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Abstract
We present and compare functional and spatio-temporal (Sp.T.) kriging approaches to predict spatial functional random

processes (which can also be viewed as Sp.T. random processes). Comparisons with respect to computational time and

prediction performance via functional cross-validation is evaluated, mainly through a simulation study but also on a real

data set. We restrict comparisons to Sp.T. kriging versus ordinary kriging for functional data (OKFD), since the more

flexible functional kriging approaches pointwise functional kriging (PWFK) and the functional kriging total model coincide

with OKFD in several situations. Here we formulate conditions under which we show that OKFD and PWFK coincide.

From the simulation study, it is concluded that the prediction performance of the two kriging approaches in general is

rather equal for stationary Sp.T. processes. However, functional kriging tends to perform better for small sample sizes,

while Sp.T. kriging works better for large sizes. For non-stationary Sp.T. processes, with a common deterministic time

trend and/or time varying variances and dependence structure, OKFD performs better than Sp.T. kriging irrespective of the

sample size. For all simulated cases, the computational time for OKFD was considerably lower compared to those for the

Sp.T. kriging methods.
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1 Introduction

In many fields, such as environmental, forestry, climatol-

ogy, meteorology and medical sciences, it may be of

interest to predict a curve at a new spatial location given

that such curves have been observed at n other locations,

using the information inherent in the spatial dependence

between curves. Kriging predictors have a long history of

being used to predict objects at new locations based on

information observed at a set of other locations, especially

for objects that are real- or vector-valued, see e.g. Chilès

and Delfiner (2012), Cressie (2015), Cressie and Wikle

(2015), and references therein. A kriging predictor is a

weighted sum of the objects observed at the n spatial

locations, defined to be the best linear unbiased predictor

(BLUP) minimizing the mean squared prediction error.

Functional kriging predictors, used when the objects are

random functions with infinite dimension, were initially

discussed by Goulard and Voltz (1993), and further pro-

posed by Giraldo et al. (2010, 2011) and Nerini et al.

(2010). In these papers, the expected value of the random

functions is assumed to be independent of the spatial

location, the so called ordinary functional kriging. More

recently, Caballero et al. (2013), Menafoglio et al. (2013),

Ignaccolo et al. (2014), and Reyes et al. (2015) have

investigated functional kriging methods where the expec-

ted value of the random functions may also depend on

location.

Here, two kriging approaches to predict spatial functional

random processes are compared. A functional random pro-

cess is a process with stochastic functional objects (curves)

vs ¼ vsðtÞ; t 2 T over the ‘‘time’’ domain T � R at each

spatial location s 2 D � Rd. Given that the process has been

observed at n different locations, a curve at a new location s0
can be predicted by a functional kriging approach, i.e. as a
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2 Department of Mathematics, Universitat Jaume I, Castellón,

Spain

123

Stochastic Environmental Research and Risk Assessment (2019) 33:1699–1719
https://doi.org/10.1007/s00477-019-01705-y(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0003-1098-0076
http://crossmark.crossref.org/dialog/?doi=10.1007/s00477-019-01705-y&amp;domain=pdf
https://doi.org/10.1007/s00477-019-01705-y


linear combination of the n observed curves. A spatial

functional process can also be viewed as a spatio-temporal

(Sp.T.) random process fZðs; tÞ ¼ vsðtÞ; ðs; tÞ 2 D � Tg,
and hence, a Sp.T. kriging approach could also be used, see

e.g. Cressie andWikle (2015) andMontero et al. (2015). The

curve vs0
ðtÞ; t 2 T would then be predicted at a dense grid of

values over T, based on linear combinations of a time-grid of

values over the observed curves. The question of which

approach, functional or Sp.T. kriging, should be used to

analyze a particular data set is an important one (with no

optimal answer), as pointed out by Delicado et al. (2010). In

this paper we compare the two approaches with respect to

prediction performance and computational time, mainly by a

simulation study but also using a real data set. Prediction

performance is evaluated by functional cross-validation.

Estimation of the kriging models is made without relying on

distributional assumptions.

In Sect. 2 notation and definitions are given. Section 3

presents the functional and Sp.T. kriging approaches,

including how to estimate the dependence structure. We

also discuss how the functional kriging methods relate to

each other, and under which circumstances they may

coincide. In particular, we state conditions under which the

two functional kriging methods ordinary kriging for func-

tional data and pointwise functional kriging coincide, with

proofs given in Appendix 1. A simulation study, comparing

the two kriging approaches, is presented in Sect. 4, see also

Appendix 2. In Sect. 5 both kriging approaches are applied

to the Canadian temperature data, previously analyzed e.g.

by Giraldo (2009), Giraldo et al. (2010) and Menafoglio

et al. (2013). A discussion and concluding remarks are

found in Sect. 6.

2 Preliminaries

A spatial functional random process fvs : s 2 D � Rdg , is

a process where, for each given s 2 D, the observed ran-

dom element is a functional random variable, vs, taking

values in an infinite dimensional space, or function space

(Giraldo et al. 2010; Delicado et al. 2010). We consider the

case where vs for every fixed s is a real-valued function,

vsðtÞ; t 2 T � R, from the compact set T to R and with

s 2 D � R2. It is usually assumed that the realizations of

the curves (functions) vsðtÞ; t 2 T; s 2 D belong to a sep-

arable Hilbert space H of square integrable functions

defined on T. Our main focus is on second-order isotropic

and stationary spatial functional random processes, that

satisfy,

(i) E½vsðtÞ� ¼ mðtÞ and Var½vsðtÞ� ¼ r2ðtÞ 8s 2 D and 8t 2 T ;

(ii) Cov½vsðrÞ; vvðtÞ� ¼ Cðks � vk; r; tÞ 8s; v 2 D and 8r; t 2 T ;

ð1Þ

where k � k denotes the (Euclidean) distance measure. A

spatial functional random process can also be viewed as a

Sp.T. process Zðs; tÞ ¼ vsðtÞ, where Z(s, t) takes values in

R, and is mapped from ðs; tÞ 2 D � T , cf. Cressie and

Wikle (2015). A Sp.T. process is said to be second-order

stationary and spatially isotropic if

(i) E½Zðs; tÞ� ¼ m and Var½Zðs; tÞ� ¼ r2Z 8s 2 D and 8t 2 T ;

(ii) Cov½Zðs; rÞ; Zðv; tÞ� ¼ CZðks � vk; j r � t jÞ 8s; v 2 D and 8r; t 2 T :

ð2Þ

Note that the class of stationary Sp.T processes is a subset

of the class of stationary functional random processes.

Section 4.3 gives examples of stationary functional random

processes where (1) holds but not (2).

3 Kriging prediction

In this section two kriging approaches to predict spatial

functional random processes are described. Section 3.1

presents different functional kriging methods, and under

which circumstances they coincide. Section 3.2 describes

the Sp.T. kriging approach. In the presentation below,

estimation of the kriging models do not rely on distribu-

tional assumptions.

3.1 Functional kriging

Unless otherwise stated, we will assume that the spatial

functional random process is second-order stationary and

isotropic. Within the functional kriging framework, it is of

interest to predict the complete random function

vs0
ðtÞ; t 2 T , at a new location s0, given that a sample of

random functions has been observed at n different loca-

tions, s1; . . .; sn. A functional kriging predictor,

v̂s0
ðtÞ; t 2 T , is the best linear unbiased predictor (BLUP)

minimizing the mean integrated squared error (MISE)

MISEðs0Þ ¼ E

Z
T

ðv̂s0
ðtÞ � vs0

ðtÞÞ2 dt

� �
: ð3Þ

3.1.1 Ordinary kriging for functional data

Goulard and Voltz (1993) proposed one of the first func-

tional kriging predictors,

v̂s0
ðtÞ ¼

Xn

i¼1

kivsi
ðtÞ; t 2 T ; ð4Þ
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which was further discussed by Giraldo et al. (2007, 2011)

and there named ordinary kriging for functional data

(OKFD). The optimal kriging weights,

k ¼ ðk1; . . .; knÞ| 2 Rn, that minimize (3) subject to the

unbiasedness condition of the predictor,
Pn

i¼1 ki ¼ 1,

satisfy

Cn 1n

1|n 0

� �
k

�s

� �
¼ gn

1

� �
; ð5Þ

where s is the Lagrange multiplier. Here Cn ¼ fcðhijÞgn
i;j¼1,

gn ¼ fcðh0jÞgn
j¼1, and 1n ¼ ð1; . . .; 1Þ| 2 Rn, where

cðhijÞ ¼
1

2
E

Z
T

ðvsi
ðtÞ � vsj

ðtÞÞ2 dt

� �
; 8 si; sj 2 D; ð6Þ

with hij ¼ ksi � sjk, is called the (isotropic) trace-semi-

variogram. The trace-semivariogram often satisfies the

properties of a classical semivariogram, being a conditional

negative definite function (Menafoglio et al. 2013). The

trace-semivariogram is in practice unknown and therefore

needs to be estimated from the data. This is often done by

first estimating the empirical trace-semivariogram for a set

of h-values as

ĉðhÞ ¼ 1

2jNðhÞj
X

i;j2NðhÞ

Z
T

ðvsi
ðtÞ � vsj

ðtÞÞ2 dt; ð7Þ

where NðhÞ ¼ fðsi; sjÞ : ksi � sjk 2 ðh � �; h þ �Þg; for

some �[ 0. A parametric variogram model cðh j hÞ, is then
fitted to a set of estimated values fĉðhlÞ; hlg, l ¼ 1; . . .; L,

by a least squares method, cf. Cressie (2015). Here, the

ordinary least squares (OLS) method is used to estimate h.
The random functions, vsi

ðtÞ, are typically observed only
at a finite number of time points ti1; . . .; timi

; i ¼ 1; . . .; n.

Goulard and Voltz (1993) suggested to fit a parametric

model vsi
ð� j aiÞ to the observed values and replace vsi

ðtÞ
by vsi

ðt j âiÞ in (4) and (7). A non-parametric approach was

suggested by Giraldo et al. (2011), where the observed

random functions are represented by linear combinations of

p known basis functions, BðtÞ ¼ ðB1ðtÞ; . . .;BpðtÞÞ|, as

~vsi
ðtÞ ¼

Xp

k¼1

aikBkðtÞ ¼ a|i BðtÞ: ð8Þ

The basis functions could e.g. be B-splines, Fourier or

Wavelets. The ai’s are typically determined by the least

squares method, minimizing
Pmi

j¼1ðvsi
ðtijÞ � a|i BðtijÞÞ

2
. In

the final ordinary kriging predictor (4), the estimated trace-

semivariogram values are plugged into the kriging weights

(ki’s), with ~vsi
ðtÞ’s replacing the vsi

ðtÞ’s.

3.1.2 Pointwise functional kriging

Giraldo et al. (2008, 2010) suggested the pointwise func-

tional kriging predictor (PWFK),

v̂s0
ðtÞ ¼

Xn

i¼1

kiðtÞvsi
ðtÞ; t 2 T ;

which allows the ki’s to depend on t. In order to solve the

infinite dimensional problem of finding the kiðtÞ-functions
that minimizes (3) subject to the unbiasedness constraint of

the predictor,
Pn

i¼1 kiðtÞ ¼ 1, for all t 2 T , Giraldo et al.

(2008, 2010) represented the kiðtÞ-functions by a linear

combination of K known basis functions,

kiðtÞ ¼
XK

k¼1

bikBkkðtÞ ¼ b|i BkðtÞ; i ¼ 1; . . .; n; ð9Þ

and the vsi
ðtÞ’s as in (8). The optimization problem was

thus reduced to a multivariate geostatistics problem. The

system of Kðn þ 1Þ equations to be solved in order to find

the optimal bi’s is given by Giraldo et al. (2010) when

BkðtÞ ¼ BðtÞ, and for general BkðtÞ by (29) in Appendix 1,

substituting V½vsi
ðtÞ� and Cov½vsi

ðtÞ; vsj
ðtÞ� by B|ðtÞVar½ai�

BðtÞ and B|ðtÞCov½ai; aj�BðtÞ, respectively. The optimal

bi’s are functions of the covariances between the various

ai’s, which in practice need to be estimated. Giraldo et al.

(2010) suggest estimating these covariances via a linear

model of coregionalization (Goulard and Voltz 1992). Note

that the BkðtÞ’s need to satisfy the unbiasedness condition

Xn

i¼1

kiðtÞ ¼ c|BkðtÞ ¼ 1; for all t 2 T ; ð10Þ

where c ¼
Pn

i¼1 bi. B-splines and Fourier basis functions

are two admissible choices, that satisfy (10) when c ¼ 1

and c ¼ ð1; 0; . . .; 0Þ|, respectively. In fact any set of basis

functions where one (the first say) basis function is a

constant, Bk1ðtÞ ¼ k, satisfies (10) for c ¼ ð1=k; 0; . . .; 0Þ|.

3.1.3 Situations when OKFD and PWFK coincide

Here we present situations where PWFK and OKFD

coincide. Consider spatial functional random processes that

satisfy

(i) E½vsðtÞ� ¼ mðtÞ 8s 2 D and 8t 2 T ;

(ii) Cov½vsðtÞ; vvðtÞ� ¼ w2ðtÞCðs; vÞ 8s; v 2 D and 8t 2 T ;

ð11Þ

where w(t) is a real-valued deterministic function. These

type of processes include second-order (isotropic) station-

ary spatial functional random processes, but also e.g. when

vsðtÞ can be expressed as vsðtÞ ¼ mðtÞ þ wðtÞZðs; tÞ, where
Z(s, t) is a time stationary Sp.T. process with mean zero
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and Cov½Zðs; rÞ; Zðv; tÞ� ¼ Cðs; v; jr � tjÞ. Note that for

Sp.T. stationary processes mðtÞ ¼ m and w2ðtÞ ¼ 1. Let

R ¼ fCðsi; sjÞgn
i;j¼1 2 Rn�n, R�1 ¼ faijgn

i;j¼1, and a�� ¼Pn
i¼1

Pn
j¼1 aij. The following proposition states conditions

under which the two functional kriging methods OKFD and

PWFK coincide.

Proposition 3.1 Suppose that fvsðtÞ; t 2 T; s 2 Dg is a

spatial functional random process satisfying (11). Further,

assume that kiðtÞ ¼ b|i BkðtÞ; that the BkðtÞ’s satisfy (10)

for some constant vector c; that the inverse of the matrix W

exists, where

W ¼
Z

T

w2ðtÞBkðtÞB|

kðtÞ dt;

and that R�1 exists with a�� being non-zero. Then the

optimal kriging weights of PWFK that minimize (3) are

unique and satisfy kiðtÞ ¼ ki; with bi ¼ kic; for all i ¼
1; . . .; n; and thus coincide with those of OKFD.

The existence of W�1 and R�1, with a�� 6¼ 0, ensure the

existence of a unique solution, see further details in the

proof of the proposition given in Appendix 1. In line with

Giraldo (2009) we concluded that the computational time

for PWFK (using R-code kindly provided by Giraldo et al.

(2010)) was substantially larger than for OKFD [using the

R-package geofd, see Giraldo et al. (2012)]. We also noted

that the estimated PWFK kriging weights always became

constant when BkðtÞ ¼ BðtÞ were cubic B-splines or

Fourier basis functions (after correction of a bug in the

R-code).

3.1.4 Functional kriging total model

Giraldo (2009, 2014), and independently Nerini et al.

(2010), proposed the functional kriging total model

(FKTM),

v̂s0
ðtÞ ¼

Xn

i¼1

Z
T

kiðt; vÞvsi
ðvÞdv; t 2 T : ð12Þ

Assuming that the random functions vsi
ðtÞ satisfy (8) and

that the kriging weights satisfy

kiðt; vÞ ¼
Xp

k¼1

Xp

l¼1

cl
ikBkðtÞBlðvÞ

¼ BðtÞ|CiBðvÞ; i ¼ 1; . . .; n;

Giraldo (2014) proposed a way to determine the kiðt; vÞ’s
(i.e. the Ci’s) such that the predictor (12) is unbiased and

minimizes (3). Also here, the Ci’s are functions of the

covariances between the ai’s, which in practice need to be

estimated, see Giraldo (2014) for more details.

The FKTM method is computationally heavy compared

to OKFD, just like the PWFK method (Giraldo 2009).

Moreover, Menafoglio and Petris (2016) showed that if the

realizations of vsðtÞ belong to the Hilbert space of square

integrable functions on T (in fact also for general separable

Hilbert spaces), and the functional second-order stationary

random process is Gaussian, then the kriging weights of

FKTM and OKFD agree a.s. for any orthonormal base BðtÞ.

3.2 Spatio-temporal kriging

Since a spatial functional process also can be viewed as a

Sp.T. process, Zðs; tÞ ¼ vsðtÞ, taking values in ðs; tÞ 2
D � T , it could also be predicted by Sp.T. kriging methods.

Given the observed values Z ¼ ðZðs1; t11Þ; . . .;
Zðs1; t1m1

Þ; . . .; Zðsn; tn1Þ; . . .; Zðsn; tnmn
ÞÞ| 2 RN , N ¼Pn

i¼1 mi, the Sp.T. kriging predictor at location s0 and time

point t 2 T ,

Ẑðs0; tÞ ¼
Xn

i¼1

Xmi

j¼1

kt
ijZðsi; tijÞ; ð13Þ

is defined to be the BLUP minimizing the mean squared

prediction error (MSPE)

MSPEðs0; tÞ ¼ E½ðẐðs0; tÞ � Zðs0; tÞÞ2�: ð14Þ

For Sp.T. processes with constant mean value, the unbi-

asedness condition implies that
Pn

i¼1

Pmi

j¼1 k
t
ij ¼ 1. The

optimal Sp.T. kriging weights k ¼ ðkt
11; . . .; k1m1

; . . .;

kt
n1; . . .; k

t
nmn

Þ| for processes with unknown constant mean,

satisfy the system of ðN þ 1Þ equations
CN 1N

1
|

N 0

� �
k

s

� �
¼

kN

1

� �
; ð15Þ

where s is the Lagrange multiplier used to take into account

the unbiasedness restriction, CN ¼ Var½Z� 2 RN�N is

the variance-covariance matrix of Z, and kN ¼
Cov½Z; Zðs0; tÞ� 2 RN . The predictor (13) is referred to as

the Sp.T. ordinary kriging predictor, see e.g. Cressie and

Wikle (2015). The dependence structure in practice needs

to be estimated from the data and is then plugged into the

kriging weights (kt
ij’s). For second-order stationary and

spatially isotropic Sp.T. processes satisfying (2), we have

that

Cov½Zðs; rÞ; Zðv; tÞ� ¼ CZðks � vk; jr � tjÞ
¼ r2Z � cZðks � vk; jr � tjÞ;

ð16Þ

where r2Z ¼ Var½Zð�; �Þ� and
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cZðks � vk; jr � tjÞ ¼ E½ðZðs; rÞ � Zðv; tÞÞ2�=2;
s; v 2 D and r; t 2 T ;

is the (spatially isotropic) Sp.T. semivariogram. The

dependence structure is typically estimated via the semi-

variogram as follows. First, an empirical (spatially iso-

tropic) Sp.T. semivariogram is computed from lag classes

as

ĉZðh; uÞ ¼ 1

2jNðh; uÞj
X

ði;j;k;lÞ2Nðh;uÞ
ðZðsi; tikÞ � Zðsj; tjlÞÞ2;

where Nðh; uÞ ¼ fðsi; tikÞ; ðsj; tjlÞ : ksi � sjk 2 ðh � �; h þ
�Þ; and jtik � tjlj 2 ðu � d; u þ dÞg; for some �; d[ 0, and

jNðh; uÞj is the number of distinct elements in N(h, u). A

parametric semivariogram model, cðh; ujhÞ, is then fitted to

a set of fĉZðhl; ulÞ; ðhl; ulÞg; l ¼ 1; . . .; L by a least squares

method.

In this paper we consider three commonly used types of

stationary Sp.T. semivariogram (covariogram) models: the

separable model

CZðh; uÞ ¼ CsðhÞCtðuÞ; ð17Þ

modeling the Sp.T. covariance function by the product of a

spatial and a temporal covariance function, the product-

sum model,

CZðh; uÞ ¼ kCsðhÞCtðuÞ þ CsðhÞ þ CtðuÞ;

with k [ 0, and the metric Sp.T. covariance model

CZðh; uÞ ¼ Cjointð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ ðjuÞ2

q
Þ:

More generally, in Sp.T. kriging modeling, the process is

often described as

Zðs; tÞ ¼ lðs; tÞ þ �ðs; tÞ;

where lðs; tÞ is a deterministic trend, and �ðs; tÞ is a mean

zero Sp.T. random field, usually assumed stationary. The

trend is typically modeled by

lðs; tÞ ¼ b|xðs; tÞ; ð18Þ

where xðs; tÞ 2 RM is a set of M known covariates, often

chosen to be polynomials of s and t, and b 2 RM is an

unknown parameter to be determined. When the Sp.T.

process has a deterministic (unknown) non-constant trend

of the form (18), then the BLUP (13) that minimizes (14) is

called the Sp.T. universal kriging predictor, and the kriging

weights are functions of both the dependence structure and

the covariates evaluated at the observed and predicted

locations, see e.g. Cressie and Wikle (2015) Section 4.1.2,

page 148. An iterative weighted least squares method may

be used to estimate b and the Sp.T. variogram parameter h.
Firstly, b can be estimated by the OLS method, minimizing

Xn

i¼1

Xmi

j¼1

ðZðsi; tijÞ � b|xðsi; tijÞÞ2:

Based on the resulting regression residuals, the Sp.T.

semivariogram is then estimated by fitting a parametric

Sp.T. semivariogram model to the corresponding empirical

Sp.T. semivariogram by a least squares method. The

parameter b is then re-estimated using a weighted least

squares method, taking into account the estimated depen-

dence structure of the residuals (Cressie 2015). The

dependence structure (variogram) is again estimated based

on the updated residuals, and the whole procedure iterated

until convergence. Note that if the deterministic trend only

depends on time, such that lðs; tÞ ¼ mðtÞ, the functional

kriging methods do not need to specify and estimate the

trend, whereas the Sp.T. kriging methods need to.

4 A simulation study

We now present a simulation study that aims to bring light

over the relative merits of Sp.T. and functional kriging,

with particular focus on Gaussian second-order stationary

functional processes in R2. Since the functional kriging

methods OKFD, PWFK, and FKTM often coincide for

such processes (see Sects. 3.1.3 and 3.1.4) we restrict our

comparisons to Sp.T. kriging versus OKFD. Inspired by the

setups in Giraldo et al. (2012), Sun and Genton (2012) and

Romano et al. (2015), we simulate data from Gaussian

processes with three main types of covariance structures.

The first two scenarios have stationary isotropic separable

and non-separable covariance functions, respectively. The

third scenario corresponds to second-order stationary

functional (but non-stationary Sp.T.) processes with con-

stant mean. For all three scenarios, several different cases

are simulated, with varying strengths of spatial and tem-

poral dependences, see Table 1. The different parameters in

Table 1 control the Sp.T. correlation structure. Figure 1

illustrates examples of simulated data for six of the cases,

all with constant means.

For each of the 24 cases, three different sample sizes

were considered: small referring to n ¼ 6� 6 spatial

locations and m ¼ 12 time points, medium referring to n ¼
6� 6 spatial locations and m ¼ 50 time points, and large

referring to n ¼ 15� 15 spatial locations and m ¼ 50 time

points. The number of time points were equally distributed

on [0, 1] and the spatial locations were located on a regular

grid in ½0; 1� � ½0; 1�. Moreover, for cases 1–18, the pres-

ence of a deterministic time trend, mðtÞ ¼ 9þ 3 sinð2ptÞ,
was also investigated.

For each case, sample size (and trend type), 100 repli-

cates were simulated, using the R-packages RandomFields
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(Schlather et al. 2015) for cases 1–18 and fda (Ramsay

et al. 2009) for cases 19–24. Estimation of the OKFD

models was performed using the R-package geofd (Giraldo

et al. 2012). The Sp.T. kriging models were estimated

using the R-packages gstat (Pebesma 2004) and spacetime

(Pebesma et al. 2012).

Table 1 The 24 different types

(cases) of simulated Gaussian

processes and their parameters:

isotropic second-order

stationary Sp.T. processes with

separable (cases 1–9) and non-

separable (cases 10–18)

covariance functions, and

second-order stationary

functional (but non-stationary

Sp.T.) processes (cases 19–24)

with constant means

Generated data Generated data Generated data

Case Type a b Case Type a b Case Type p a

1 Separable 0.1 0.1 10 Non-separable 0.1 0.1 19 Non-stationary 7 0.1

2 1 11 1 20 0.5

3 10 12 10 21 2

4 0.5 0.1 13 0.5 0.1 22 15 0.1

5 1 14 1 23 0.5

6 10 15 10 24 2

7 2 0.1 16 2 0.1

8 1 17 1

9 10 18 10

The larger the value of a and b the weaker the spatial and temporal correlation, respectively
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Fig. 1 Examples of simulated data considering medium sample sizes

without a deterministic time trend for: a case 3 (a ¼ 0:1, b ¼ 10),

b case 7 (a ¼ 2, b ¼ 0:1), c case 10 (a ¼ 0:1, b ¼ 0:1), d case 18

(a ¼ 2, b ¼ 10), e case 21 (a ¼ 2, p ¼ 7) and f case 22 (a ¼ 0:1,
p ¼ 15). The larger the value of a and b the weaker the spatial and

temporal correlation, respectively
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Functional cross-validation (FCV), suggested by Gir-

aldo et al. (2010, 2011), was used to evaluate the prediction

performance. In FCV, the data from each observed spatial

location is removed, one at a time, and then predicted at all

observed time points by the prediction method using the

observed functional data at the remaining locations. The

mean squared prediction error (MSPE) is computed as

MSPE ¼ 1

n

Xn

i¼1

Xmi

j¼1

ðZðsi; tijÞ � Ẑ
�iðsi; tijÞÞ2=mi; ð19Þ

where Ẑ
�iðsi; tijÞ denotes the predicted value at location

ðsi; tijÞ based on the functional data with the observations

Zðsi; tijÞ, j ¼ 1; . . .;mi excluded.

The three main scenarios are now presented in more

detail, together with the simulated results.

4.1 Separable covariance function

Here we evaluate the prediction performance of OKFD and

Sp.T kriging models, for the first nine cases in Table 1,

which are Gaussian Sp.T processes with separable covari-

ance functions. The spatial covariance function CsðhÞ in

(17) was chosen to be the exponential covariance function

with nugget effect,

CsðhÞ ¼ ð1� mÞ exp ð�ahÞ þ mIfh ¼ 0g:

The nugget effect m was set to 0.04. For parameter a, we
considered the values 0.1, 0.5 and 2, corresponding to the

effective ranges 30, 6 and 1.5 (very strong, medium and

weak spatial correlation), respectively. The temporal

covariance function CtðuÞ in (17) was chosen to be the

stable covariance function

CtðuÞ ¼ exp ð�ðbuÞcÞ: ð20Þ

Here, c was fixed to 0.5, while the values for b were 0.1, 1,

and 10, corresponding to the effective ranges 90, 9 and 0.9

(very strong, medium and weak temporal correlation),

respectively.

Given the generated data Zðsi; tjÞ; i ¼ 1; . . .; n;

j ¼ 1; . . .;m, the OKFD model was estimated using Fourier

or cubic B-splines with different numbers of basis func-

tions, see Table 10 in Appendix 2 for a detailed specifi-

cation. For each number and type of basis function the

spherical, exponential and stable semivariogram models

were fitted to the empirical trace-semivariogram. For each

case (1–9) a total of 36, 42 and 42 OKFD models (two

types of basis functions � # different numbers of basis

functions � #trace-semivariograms) were estimated and

fitted to the data for small, medium and large sample sizes,

respectively. These models were then evaluated by FCV

(functional cross-validation) in terms of the MSPE (19),

and the minimum MSPE over the models registered. The

overall MSPE for each case and sample size was computed

as the average minimum MSPEs over the 100 replicates.

Sp.T. ordinary kriging models were estimated for the

data sets simulated without a deterministic time trend.

First, the separable, product-sum and metric Sp.T. semi-

variogram models were fitted to the empirical Sp.T.

semivariograms. For these three models, all pairwise

combinations of the exponential, spherical and stable vari-

ograms were considered for the spatial (isotropic), tem-

poral and joint variogram models. It resulted in 9 separable,

9 product-sum and 3 metric Sp.T. semivariogram models.

All the Sp.T. ordinary kriging models were evaluated by

FCV, the minimum MSPE registered over the different

models within each of the three subgroup Sp.T. semivari-

ogram models was obtained, and the overall MSPE was

also computed for each case (1–9) and sample size. The

Sp.T. models with a product-sum and a metric covariance

function were not evaluated for large size samples, due to

the large computational time.

The overall MSPEs for the OKFD and the Sp.T. ordi-

nary kriging models for cases 1–9 considering medium

sample sizes are presented in Table 2. Corresponding

results for small and large sample sizes are reported in

Appendix 2, Tables 6 and 7. The last column in Table 2

reports p values from paired two-sided t tests comparing

the overall MSPEs between the OKFD and the Sp.T. sep-

arable models. The Sp.T. separable kriging models in

general had lower overall MSPEs compared to the Sp.T.

product-sum and metric models. This was expected, since

the simulated data were generated from Sp.T. models with

separable covariance functions. Interestingly, the overall

MSPE was often (significantly) lower for OKFD compared

to the Sp.T. separable models, for small and medium

sample sizes (Tables 2, 6). For large sample sizes, the

estimated Sp.T. (separable) models often performed better

than OKFD (Table 7).

Studying the overall MSPEs in more detail reveals that

the weaker the spatial correlation and the stronger the

temporal correlation, the better the OKFD performs in

relation to the Sp.T. separable model, regardless of the

sample size. Case 3 for example, with strong spatial and

weak temporal correlation, has significantly lower overall

MSPE for the Sp.T. separable model compared to the

OKFD model for medium and large sample sizes (Tables 2,

7). On the other hand, for case 7, with weak spatial and

strong temporal correlation, the result is reversed.

The numbers in parentheses in Tables 2, 6, and 7, report

the average computational time (for estimation and FCV)

in seconds over all estimated models and replications when

run on a 3.5 GHz Intel Core i7 processor with 32 GB ram

memory. It reveals that prediction by and estimation of an

OKFD model is substantially faster than the Sp.T. kriging

models, regardless of the sample size. The Sp.T. separable
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models had lower computational time compared to the

Sp.T. product-sum and metric models, due to simplifying

(Kronecker product) structures of the variance covariance

matrix.

Figure 2 presents how the type and number of basis

functions used in the OKFD model affects prediction

performance (minimum MSPE over the three trace-semi-

variogram models, averaged over the 100 realizations) for

cases 3 and 7 considering medium sample sizes. The

number of basis functions turns out to be an important

factor for prediction performance, in general with smaller

prediction error the more basis functions used. On the other
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Fig. 2 Prediction performance (minimum MSPE over the three trace-

semivariogram models, averaged over the 100 realizations) for cases

3 and 7 considering medium sample sizes without a deterministic time

trend when the estimated OKFD model is based on different numbers

(p) of basis functions, being both Fourier and cubic B-spline. The

solid black lines represent the corresponding overall MSPE of the

Sp.T. separable model

Table 2 Prediction performance in terms of mean squared prediction errors (MSPEs) for the cases 1–9 (and 1*–9*) without (and with) a

deterministic time trend considering medium sample sizes

Generated data Overall MSPE Comparison

Case Type a b OKFD Sp.T. separable Sp.T. product-sum Sp.T. metric p value

1 Separable, no trend 0.1 0.1 0.061 (0.2) 0.062 (26.7) 0.064 (88.0) 0.083 (90.3) 0.552

2 1 0.068 (0.2) 0.067 (26.1) 0.072 (89.0) 0.080 (89.9) 0.059

3 10 0.069 (0.2) 0.066 (24.7) 0.069 (92.2) 0.083 (90.3) \ 0.001

4 0.5 0.1 0.134 (0.2) 0.143 (23.6) 0.149 (85.4) 0.204 (85.7) \ 0.001

5 1 0.131 (0.2) 0.135 (29.8) 0.145 (102.9) 0.217 (98.5) 0.011

6 10 0.139 (0.2) 0.137 (27.6) 0.164 (103.3) 0.214 (95.7) 0.044

7 2 0.1 0.334 (0.2) 0.357 (29.0) 0.353 (100.6) 0.416 (97.6) \ 0.001

8 1 0.368 (0.2) 0.400 (29.3) 0.403 (106.1) 0.520 (99.2) \ 0.001

9 10 0.372 (0.2) 0.386 (28.7) 0.445 (104.3) 0.529 (97.9) 0.001

1* Separable, trend 0.1 0.1 0.066 (0.2) 0.066 (27.5) 0.068 (89.4) 0.094 (91.5) 0.706

2* 1 0.063 (0.2) 0.063 (26.9) 0.066 (89.6) 0.084 (91.2) 0.882

3* 10 0.068 (0.2) 0.066 (25.8) 0.070 (93.8) 0.090 (92.0) \ 0.001

4* 0.5 0.1 0.135 (0.2) 0.141 (29.2) 0.143 (95.7) 0.220 (96.2) 0.002

5* 1 0.130 (0.2) 0.136 (30.4) 0.153 (100.3) 0.224 (96.0) 0.003

6* 10 0.135 (0.2) 0.133 (28.5) 0.157 (103.5) 0.182 (96.0) 0.007

7* 2 0.1 0.376 (0.2) 0.419 (29.1) 0.411 (100.8) 0.479 (96.2) \ 0.001

8* 1 0.377 (0.2) 0.394 (27.7) 0.408 (95.8) 0.524 (90.8) 0.001

9* 10 0.372 (0.2) 0.385 (29.7) 0.435 (103.4) 0.531 (96.5) 0.002

The smallest overall MSPE for each case is highlighted in bold. The numbers in parentheses represent the average computational time in seconds

over the corresponding estimated models and replications. The last column shows p values from two-sided paired t tests comparing the overall

MSPEs between the OKFD and the Sp.T. separable models. The larger the value of a and b the weaker the spatial and temporal correlation,

respectively
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hand, the type of basis functions, Fourier or cubic

B-splines, is of less importance. These findings are con-

sistent with all cases (1–9) and for all considered sample

sizes.

In Fig. 3 box-plots of the differences in (minimum)

MSPE between the two kriging approaches (MSPE(Sp.T)-

MSPE(OKFD)) for the 100 replicates considering medium

sample sizes are presented. From this, it becomes clear that

OKFD produces more robust predictions. The Sp.T. sepa-

rable kriging models produced much higher MSPEs than

OKFD for many realizations, especially for small and

medium sample sizes.

For the cases 1–9 with a common deterministic (sinu-

soidal) time trend, the same OKFD models as specified

above were used again since these are designed to handle

situations where a common deterministic time trend is

present. However, predictions by Sp.T. kriging were now

performed by universal Sp.T. kriging instead of Sp.T.

ordinary kriging, using the same Sp.T. semivariogram

models as for the ordinary Sp.T. kriging models. The

deterministic time trend in the universal Sp.T. kriging

model was specified to be the same as the one simulated

from.

Table 2 summarizes the prediction performance of the

two kriging approaches for cases 1–9 with deterministic

time trend considering medium sample sizes, presented as

cases 1*–9*. Corresponding results for small and large

sample sizes are reported in Appendix 2, Tables 6 and 7.

From these tables, we see that the presence and estimation

of a deterministic time trend did not have a large effect on

the prediction performance, and more or less gave the same

conclusions with respect to the relative performance of the

two kriging approaches, regardless of the sample size.

4.2 Non-separable covariance function

Cases 10–18 in Table 1 correspond to Gaussian Sp.T.

processes with non-separable covariance functions of the

form

CovNSEPðh; uÞ ¼ ð1� mÞð2� CtðuÞÞ�d=2

exp � ahffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� CtðuÞ

p
 !

þ mIfh ¼ 0g;

with parameters set to d ¼ 2, m ¼ 0:04, and a ¼ 0:1; 0:5,

and 2. The covariance function CtðuÞ was chosen to be the

stable covariance function (20) with c ¼ 0:5 and

b ¼ 0:1; 1, and 10. The OKFD and the Sp.T. kriging

models estimated in Sect. 4.1 were also fitted to the sim-

ulated data sets of cases 10–18. Prediction performance of

the two kriging approaches was evaluated in the same way

as described in Sect. 4.1 and is summarized in Table 3 for

the non-separable cases 10–18 (and 10*–18*) for medium

sample sizes without (and with) a deterministic time trend,

respectively. Corresponding results for small and large

sample sizes are reported in Appendix 2, Tables 8 and 9.

In general, we draw similar conclusions as in Sect. 4.1

for the separable cases 1–9 (and 1*–9*): the Sp.T. sepa-

rable kriging models perform better than the Sp.T. product-

sum and metric models; the weaker the spatial correlation

and the stronger the temporal correlation, the better the

OKFD performs in relation to the Sp.T. (separable) models;

OKFD works better than the Sp.T. models for small to

medium sample sizes whereas the Sp.T. separable kriging

models perform better for large sample sizes; more basis

functions in OKFD generally improve prediction perfor-

mance; computational times are much lower for OKFD; the

presence of a deterministic time trend does not change the

conclusions.

A more detailed comparison of the overall MSPEs in

Table 3, and Tables 8 and 9 reveals that prediction
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Fig. 3 Box-plots for cases 1–9 (considering medium sample sizes without a deterministic time trend) of the differences in (minimum) MSPE

between the two kriging approaches (MSPE(Sp.T)-MSPE(OKFD)) for the 100 replicates
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performance of OKFD in general improves in comparison

to the Sp.T. separable kriging models for the simulated data

sets with non-separable covariance functions (cases 10–18)

compared to those simulated from separable covariance

functions (cases 1–9). This result was to be expected, since

none of the fitted (Sp.T.) kriging models coincide with the

models that generated the data for cases 10–18.

4.3 Non-stationary cases

Generation of simulated data sets of second-order isotropic

stationary functional, but non-stationary Sp.T. Gaussian

processes with constant mean (cases 19–24 in Table 1)

were based on the model

vsi
ðtÞ ¼ a|i BðtÞ þ �si

ðtÞ; i ¼ 1; . . .; n: ð21Þ

The basis functions BðtÞ 2 Rp with p ¼ 7, and 15 cubic B-

splines, are defined on equally space knots on the interval

[0, 1]. Moreover, ai ¼ ða1ðsiÞ; . . .; apðsiÞÞ|, where

akðsÞ; k ¼ 1; . . .; p, were chosen to be p independent iden-

tically distributed second-order stationary isotropic zero

mean Gaussian processes in R2 with exponential covari-

ance function CðhÞ ¼ expð�ahÞ with a ¼ 0:1; 0:5 and 2.

Hence, the vectors ðakðs1Þ; . . .; akðsnÞÞ|, k ¼ 1; . . .; p, are p

independent realizations of a multivariate Gaussian random

variable Nnð0;RÞ, where the n � n covariance matrix

equals R ¼ fexpð�aksi � sjkÞg. The �si
ðtÞ’s are white

noise measurement errors, independent and identically

normally distributed with mean 0 and variance 0.04, i.e.

�si
ðtÞ�Nð0; 0:04Þ.
For each of the 2� 3 ¼ 6 cases (19–24) and for each

such generated data set we fitted the same OKFD models as

those fitted in Sect. 4.1. However, for medium and large

sample sizes we extended the choices of number of basis

functions (see Appendix 2 in Table 11 for a specification),

yielding a total of 36, 90 and 90 different estimated OKFD

models for small, medium and large sample sizes, respec-

tively. For each case (19–24), sample size, and realization,

predictions were made and evaluated by FCV for all

models, and the minimum MSPE over the models regis-

tered. The overall MSPE for each case and sample size was

finally computed as the average minimum MSPE over the

100 replicates. Furthermore, the same Sp.T. ordinary

kriging models fitted to the data in Sect. 4.1, were also

estimated for these data sets. Additionally, Sp.T. universal

kriging models were fitted, with a deterministic time trend

Table 3 Prediction performance in terms of mean squared prediction errors (MSPEs) for the cases 10–18 (and 10*–18*) without (and with) a

deterministic time trend considering medium sample sizes

Generated data Overall MSPE Comparison

Case Type a b OKFD Sp.T. separable Sp.T. product-sum Sp.T. metric p value

10 Non-separable, no trend 0.1 0.1 0.066 (0.2) 0.067 (26.2) 0.070 (87.6) 0.101 (89.9) 0.050

11 1 0.066 (0.2) 0.065 (25.7) 0.069 (87.5) 0.100 (89.6) 0.082

12 10 0.065 (0.2) 0.064 (24.4) 0.067 (90.2) 0.082 (89.8) 0.075

13 0.5 0.1 0.128 (0.2) 0.139 (25.8) 0.145 (92.8) 0.201 (92.9) 0.001

14 1 0.134 (0.2) 0.140 (24.2) 0.154 (90.2) 0.248 (87.0) \ 0.001

15 10 0.137 (0.2) 0.140 (27.4) 0.155 (99.5) 0.257 (93.3) 0.006

16 2 0.1 0.366 (0.2) 0.398 (26.8) 0.391 (95.9) 0.430 (92.4) \ 0.001

17 1 0.354 (0.2) 0.390 (24.8) 0.386 (91.8) 0.476 (86.5) \ 0.001

18 10 0.373 (0.2) 0.391 (27.4) 0.402 (95.2) 0.579 (90.4) 0.003

10* Non-separable, trend 0.1 0.1 0.063 (0.2) 0.064 (26.4) 0.066 (88.5) 0.099 (90.5) 0.463

11* 1 0.065 (0.2) 0.065 (26.2) 0.070 (88.1) 0.100 (90.8) 0.976

12* 10 0.069 (0.2) 0.067 (25.8) 0.072 (86.1) 0.094 (86.6) 0.001

13* 0.5 0.1 0.137 (0.2) 0.147 (27.8) 0.152 (92.9) 0.212 (93.5) 0.001

14* 1 0.138 (0.2) 0.144 (30.3) 0.153 (97.4) 0.270 (95.3) 0.034

15* 10 0.136 (0.2) 0.140 (28.1) 0.154 (98.1) 0.230 (91.5) 0.002

16* 2 0.1 0.359 (0.2) 0.406 (26.1) 0.384 (96.0) 0.450 (91.7) \ 0.001

17* 1 0.367 (0.2) 0.414 (27.0) 0.406 (96.2) 0.516 (91.5) \ 0.001

18* 10 0.374 (0.2) 0.396 (27.5) 0.398 (96.3) 0.591 (91.9) 0.003

The smallest overall MSPE for each case is highlighted in bold. The numbers in parentheses represent the average computational time in seconds

over the corresponding estimated models and replications. The last column shows p values from two-sided paired t tests comparing the overall

MSPEs between the OKFD and the Sp.T. separable models. The larger the value of a and b the weaker the spatial and temporal correlation,

respectively
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specified by a linear combination of the same basis func-

tions that were used to generate the data set. Hence, a total

of 18 separable, 18 product-sum and 6 metric Sp.T. kriging

models were fitted to the data; predictions evaluated by

FCV, the minimum MSPE registered over the models

within the three groups of dependence structures, and the

overall MSPE computed for each case (19–24) and sample

size. As in Sects. 4.1 and 4.2, the Sp.T. models with a

product-sum and a metric covariance function were not

evaluated for large sample sizes due to large computational

times.

Table 4 summarizes the prediction performance of the

two kriging approaches for cases 19–24 and all three

sample sizes. Note that these simulated data sets have time

varying variances and covariances, which the Sp.T. kriging

approach is not designed to capture, whereas the OKFD

model can handle such situations. We would therefore

expect OKFD to perform better than the Sp.T. kriging

approach, which is indeed the case. In fact, OKFD has

significantly lower overall MSPE for all cases and sample

sizes in Table 4 except for cases 22–23 considering small

sample sizes. For these two cases the Sp.T. separable

kriging model works better. This is coupled to the low

number of observations (12) per location for small sample

sizes. When the functional representations of the data at

each location is formed for the OKFD models, we can thus

at most fit a linear combination of 12 basis functions,

whereas, the data are generated by 15 B-splines. The

functional representations may thus fail to capture the full

temporal time dynamics. The Sp.T. universal kriging

models on the other hand, do fit a common deterministic

time trend using all 15 B-splines. From Table 4, it is also

noted that Sp.T. kriging models with fitted metric vari-

ograms sometimes had better prediction performance than

the Sp.T. separable kriging models, but still worse than the

best OKFD models. Moreover, we again note that the

computational time for OKFD is much lower than for the

Sp.T. models.

Figure 4 illustrates how the type and number of basis

functions used in the fitted OKFD models affect the pre-

diction performance for cases 21 and 22 considering

medium sample sizes. Case 21 corresponds to simulated

data generated by 7 B-splines with weak spatial depen-

dence, whereas case 22 corresponds to simulated data

generated by 15 B-splines with strong spatial dependence.

In contrast to the simulated stationary Sp.T. models (cases

1–18) where prediction performance typically increases

with the number of basis functions used in the fitted OKFD

Table 4 Prediction performance in terms of mean squared prediction errors (MSPEs) for the cases 19–24 over the different sample sizes

Generated data Overall MSPE Comparison

Case Type Data size p a OKFD Sp.T. separable Sp.T. product-sum Sp.T. metric p value

19 Non-stationary Small 7 0.1 0.054 (0.2) 0.056 (8.0) 0.057 (11.5) 0.056 (6.3) \ 0.001

20 0.5 0.096 (0.2) 0.099 (8.4) 0.100 (14.1) 0.100 (6.1) \ 0.001

21 2 0.226 (0.2) 0.232 (9.0) 0.236 (15.7) 0.235 (6.4) \ 0.001

22 15 0.1 0.058 (0.2) 0.057 (7.4) 0.058 (13.2) 0.061 (6.1) \ 0.001

23 0.5 0.099 (0.2) 0.099 (7.8) 0.101 (15.2) 0.102 (6.0) 0.342

24 2 0.239 (0.2) 0.243 (8.7) 0.260 (16.4) 0.263 (6.5) 0.049

19 Medium 7 0.1 0.050 (0.2) 0.055 (24.8) 0.056 (83.8) 0.052 (84.1) \ 0.001

20 0.5 0.083 (0.2) 0.092 (24.4) 0.093 (79.5) 0.088 (79.6) \ 0.001

21 2 0.202 (0.2) 0.212 (28.7) 0.220 (91.2) 0.210 (88.0) \ 0.001

22 15 0.1 0.052 (0.2) 0.056 (26.1) 0.056 (81.9) 0.056 (84.2) \ 0.001

23 0.5 0.087 (0.2) 0.094 (28.0) 0.093 (90.2) 0.093 (87.3) \ 0.001

24 2 0.209 (0.2) 0.218 (28.2) 0.229 (92.6) 0.223 (87.7) \ 0.001

19 Large 7 0.1 0.044 (9.0) 0.047 (150.7) \ 0.001

20 0.5 0.055 (9.1) 0.061 (151.6) \ 0.001

21 2 0.097 (9.2) 0.105 (152.6) \ 0.001

22 15 0.1 0.045 (9.0) 0.047 (138.8) \ 0.001

23 0.5 0.057 (9.1) 0.061 (140.8) \ 0.001

24 2 0.100 (9.2) 0.106 (151.5) \ 0.001

The smallest overall MSPE for each case is highlighted in bold. The numbers in parentheses represent the average computational time in seconds

over the corresponding estimated models and replications. The last column shows p values from two-sided paired t tests comparing the overall

MSPEs between the OKFD and the best Sp.T. model

Stochastic Environmental Research and Risk Assessment (2019) 33:1699–1719 1709

123



models, here we observe this phenomena only when

Fourier basis functions are used in the fitted OKFD models.

For B-splines, the best prediction performance is (natu-

rally) achieved using the same number of B-splines in the

OKFD fitted models as used to generate the simulated data

set (7 for case 21 and 15 for case 22). In fact, using too

many B-splines may give substantially poorer predictions,

especially when the spatial dependence is weak, as for case

21, cf. Fig. 4. It can also be noted that the best OKFD

model using B-splines has significantly smaller MSPE than

the best OKFD model using Fourier basis functions. If the

simulated data sets would have been generated by a set of

Fourier basis functions instead, we would most likely see

the opposite behavior, i.e. that the same Fourier basis

functions in the fitted OKFD model as in the data gener-

ation model probably would give the best prediction per-

formance, and do better than the OKFD models using

B-splines.

For the Sp.T. separable kriging models, it turned out that

it was advantageous to use universal kriging, especially for

the cases with weak spatial dependence, whereas the pre-

diction performance was about the same for cases with

strong spatial dependence (Fig. 4). For the Sp.T. metric

model, we observed the opposite behavior, i.e., for cases

with weak spatial dependence it was more advantageous to

use ordinary kriging instead of universal kriging.

We have used FCV to evaluate the prediction perfor-

mance, where predicted values are compared with the

observed values of the process, which include measure-

ment errors. In order to investigate whether comparisons

with the true values would change the conclusions, we also

computed the MSPEs with respect to the true realizations

for cases 19–24 using small sample sizes, see Table 12 in

Appendix 2. The MSPEs for the different cases in Table 12

are approximately 0.04 less than the corresponding MSPEs

based on the observed processes, presented in Table 4. The

difference (0.04) corresponds to the variance of the white

noise measurement errors. Furthermore, according to the

p values in Tables 4 and 12, the results are consistent.

Hence it illustrates that conclusions based on comparing

predicted values with the observed values are consistent

with those comparing with true values.

5 An application: temperature
measurements in Canada

In this section we compare the prediction performance of

the OKFD and the Sp.T. kriging models for a meteoro-

logical data set, available in the R-package geofd (Giraldo

et al. 2012). The data consists of temperature measure-

ments recorded at n ¼ 36 weather stations at Canada’s

Atlantic coast in the Maritime Provinces (Fig. 5, top panel).

At each station, the daily mean temperature averaged over

the period 1960–1994 (February 29th combined with

February 28th) has been recorded. The resulting functional

data are displayed in Fig. 5 (bottom panel), connected by

light grey lines. All the data except the measurements from

Moncton are used to estimate the different models. This

place is left as new location used to compare the predic-

tions using the best OKFD and Sp.T. kriging models.

Using the R-package geofd, the OKFD model was first

estimated using 51, 101, 151, 201, 251, 301 and 351

Fourier basis functions. For each number of Fourier basis

functions three semivariogram models (exponential,

spherical and stable) were fitted to the empirical trace-

semivariogram by the OLS method. Thus, in total we

estimated 7� 3 ¼ 21 OKFD models. Predictions were then

made and evaluated by FCV in terms of their MSPEs (19).
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Fig. 4 Prediction performance (minimum MSPE over the three trace-

semivariogram models, averaged over the 100 realizations) for cases

21 and 22 considering medium sample sizes when the estimated

OKFD model is based on different numbers (p) of basis functions,

being both Fourier and cubic B-spline. The solid and dashed black

lines represent the corresponding overall MSPE of the Sp.T. separable

model with and without an estimated deterministic time trend,

respectively. The solid and dashed green lines represent the corre-

sponding overall MSPE of the Sp.T. metric model with and without

an estimated deterministic time trend, respectively
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The best prediction performance was achieved using the

stable trace-semivariogram (Fig. 6, left panel) for all consid-

ered numbers of Fourier basis. Figure 6 (right panel) clearly

reveals that the prediction error (minimum MSPE over the

three trace-semivariogrammodels) decreases with the number

of basis functions used in the fitted OKFD models. Thus, the

best performancewas attainedwith 351 Fourier basis functions

and itsMSPEwas 0.5738. The average computational time for

an estimated OKFD model based on 51 and 351 Fourier basis

functions was less than one and three seconds, respectively.
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Fig. 5 Locations of the 36 weather stations in the Canadian Maritime

provinces (top panel) where the average (over 30 years) daily

temperature curves (bottom panel) were registered. The bottom panel

also presents the estimated common time trend specified as linear

combinations of the first 3 and 7 Fourier basis functions, respectively
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Fig. 6 Left panel: Empirical trace-semivariogram and the best fitted

stable model for the Canadian temperature curves, represented by 351

Fourier basis functions. Right panel: Minimum MSPE over the three

trace-semivariogram models for OKFD, based on different numbers

of Fourier basis functions. The solid black line represents the MSPE

of the best Sp.T. model
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The data was further predicted using Sp.T. kriging. Since

the data show a clear time trend, universal Sp.T. kriging was

first applied. The deterministic time trend was modeled by a

linear combination of the 3 (and 7) first Fourier basis func-

tions, and estimated by the OLS method. The dependence

structure of the resulting residuals was then estimated by

fitting Sp.T. second-order stationary and isotropic semivar-

iogram models to the empirical Sp.T. semivariogram of the

residuals. The Sp.T. semivariogram models (separable,

product-sum and metric) described in Sect. 3.2 were esti-

mated, letting their corresponding spatial, temporal and joint

semivariogram models be altered between the exponential,

spherical and stable semivariogram models. This resulted in

9 separable, 9 product-sum and 3 metric Sp.T. semivari-

ogram models. As a comparison we also predicted the

original data by Sp.T. ordinary kriging, using the same Sp.T.

semivariogram models as for the universal Sp.T. kriging

models. Thus, in total we investigated ð9þ 9þ 3Þ � 3 ¼ 63

Sp.T. kriging models. All models were fitted to the data and

predictions evaluated by FCV.

Table 5 presents the best (smallest MSPE) Sp.T. models,

within each of the three groups of dependence structure

(separable, product-sum and metric), with and without an

estimated trend. The numbers in brackets report the corre-

sponding average computational time in seconds over the

estimated models. Many of the Sp.T. models have about the

same prediction performance, with the exceptions of the

Sp.T.metricmodels with estimated trend, whichworked less

well. The best Sp.T. models have approximately the same

magnitude of MSPE as the best OKFD model (MSPE being

0.5738), but in terms of computational time, anOKFDmodel

(taking 1–3 s to compute) was 100–10,000 times faster to

compute compared to a Sp.T. kriging model.

Figure 7 presents the observed daily temperatures at

locations Bertrand (the location with the largest prediction

error) and Moncton (new location), together with the cor-

responding predicted values using the best OKFD and

Sp.T. kriging models. It emphasizes that there are very

small differences between the best OKFD and Sp.T.

models in terms of prediction performance.

This data set has previously been analyzed by e.g. Giraldo

(2009) with the objective to demonstrate and compare the

functional kriging methods OKFD, PWFK and FKTM.

Giraldo (2009) concluded that the three methods have sim-

ilar FCV prediction performance when the first 65 Fourier

basis functions are used in (8) to represent the vsi
ðtÞ’s. In

Menafoglio et al. (2013) this data set was used to investigate

the effect of using universal kriging for functional data

(UKFD) instead of OKFD, also by representing the func-

tional data with the first 65 Fourier basis functions. Geodesic

distance instead of the Euclidean distance was used to take

into account the approximately spherical shape of the Earth.

They concluded that UKFD performed better in terms of

FCV compared to OKFD. The FCV performance was there

computed with respect to the fitted data, thus differing from

ours, where raw data has been used.

6 Concluding remarks

In this paper we have presented and compared functional

and Sp.T. kriging approaches to predict spatial functional

random processes. Comparisons with respect to prediction

performance and computational time have been performed,

mainly through a simulation study but also using a real data

set. We restricted the comparison to Sp.T. kriging versus

the functional kriging method OKFD, since the more

flexible functional kriging approaches PWFK and FKTM

coincide with OKFD in several situations (Sects. 3.1.3 and

3.1.4). Here we also contribute with new knowledge by

proving that the kriging weights of OKFD and PWFK

coincide under certain conditions, e.g. for all stationary

spatial functional random processes, but also for more

general processes, cf. Sect. 3.1.3.

The purpose of this study has been to bring light on the

relative merits of functional and Sp.T. kriging methods for

prediction of spatial functional random processes. While

functional kriging predicts complete curves on a given

(time) domain, given observations on the same domain, the

Sp.T. kriging methods make (a raster of) pointwise pre-

dictions of the curves and are not restricted to a given

(time) domain. For non-stationary Sp.T. (but stationary

functional) processes, e.g. under the presence of a common

deterministic time trend and/or time varying variances and

dependence structure, functional kriging does not demand

any extra modeling, whereas identification and modeling of

Table 5 Prediction performance

of different Sp.T. kriging

models for the Canadian

weather data

Trend MSPE

Sp.T. separable Sp.T. product-sum Sp.T. metric

No trend 0.5730 (1:8� 102) 0.5861 (1:3� 104) 0.5730 (1:3� 104)

3 Fourier basis 0.5730 (1:8� 102) 0.5731 (1:3� 104) 1.1126 (1:4� 104)

7 Fourier basis 0.5734 (1:6� 102) 0.5731 (1:3� 104) 1.0670 (1:4� 104)

For each type of trend and Sp.T. variogram model, the (minimum) MSPE is reported. The numbers in

parentheses represent the average computational time in seconds over the corresponding estimated models
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trend and/or time varying dependence is necessary for

Sp.T. kriging. From a modeler perspective, the Sp.T.

kriging methods demand more work with a larger risk of

choosing a suboptimal model. It should also be pointed out

that the functional approach has the possibility to consider

other embeddings for the data, i.e. other geometries than

L2. In fact, in some cases, the functional approach may

completely outperform Sp.T. kriging just because it can

account for other data features, such as differential prop-

erties in the data or data constraints.

Based on the simulation study and the analysis of the

data set, we observed that the prediction performance of

OKFD normally was improved when the number of basis

functions used to represent the functional data increased.

Furthermore, for all considered cases, OKFD was compu-

tationally considerably faster than the Sp.T. kriging mod-

els. The large matrices that need to be inverted in order to

perform Sp.T. kriging prediction at each location, is the

major reason for this fact. One way to reduce the compu-

tational time for the Sp.T. kriging models could be to use

only the local neighborhood (e.g. the k closest neighboring

locations) when prediction is made. This can often be done

without much loss in prediction performance. Computa-

tional time might also be saved if estimation methods based

on distributional assumptions are used, both for the func-

tional and Sp.T. kriging methods.

Experience from this study concludes that with respect to

prediction performance, OKFD typically performed simi-

larly or better than the Sp.T. kriging models for small and

medium sample sizes. This is likely due to the more complex

task of finding good estimates of the Sp.T. variogram com-

pared to the trace-variograms used in OKFD, since trace-

variograms have one dimension less. The large number of

choices of Sp.T. variogram models and parameters to esti-

mate makes the Sp.T. estimation process more vulnerable,

especially for small data sets. For larger sample sizes, the

Sp.T. kriging starts to perform better for the stationary Sp.T.

processes, whereas OKFD continues to work best for the

non-stationary Sp.T. (but stationary functional) processes.

We also noted a clear tendency for OKFD to perform better

relative to Sp.T. kriging, the stronger the temporal- and the

weaker the spatial dependence considered.

An interesting extension of this work would be to develop

and compare both parametric (relying on distributional

assumptions) and non-parametric functional and Sp.T. kriging

methods that dealswith non-stationary functional processes. In

this study we have focused on non-parametric functional and

Sp.T. kriging approaches for prediction of stationary spatial

functional random processes. The results highlight that OKFD

is a good candidate in most situations for prediction of sta-

tionary spatial functional random processes, not only for its

prediction performance but also for its speed and ease to use.
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Fig. 7 Predicted temperatures at locations Bertrand (top) and Moncton (bottom) obtained by the best OKFD model (solid grey line) and the best

Sp.T. model (dashed black line) together with the observed (dotted) values

Stochastic Environmental Research and Risk Assessment (2019) 33:1699–1719 1713

123



Acknowledgements Open access funding provided by Umea

University. This work was supported by the Swedish Research

Council (Project id 340-2013-5203) and J.Mateu has been partially

funded by Grants MTM2016-78917-R from the Spanish Ministery of

Science, and P1-1B2015-40 from University Jaume I.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

Appendix 1: Proofs

Below we present the proof of Proposition 3.1. However,

as the proposition relies on Lemma 1.1 below, we start by

stating and proving the lemma before presenting the proof

of the proposition.

Lemma 1.1 Consider the following square matrix

Q =

⎛
⎜⎜⎜⎜⎜⎝

σ11W σ12W · · · σ1nW I
σ21W σ22W · · · σ2nW I

...
...

. . .
...

...
σn1W σn2W · · · σnnW I

I I · · · I 0

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝ Σ ⊗ W

I
...
I

I · · · I 0

⎞
⎟⎟⎟⎠

k(n+1)×k(n+1)

,

ð22Þ

where 	 denotes kronecker product,

R ¼

r11 r12 � � � r1n

r21 r22 � � � r2n

..

. ..
. . .

. ..
.

rn1 rn2 � � � rnn

0
BBBB@

1
CCCCA

n�n

;

W is a square k � k matrix, I is a k � k identity matrix, 0 is

a k � k zero matrix, and the rij’s are real values. If the

inverses of R and W exist, and the sum of the n2 elements

of R�1 is non-zero, then the inverse of Q exists and satisfies

Q�1 ¼

k11W
�1 k12W

�1 � � � k1nW
�1 k1I

k21W
�1 k22W

�1 � � � k2nW
�1 k2I

..

. ..
. . .

. ..
. ..

.

kn1W
�1 kn2W

�1 � � � knnW
�1 knI

l1I l2I � � � lnI cW

0
BBBBBBB@

1
CCCCCCCA

kðnþ1Þ�kðnþ1Þ

;

ð23Þ

where the kij’s, ki’s, l0is and c are constants, such thatPn
i¼1 kijð¼

Pn
j¼1 kijÞ ¼ 0 for all j’s (and i’s),

Pn
i¼1 ki ¼ 1

and
Pn

i¼1 li ¼ 1:

Note that the kij’s, ki’s and the li’s also change with

n. However, for notational simplicity we suppress the

dependence of n in the kij’s, ki’s and the li’s.

Proof of Lemma 1.1 The proof is based on the following

block matrix inversion formula

A B

C D

� ��1

¼ A�1 þ A�1BðD� CA�1BÞ�1CA�1 �A�1BðD� CA�1BÞ�1

�ðD� CA�1BÞ�1CA�1 ðD� CA�1BÞ�1

 !
;

ð24Þ

where A and D are square matrices allowed to be of dif-

ferent size. Let

Q =

⎛
⎜⎜⎜⎝ Σ ⊗ W

I
...
I

I · · · I 0

⎞
⎟⎟⎟⎠

k(n+1)×k(n+1)

=
(

A B
C D

)
,

the elements of R�1 be denoted by

R�1 ¼

a11 a12 � � � a1n

a21 a22 � � � a2n

..

. ..
. . .

. ..
.

an1 an2 � � � ann

0
BBBB@

1
CCCCA

n�n

;

and further let a�j ¼
Pn

i¼1 aij, ai� ¼
Pn

j¼1 aij and

a�� ¼
Pn

i¼1

Pn
j¼1 aij. Then, by (24), together with the fact

that ðR	WÞ�1 ¼ R�1 	W�1, straightforward calcula-

tions confirm that

ðD� CA�1BÞ�1 ¼ 1

a��
W; ð25Þ

�A�1BðD� CA�1BÞ�1 ¼

a1�
a��

I

..

.

an�
a��

I

0
BBBB@

1
CCCCA; ð26Þ

�ðD� CA�1BÞ�1CA�1 ¼
a�1
a��

I � � � a�n

a��
I

� �
; ð27Þ

and
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Combining (25)–(28), we have that Q�1 is of the same

form as in (23) with kij ¼ aij � a�jai�
a��

, ki ¼ ai�
a��

and li ¼ a�i

a��
. In

addition, it is easy to verify that

Xn

i¼1

ki ¼
Xn

i¼1

ai�
a��

¼ 1;

X
i¼1

kij ¼
X
i¼1

aij �
a�jai�
a��

� �
¼ a�j �

a�ja��
a��

¼ 0;

for all j ¼ 1; . . .; n. Similarly it follows that
Pn

i¼1 li ¼ 1

and
Pn

j¼1 kij ¼ 0 for all i ¼ 1; . . .; n, which completes the

proof. h

Proof of Proposition 3.1 Under the assumptions of

Proposition 3.1 we here show that the coefficients of the

functional kriging weights (9) of PWFK, which are

obtained by minimizing (3) subject to the unbiasedness

constraint of the predictor (
Pn

i¼1 kiðtÞ ¼ 1, for all t 2 T),

yield weights that are constant over time, i.e.,

kiðtÞ ¼ b|i BkðtÞ ¼ ki, i ¼ 1; . . .; n. Giraldo et al. (2010)

showed that the solution of the PWFK optimization prob-

lem is given by the solution to the system

Qb ¼ J)b ¼ Q�1J ð29Þ

where

Q ¼

Q1 Q12 � � � Q1n I

Q21 Q2 � � � Q2n I

..

. ..
. . .

. ..
. ..

.

Qn1 Qn2 � � � Qn I

I I � � � I 0

0
BBBBBBB@

1
CCCCCCCA
; b ¼

b1

b2

..

.

bn

m

0
BBBBBBB@

1
CCCCCCCA
; J ¼

J1

J2

..

.

Jn

c

0
BBBBBBB@

1
CCCCCCCA
;

Qi ¼
Z

T

BkðtÞVar½vsi
ðtÞ�B|

kðtÞ dt; ð30Þ

Qij ¼
Z

T

BkðtÞCov½vsi
ðtÞ; vsj

ðtÞ�B|

kðtÞ dt; ð31Þ

Ji ¼
Z

T

BkðtÞCov½vs0
ðtÞ; vsi

ðtÞ� dt; ð32Þ

for i; j ¼ 1; . . .; n, m| ¼ ðm1; . . .;mKÞ are the K Lagrangian

multipliers and c is an unbiasedness constraint vector sat-

isfying c|BkðtÞ=1.
From (11) we have that Var½vsi

ðtÞ� ¼ w2ðtÞrii and

Cov½vsi
ðtÞ; vsj

ðtÞ� ¼ w2ðtÞrij for all i; j ¼ 0; 1; . . .; n. The

expressions in (30) and (31) can thus be expressed as Qi ¼
riiW and Qij ¼ rijW for i; j ¼ 1; . . .; n, where

W ¼
R

T
w2ðtÞBkðtÞB|

kðtÞ dt, and hence, the matrix Q is of

the form (22). By the assumptions in Proposition 3.1 and

from Lemma 1.1 it follows that Q�1 is of the form (23).

Computing the solution b ¼ Q�1J yields that the bi’s are

of the form

bi ¼
Xn

j¼1

kijW
�1Jj þ kic; i ¼ 1; . . .; n;

which can be rewritten as

Wðbi � kicÞ ¼
Xn

j¼1

kijJj; i ¼ 1; . . .; n: ð33Þ

Thus, using (32) together with the expression for W we

may express (33) as

Z
T

w2ðtÞBkðtÞB|

kðtÞðbi � kicÞ dt ¼
Xn

j¼1

kijroj

Z
T

w2ðtÞBkðtÞ dt

or equivalently,

A�1 þ A�1B D� CA�1B
� ��1

CA�1

¼

a11 �
a�1a1�
a��

� �
W�1 a12 �

a�2a1�
a��

� �
W�1 � � � a1n �

a�na1�
a��

� �
W�1

a21 �
a�1a2�
a��

� �
W�1 a22 �

a�2a2�
a��

� �
W�1 � � � a2n �

a�na2�
a��

� �
W�1

..

. ..
. . .

. ..
.
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Z
T

w2ðtÞBkðtÞB|

kðtÞ bi � ki þ
Xn

j¼1

kijroj

 !
c

 !
dt ¼ 0; i ¼ 1; . . .; n:

In the last expression we used the fact that B|

kðtÞc equals 1
for all values of t 2 T (the unbiasedness constraint). It can

now be seen that the above equation holds if bi equals

ðki þ
Pn

j¼1 kijr0jÞc and from the assumption of Q�1’s

existence we also have that this solution is the only one.

Thus, the weights satisfy

kiðtÞ ¼ b
|

i BkðtÞ ¼ ki þ
Xn

j¼1

kijr0j

 !
c|BkðtÞ ¼ ki

þ
Xn

j¼1

kijr0j ¼ ki;

for all values of t 2 T and i ¼ 1; . . .; n, and conse-

quently, the PWFK predictor coincides with the OKFD

predictor. h

Appendix 2: Tables of the simulation study

Tables 6, 7, 8 and 9 contain information about the pre-

diction performance in terms of mean squared prediction

errors (MSPEs) for the cases 1–18 for small and large

sample sizes with and without a deterministic trend,

respectively. The smallest overall MSPE for each case is

highlighted in bold. The numbers in parentheses represent

the average computational time in seconds over the cor-

responding estimated models and replications. The last

column shows p values from two-sided paired t tests

comparing the overall MSPEs between the OKFD and the

Sp.T. separable models.

Tables 10 and 11 contain information about the number

of basis functions used in the OKFD models concerning the

stationary (corresponding to isotropic Sp.T. processes with

a separable and non-separable covariance function) and

non-stationary cases and the three different sample sizes.

The (p) cubic B-splines were constructed based on p � 4

equally distributed interior knots on the interval [0, 1].

Table 6 Simulated cases 1–9 (and 1*–9*) without (and with) a deterministic time trend considering small sample sizes

Generated data Overall MSPE Comparison

Case Type a b OKFD Sp.T. separable Sp.T. product-sum Sp.T. metric p value

1 Separable, no trend 0.1 0.1 0.068 (0.2) 0.068 (7.1) 0.070 (9.8) 0.106 (6.1) 0.176

2 1 0.065 (0.2) 0.065 (8.4) 0.069 (10.8) 0.080 (6.3) 0.561

3 10 0.063 (0.2) 0.064 (6.2) 0.065 (14.6) 0.070 (6.3) 0.409

4 0.5 0.1 0.135 (0.2) 0.145 (7.0) 0.150 (12.7) 0.204 (6.4) \ 0.001

5 1 0.135 (0.2) 0.139 (8.6) 0.147 (14.6) 0.196 (6.1) \ 0.001

6 10 0.134 (0.2) 0.139 (7.3) 0.154 (17.3) 0.154 (6.3) 0.204

7 2 0.1 0.377 (0.2) 0.400 (6.2) 0.395 (15.2) 0.452 (6.2) \ 0.001

8 1 0.356 (0.2) 0.386 (8.0) 0.399 (16.0) 0.476 (6.2) \ 0.001

9 10 0.365 (0.2) 0.378 (7.8) 0.436 (17.6) 0.421 (6.2) \ 0.001

1* Separable, trend 0.1 0.1 0.066 (0.2) 0.066 (9.3) 0.068 (12.6) 0.072 (6.2) 0.107

2* 1 0.063 (0.2) 0.063 (8.8) 0.066 (11.9) 0.070 (6.1) 0.004

3* 10 0.066 (0.2) 0.066 (6.7) 0.068 (15.5) 0.066 (6.3) 0.441

4* 0.5 0.1 0.128 (0.2) 0.134 (9.7) 0.138 (14.6) 0.149 (6.4) \ 0.001

5* 1 0.135 (0.2) 0.140 (9.9) 0.148 (14.5) 0.146 (5.9) 0.029

6* 10 0.137 (0.2) 0.138 (7.8) 0.159 (17.3) 0.146 (6.4) 0.022

7* 2 0.1 0.380 (0.2) 0.398 (8.2) 0.413 (15.5) 0.457 (6.2) \ 0.001

8* 1 0.377 (0.2) 0.400 (9.4) 0.422 (15.6) 0.430 (5.9) \ 0.001

9* 10 0.387 (0.2) 0.405 (8.1) 0.442 (17.6) 0.415 (6.2) \ 0.001
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Table 8 Simulated cases 10–18 (and 10*–18*) without (and with) a deterministic time trend considering small sample sizes

Generated data Overall MSPE Comparison

Case Type a b OKFD Sp.T. separable Sp.T. product-sum Sp.T. metric p value

10 Non separable, no trend 0.1 0.1 0.063 (0.2) 0.063 (6.6) 0.067 (9.0) 0.105 (6.1) 0.766

11 1 0.063 (0.2) 0.063 (8.5) 0.066 (9.6) 0.100 (6.3) 0.755

12 10 0.063 (0.2) 0.065 (6.2) 0.068 (10.4) 0.090 (6.2) 0.013

13 0.5 0.1 0.132 (0.2) 0.144 (6.3) 0.153 (13.0) 0.199 (6.3) \ 0.001

14 1 0.132 (0.2) 0.140 (8.2) 0.150 (14.1) 0.216 (5.9) \ 0.001

15 10 0.139 (0.2) 0.144 (9.0) 0.157 (16.6) 0.195 (6.4) \ 0.001

16 2 0.1 0.363 (0.2) 0.398 (5.9) 0.379 (14.9) 0.430 (6.1) \ 0.001

17 1 0.365 (0.2) 0.422 (7.1) 0.396 (16.0) 0.481 (6.2) \ 0.001

18 10 0.362 (0.2) 0.387 (8.2) 0.385 (16.8) 0.532 (6.5) \ 0.001

10* Non separable, trend 0.1 0.1 0.063 (0.2) 0.063 (9.6) 0.064 (12.7) 0.066 (6.3) 0.598

11* 1 0.065 (0.2) 0.064 (9.0) 0.066 (11.1) 0.066 (6.2) 0.009

12* 10 0.066 (0.2) 0.065 (6.7) 0.071 (13.2) 0.069 (6.3) 0.049

13* 0.5 0.1 0.135 (0.2) 0.139 (9.7) 0.148 (14.5) 0.153 (6.5) \ 0.001

14* 1 0.133 (0.2) 0.136 (10.0) 0.146 (14.2) 0.153 (5.9) \ 0.001

15* 10 0.134 (0.2) 0.136 (8.9) 0.148 (16.6) 0.142 (6.2) \ 0.001

16* 2 0.1 0.362 (0.2) 0.375 (8.3) 0.384 (15.4) 0.447 (6.4) \ 0.001

17* 1 0.360 (0.2) 0.377 (9.4) 0.384 (15.9) 0.431 (6.1) \ 0.001

18* 10 0.377 (0.2) 0.402 (8.9) 0.412 (16.8) 0.423 (6.1) \ 0.001

Table 7 Simulated cases 1–9

(and 1*–9*) without (and with)

a deterministic time trend

considering large sample sizes

Generated data Overall MSPE Comparison

Case Type a b OKFD Sp.T. separable p value

1 Separable, no trend 0.1 0.1 0.051 (8.7) 0.050 (147.9) \ 0.001

2 1 0.055 (8.6) 0.053 (139.0) \ 0.001

3 10 0.054 (8.6) 0.051 (125.8) \ 0.001

4 0.5 0.1 0.078 (9.9) 0.080 (153.0) 0.029

5 1 0.079 (9.9) 0.078 (154.5) 0.064

6 10 0.081 (10.0) 0.079 (139.9) \ 0.001

7 2 0.1 0.164 (9.6) 0.168 (146.4) 0.207

8 1 0.160 (9.7) 0.161 (147.9) 0.147

9 10 0.167 (9.7) 0.167 (141.3) 0.846

1* Separable, trend 0.1 0.1 0.054 (8.7) 0.053 (151.7) \ 0.001

2* 1 0.053 (8.7) 0.051 (143.9) \ 0.001

3* 10 0.054 (8.7) 0.051 (131.9) \ 0.001

4* 0.5 0.1 0.074 (9.9) 0.076 (158.6) 0.016

5* 1 0.077 (9.9) 0.077 (159.5) 0.465

6* 10 0.080 (9.9) 0.077 (146.3) \ 0.001

7* 2 0.1 0.156 (9.6) 0.164 (150.8) 0.151

8* 1 0.163 (9.7) 0.169 (150.5) 0.104

9* 10 0.165 (10.0) 0.166 (153.1) 0.479
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Table 10 Stationary
Sample sizes

Small Medium Large

Fourier 5, 7, 9, 11 5, 15, 25, 35, 45, 47, 49 5, 15, 25, 35, 45, 47, 49

B-splines 5, 6, 7, 8, 9, 10, 11, 12 5, 15, 25, 35, 45, 47, 49 5, 15, 25, 35, 45, 47, 49

Total 12 14 14

Table 11 Non-stationary

Sample sizes

Small Medium Large

Fourier 5, 7, 9, 11 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 35, 45, 47, 49 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 35, 45, 47, 49

B-splines 5, 6, 7, 8, 9, 10, 11, 12 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 35, 45, 47, 49 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 35, 45, 47, 49

Total 12 30 30

Table 9 Simulated cases 10–18

(and 10*–18*) without (and

with) a deterministic time trend

considering large sample sizes

Generated data Overall MSPE Comparison

Case Type a b OKFD Sp.T. separable p value

10 Non separable, no trend 0.1 0.1 0.053 (8.7) 0.052 (150.1) \ 0.001

11 1 0.053 (8.7) 0.051 (146.5) \ 0.001

12 10 0.054 (8.6) 0.050 (134.6) \ 0.001

13 0.5 0.1 0.076 (9.3) 0.077 (156.4) 0.138

14 1 0.078 (9.6) 0.077 (163.3) 0.431

15 10 0.078 (10.3) 0.075 (177.5) \ 0.001

16 2 0.1 0.160 (9.7) 0.175 (145.6) 0.038

17 1 0.161 (9.7) 0.162 (147.7) 0.516

18 10 0.165 (9.7) 0.164 (148.3) 0.723

10* Non separable, trend 0.1 0.1 0.053 (8.7) 0.051 (151.6) \ 0.001

11* 1 0.053 (8.7) 0.050 (150.0) \ 0.001

12* 10 0.055 (8.6) 0.051 (134.1) \ 0.001

13* 0.5 0.1 0.077 (10.3) 0.078 (190.2) 0.051

14* 1 0.077 (9.9) 0.076 (159.8) 0.288

15* 10 0.079 (10.0) 0.077 (155.8) \ 0.001

16* 2 0.1 0.163 (9.7) 0.166 (150.7) 0.029

17* 1 0.163 (9.7) 0.167 (152.6) 0.186

18* 10 0.163 (9.7) 0.162 (152.5) 0.213
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Table 12 Prediction

performance in terms of mean

squared prediction errors

(MSPEs) for the cases 19–24

using small sample sizes

Generated data Overall MSPE Comparison

Case Type Data size p a OKFD Sp.T. separable p value

19 Non-stationary Small 7 0.1 0.014 0.017 \ 0.001

20 0.5 0.055 0.059 \ 0.001

21 2 0.187 0.193 \ 0.001

22 15 0.1 0.018 0.017 \ 0.001

23 0.5 0.059 0.059 0.156

24 2 0.199 0.203 0.062

The comparison in terms of MSPE have been made with respect to the true realizations. The smallest

overall MSPE for each case is highlighted in bold. The last column shows p values from two-sided paired

t tests comparing the overall MSPEs between the OKFD and the Sp.T. separable models
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