordeaux, 1946–2018

(France), and c Central England, 1931–2018; empirical (dots) and

model (solid lines) survival functions (second row), PDFs (third row),

and CDFs (bottom row). The vertical lines (tagged by ?) in the

survival functions mark the 95%-quantiles of the empirical (upper)

and model (lower) distributions. The larger circles and the crosses in

the PDFs mark the probability of the absence of precipitation in the

data and in the model, respectively
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Fig. 4 Left: q-q plots for comparison of the tails of the fitted model

and empirical distribution according to Fig. 3 along with 95%

confidence intervals Right: p-p plots for a comparison of the fitted

model and empirical CDF according to Fig. 3 for small amounts;

model values less than 0.1 are mapped to 0; staircase shape arises due

to accuracy of 0.1 of empirical data. The vertical and horizontal lines

mark the 95%-quantile (left) and the probabilities of the amount of 4

mm (right) of the model and the data, respectively
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exponential tail of the tGp. Hence, specific geographical

properties enter more into the fit. Nevertheless, we mainly

observe powers n in the limited range of roughly 2.1 to 7

maximally, which accords with shape parameters c ¼ 2=n

in the range of 0.28 to 0.95 in agreement with Wilson and

Toumi (2005).

A closer look at the probabilities of small amounts by a

p-p plot (Fig. 4) reveals the difference for their probabili-

ties between the data and the model more than comparing

the PDF and CDF only. Depending on the data set, the

probability for the absence of precipitation in the model

(Yt ¼ 0) can highly differ from the one in the data

(Table 1). Note that the deviations in the CDF are partic-

ularly highlighted by a p-p plot for very small amounts.

Due to the low precision of the empirical data of 0.1 mm

compared to the steepness of the model CDF for small

values, roughly 50 percent of the entire probability mass

are accompanied by only about ten empirical data points.

Therefore, the deviations in the p-p plot could be decreased

by discretizing the model distribution to the same precision

of 0.1. We exemplify how the p-p plot then changes by

considering all model values less than 0.1 as no precipi-

tation and rounding them to zero (Fig. 4).

Since most of the probability mass sits at small values, a

maximum likelihood fit of the model to the data would

generated highly accurate p-p plots but poor q-q plots. The

same occurs when fitting by the method of moments. The

tail of a distribution is naturally only rarely sampled with

low impact on such fits. To emphasize the tail more than

the small values of high probability we applied a different

procedure by fitting the model survival function to the

empirical one. To fit the tail also certain quantiles ~q with

probability ~p can be fixed by m ¼
ffiffiffi
~qn

p
� F�1

X ð~pÞ due to the

equality ~p ¼ FYð~qÞ ¼ FXð
ffiffiffi
~qn

p
� mÞ. If the parameters are

estimated by fixing such specific quantities, then the fit

depends on the existence of parameters such that the cho-

sen equalities are satisfied.

4.3 Annual totals and annual extremes

A more detailed impression of the effects of correlations

and the fit method on the statistics can be gained by con-

sidering specific quantities, such as annual total and max-

imal precipitation (Bennett et al. 2018). By the effective

sample size (Sect. 2.4), we analytically determine the

variance of both the daily sample mean and the annual

totals of the model. In Table 2 we state for all stations the

effective sample sizes with respect to the sample mean. In

Fig. 5 (left panel) we show that for about half of the 20

stations the empirical mean lies inside one standard devi-

ation of the model sample mean. For all stations, the rel-

ative distance, defined by 100 � ðr� rYÞ=r, between the

empirical r and model rY daily standard deviation is less

than 5%.

By favoring the tail of the distribution of daily amounts

we lack exact reproduction of the empirical daily mean but

the deviation is in the range of the data precision of 0.1 mm

for all but three of the example stations (Fichtelberg,

Karlsruhe, Schwerin, Table 3). The tendency of our model

towards an underestimation of the probability of zero daily

rainfall translates to a possible positive bias in the annual

totals. In Fig. 5 (mid panel), we show the strongest bias we

see amongst our examples. In general, deviations of the

daily and annual mean above measurement precision are

possible, since we do not explicitly fit these quantities.

For annual totals let K ¼ 365, so that A :¼
PK

t¼1 Yk
denotes the annual sum of model time series Yt. We shall

assume A approximately Gaussian NðlA; r2
AÞ with

lA ¼ KlY. By definition (15), we calculate the variance of

the annual sum A as

r2
A ¼ Kr2

YsDðKÞ ð29Þ

with the model variance r2
Y of daily amounts. In Fig. 5

(right panel), we find coincidence between the standard

deviation of the empirical and model annual totals, while

their skewness might be slightly underestimated as seen in

Fig. 5 (mid panel). For all stations, the empirical mean of

the annual totals lies within one standard deviation of the

respective model mean with little differences between the

two fit methods. We point out, that due the precision of 0.1

mm of the daily data, the precision of the annual sum is

limited to 36.5 mm, so that values that differ at this mag-

nitude are practically indistinguishable. Further, the sample

variance is known for the tendency to underestimate the

true variance in the presence of LRC (Beran et al. 2013),

which could explain that the empirical standard deviations

slightly fall below model standard deviations. Elaborating

the same procedure for our model with a marginal fitted by

the method of moments, we find very small differences in

the representation of the statistics of the annual totals.

For comparison we also show the standard deviations of

the annual totals for an i. i. d. model with fitted tGp mar-

ginal distribution. Here, we observe clear underestimation

of the empirical standard deviation of annual totals.

Besides annual total amounts another statistical quantity

of great interest is the annual maximum precipitation. For

evaluating their representation by the model we apply the

Mahalanobis distance (Alodah and Seidou 2019). Let

X ¼ ðxiÞ, Y ¼ ðyiÞ 2 Rs. Then a bivariate Gaussian distri-

bution Nðl;RÞ with mean ðlX ; lYÞ and covariance matrix

R ¼ CovðX; YÞ 2 R2	2 can be fitted to the points ðxi; yiÞsi¼1,

where lX and lY denote the sample mean of the elements

of X and Y and R contains the sample (co-)variances.
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Then the Mahalanobis distance dMðx; yÞ between two

points x; y 2 R2 ist defined by

dMðx; yÞ :¼ ðx� yÞTR�1ðx� yÞ
� �1=2

:

A generalization of the Mahalonobis distance to more than

two dimensions is straightforward. By applying this dis-

tance measure in a multidimensional event space, it is

possible to include the distribution of multiple properties to

an evaluation at once. If points are close in the dM distance

then they are also near by in the single marginal spaces.

Points of equal distance with respect to dM form ellipses or

multidimensonal ellipsoids, respectively, and serve as

probability limits with respect to the parent multivariate

Gaussian Nðl;RÞ. A powerful feature of the Mahalanobis

distance is that the value dMðx; yÞ directly translates to

distances in terms of standard deviations of Nðl;RÞ, as

which the ellipsoids with distance dMðx; yÞ shall be

considered.

As a visualization, in Fig. 6 (left panel) for the

Fichtelberg data set (a) we show the two-dimensional

distribution defined by pairs consisting of the mean and the

standard deviation of the annual maxima of time series of

our model. Probability limits are plotted based on the

bivariate Gaussian fitted to the pairs of 100 model times

series. For comparison we involve model time series with

and without correlations and fitted by the survival function

and by the method of moments. For the first method the

point pairing the mean and variance of the empirical annual

maxima lies within one standard deviation with respect to

dM , whereas even outside the 95% limit for the latter. We

conclude that the mean of the annual maxima is underes-

timated by the method of moments. To allow for a parallel

assessment of several properties for all stations, we apply a

three-dimensional Mahalanobis distance between triples

constisting of the mean, the standard deviation and the

100-year return level of annual maxima. The latter is

estimated by the 99%-quantile of a GEV distribution fitted

to the annual maxima of the empirical and synthetic time

series.

We find (Fig. 6, right panel) that in the Mahalanobis

distance the distribution of the annual maxima measured as

described above lies within two and predominantly close to

one standard deviation from the respective mean of the

model time series. When fitted by the method of moments,

we observe larger errors for more stations. Furthermore, the

effect of the correlations is conceivable compared to the i.

i. d. modeling but the effect of properly fitting the tail has

more influence on how well the statistics of annual maxima

are modeled.

4.4 Reproducing short-range correlations

For the fit of the short-memory parameter u by conditional

probabilities we employ the procedure described in

Sect. 3.4. We solve expresssion (24) for the aforemen-

tioned treshold of c ¼ 4 mm involving the fitted values for

the parameters n, m, r and d.

In Fig. 7 the conditional probability pcDð1Þ of a day with

precipitation amount larger than 4mm right after a day

suchlike is noticeably raised compared to the uncondi-

tioned probability of a single day with precipitation amount

larger than 4mm and relaxes slowly to the unconditioned

value. For Fichtelberg data set (a), we already see a good

agreement in the conditional probabilities also for larger

time lags k� 1. For the two other examples, Bordeaux (b)
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Fig. 5 left: Comparison of the standard deviation of the sample mean

of model time series to the empirical sample mean for both the model

fitted by the empirical survival function and the method of moments

for all 20 stations. mid: Histogram of annual totals for the

Fichtelberg data set (a) together with histogram and PDF for annual

totals of 100 model time series fitted by the survival function. right:
Comparison of the standard deviation of annual totals of model time

series to the empirical for both fit methods. For comparison standard

deviations of i. i. d. model time series are depicted
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and Central England (c), discrepancies occur for time lags

k� 2 already. An improved representation of the condi-

tional probabilities for larger time lags than k ¼ 1 can be

obtained by increasing the number p of AR components

and applying an ARFIMA(p, d, 0) process as the under-

lying Gaussian process for our model.

For comparison in Fig. 7 we also visualize the condi-

tional probabilities (23) of a tGp-transformed ARFI-

MA(0, d, 0) process Y with parameters n, m, r and d

estimated by the aforementioned methods. Even though

short-range correlations are still inherent to such a process,

the short-range dependence we see in the data is not

entirely captured by fractional differencing only. For c ¼ 4

and small time lags the conditional probabilities of such a

model Y evidently fall below the empirical values.

We can also take a closer look on the long-term

behavior of the conditional probabilities (22) and (23) in

Fig. 7. The covariance matrix (26) is the key ingredient of

the representation (25) of the conditional probabilities.

Therefore, we have pcYðkÞ!pcYð0Þ as k ! 1 for the model

since the correlations .YðkÞ asymptotically vanish, which is

why the joint probability in (25) asymptotically factorizes.

For the data we observe the same approach of pcDðkÞ to

pcDð0Þ for large time lags k by jpcDðkÞ � pcDð0Þj decreasing

to zero. Moreover, the decay of the conditional probabili-

ties pcYðkÞ to the probability pcYð0Þ of the model follows a

power law alike the model ACF .Y. The conditional

probabilities in the empirical data sets show the same

scaling behavior, although, we only implicitly consider

their correlations. Instead, we numerically determine the

conditional probabilities directly from the data by dividing

the number of pairs ðDt;Dt�1Þ with both entries larger than

4mm by the overall number of days with an accumulated

amount larger than 4mm following the definition of con-

ditional probabilities.

As a remark, we point out that the values u we obtain do

not correspond to a typical correlation time other than in

AR or ARMA models with a finite sum in (2). The effect of

the auto-regression in (6) on the correlations decays
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and of 100 model time series annual maxima (empty dark marks). The

solid ellipses mark one standard deviation with respect to dM , the

dashed ellipses mark the 95% probabality limit. right: 3D Maha-

lanobis distance between the mean, the standard deviation and the

100-year return level for all stations; For comparison dM is depicted

for model time series fitted by both the survival function (circles) and

the method of moments (diamonds and triangles) along with i. i. d.

model time series (light grey). The dashed lines mark one, two and

three standard deviations and the solid lines the 5%, 10%, 90% and

95% probability limits

0 5 10 15 20 25

0.15

0.20

0.25

0.30

0.20

0.30

0.40

0.25

0.30

0.35

0.40

time lag k (days)

P
(Y

t
≥

4
|Y

t−
k

≥
4)

1 2 3 4 5 10 15 20

10 -4

10 -3

10 -2

10 -1

10 -4

10 -3

10 -2

10 -1

10 -4

10 -3

10 -2

10 -1

time lag k (days)

|P
(Y

t
≥

4)
-
P
(Y

t
≥

4
|Y

t−
k

≥
4)

|

95% limits

(a)

(b)

(c)

(a)

(b)

(c)

Fig. 7 Visualization of the conditional probabilities pcDðkÞ (22) and

pcYðkÞ (23) (left) and of their decay rates by the difference

jpcð : Þð0Þ � pcð : ÞðkÞj (right) for time lags k ¼ 0; . . .; 25 each with fitted

models according to Fig. 3. The depicted values are analytically

known for the tGp transformed ARFIMA(1, d, 0) (empty circles) and

ARFIMA(0, d, 0) (crosses) processes and approximated numerically

for the empirical time series (dark solid circles) and the same 25

synthetic time series as used in Fig. 2 (grey shadow of solid circles).

The solid line has slope 2d � 1 for comparison
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exponentially, though, the sum in (2) remains infinite, due

to the LRC in the model.

4.5 Waiting time distribution

Another noticeable statistical effect of LRC in time series

is a change in the distribution of waiting times (Bunde

et al. 2005). For white noise or only short-range correlated

data the waiting times between events of a specifically

tagged type is exponentially distributed. In the presence of

LRC stretched exponential tails of the waiting time dis-

tribution occur (Altmann and Kantz 2005).

Waiting times between two days with an accumulated

precipitation amount of c[ 0 mm shall be interpreted as

periods of daily amounts � c. For c ¼ 0 they describe dry

spells. Due to our fit with focus on the tail, however, we do

not precisely reproduce the probability of zero daily pre-

cipitation that we find in the empirical data. Thus, a study

of dry and wet spells based on the strict treshold of c ¼ 0 is

not appropriate. In Fig. 8 we give a visual impression of

the effect of LRC on the waiting times for the more

practicable value of c ¼ 4 (cp. Sect. 4.2). Further detailed

investigation of dry and wet spells is required. For such an

analysis we propose considering waiting times with respect

to small values of c[ 0 as a measure of the duration of dry

periods in terms of applications.

For comparison we depict the waiting times of both a

tGp transformed ARFIMA(1, d, 0) and AR(1) process with

the marginal distribution and AR parameter of the latter

fitted as described in the Sects. 4.2 and 3.4 .

For c ¼ 0 both models underestimate the distribution of

dry spells for all the three stations because our model tends

to underestimate the probability of a dry day (see Table 3).

Also for c ¼ 4 the AR(1) based process fails to repro-

duce the distribution of long dry spells in the sense that

periods longer than about 45 days are visually (way viewer

green bars) much more unlikely than in the empirical data

(light blue bars). Our LM tGp model, however, is capable

of reproducing a higher number (of red bars) of such long

dry periods in accordance with the statistics of the waiting

times in the original data of the three example stations. We

do not test the significance of a stretched exponential decay

of the waiting time densities here. Nevertheless, Fig. 8

illustrates that introducing LRC in our data model is a

promising approach to modeling the tails of the waiting

time distributions of daily precipitation time series.

As remark, for both depicted values of c in Fig. 8 the

waiting time distribution of a randomly shuffled version of

the originally observed time series clearly differs from the

one of the original data. As expected for uncorrelated data

(correlations are destroyed by the shuffling) the density of

its waiting times decays exponentially and visibly signifi-

cantly faster than the original waiting times.

5 Summary

We present a complete statistical model for daily precipi-

tation amounts at single mid-latitude European locations

without pronounced annual cycle. For 20 randomly chosen

data sets (three of them discussed and depicted in detail)

we carefully validate that the truncated-power transfor-

mation of a Gaussian ARFIMA process yields an accurate

model for such data.

The basis of our model selection and estimation is

twofold: first, we validate the presence and significance of

long-range correlations in daily precipitation time series.

Along with that we investigate the stationarity of the data

in terms of weak annual cyclicity. Second, we substantiate

in statistical detail the application of the previously used
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truncated-Gaussian-power transformations for the genera-

tion of an appropriate distribution for daily amounts. This

implies that the tails of such data decay faster than a power

law, but slower than exponentially.

Due to the very strong non-Gaussianity of the empirical

precipitation data, maximum likelihood estimators might

be subject to considerable bias. Therefore, we implemented

new methods for parameter fits at two instances, namely

the marginal distribution and the auto-regressive parameter

of the underlying ARFIMA process.

The three parameters for the distribution we fit by

matching survival functions on logarithmic scale to dis-

criminate smaller and emphasize larger precipitation

amounts. In doing so, in particular, the statistics of large

precipitation events are reproduced more reliably. The

relation between the model and empirical annual maxima

distribution we measure in the Mahalanobis distance based

on synthetic time series to define probability limits. We

find that for all stations the triple of mean, variance and

100-year return level of annual maxima lies within two

standard deviations of the model with respect to the three-

dimensional Mahalanobis distance, and even within about

one standard deviation for half of them. Additionally, we

conclude that the distribution of the annual maxima is

highly sensitive to the fitting method for the marginal

distribution by comparing our fit by the survival function to

a fit by the methods of moments.

Our model combines daily precipitation amounts with

their empirical short- and long-range dependencies in a

parsimonious way by requiring only two parameters for

fitting the correlations. For the adjustment of the auto-re-

gressive parameter of the ARFIMA model we apply con-

ditional probabilities. In the model these conditional

probabilities adopt the power-law decay of its autocorre-

lation function and we find the same behavior for the

empirical conditional probabilities of the data. Moreover,

long-range correlations in the synthetic model time series

are present up to all relevant orders in time with only small

numerical effort.

Due to including correlations, we appropriately repro-

duce, in particular, the statistics of annual total and annual

maximal precipitation amounts. By determining an effec-

tive sample size for correlated data, we obtain analytical

confidence intervals for the daily mean and annual sum

based on the variance of the sample mean. The possible

lack of exactly reproducing smaller amounts leads to

deviations in the mean of daily and annual total amounts,

which are covered by the variance of the data and the

model anyway or smaller than the precision of the empir-

ical data. For all stations the relative distance between the

sample mean and the model mean is less than 5%, and

about half of them lie within on standard deviation.

We also properly reproduce the asymptotic power-law

deacy of the autocorrelations as becomes visible by

detrended fluctuation analysis, rescaled-range statistics and

wavelet transforms. Finally, we introduce visually the

capability of long-range correlations in the model for an

adequate statistical description of the waiting times in

precipitation data, in particular, when modeling the dura-

tion of droughts, however, a more detailed study is still

necessary.

The application of our model altogether requires the fit

of only five parameters, which can be robustly done with

multi-decadal data sets. The model will be useful for

simulating rainfall, but also to detect changes due to cli-

mate change, when fitted to disjoint periods of two or three

decades of data.

Overall, we present a parametric stochastic data model

for mid-latitude daily precipitation together with a com-

plete fit procedure and its implementation.
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6 Appendix

In Table 2 we provide the fitted parameter values of our

model to observed time series from 20 different mid-lati-

tude European stations. These data sets are a random

selection of the databases (Deutscher Wetterdienst (DWD)

2018; European Climate Assessment and Dataset 2018) by

Klein Tank et al. (2002) and (Met Office Hadley Centre

2018) chosen such that the observed period spans more
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than 70 years, the data sets are nearly complete and the

assumption of weak seasonality is satisfied. Prominent

annual cyclicity can be evaluated by deviations of the

scaling of, e. g., the DFA fluctuation function from lin-

earity (Meyer and Kantz 2019). For an automatized esti-

mation of the stationarity we employed the regression

values of the linear fit of the fluctuations quantifying

functions. Table 3 compares the statistics of the empirical

data and the fitted model. Table 4 collects the estimated

Hurst exponents for all stations along with their validation

by regression values.
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