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Abstract
A key aim of most extreme value analyses is the estimation of the r-year return level; the wind speed, or sea-surge, or

rainfall level (for example), we might expect to see once (on average) every r years. There are compelling arguments for

working within the Bayesian setting here, not least the natural extension to prediction via the posterior predictive distri-

bution. Indeed, for practitioners the posterior predictive return level has been cited as perhaps the most useful point

summary from a Bayesian analysis of extremes, and yet little is known of the properties of this statistic. In this paper, we

attempt to assess the performance of predictive return levels relative to their estimative counterparts obtained directly from

the return level posterior distribution; in particular, we make comparisons with the return level posterior mean, mode and

95% credible upper bound. Differences between the predictive return level and standard summaries from the return level

posterior distribution, for wind speed extremes observed in the UK, motivates this work. A large scale simulation study

then reveals the superiority of the predictive return level over the other posterior summaries in many cases of practical

interest.
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1 Introduction

Estimating extremes of environmental phenomena such as

wind speed, sea-surge and rainfall plays an important role

in structural design. Models from classical extreme value

theory, such as the generalised extreme value (GEV) or

generalised Pareto (GP) distributions, give us limiting

models for the tail behaviour of such variables and provide

a general template for modelling and extrapolation. The

aim of most practical applications is the estimation of the

event we might expect to see, on average, once every

r years: the so-called r-year return level, commonly nota-

ted as zr (with estimate ẑr). Over the last three decades or

so, pragmatic solutions to circumvent departures from the

ideal of independent and identically distributed observa-

tions on extremes have been developed; see for example,

Davison and Smith (1990). Some of the most commonly-

used solutions result in sample size reduction; for example,

the use of filtering schemes to avoid issues of temporal

dependence (e.g. peaks over thresholds, or POT), or using

only those extremes from within a particular calendar unit

to avoid problems associated with seasonal variability.

Such a reduction can result in extremely wide confidence

intervals for zr—sometimes giving confidence bounds that

are implausible for the variable being studied. The aim of

some recent work, then, has been to investigate the use of

methods that maximise the number of extremes pressed

into use; see for example, Eastoe and Tawn (2012) and

Fawcett and Walshaw (2012, 2016), the latter illustrating

methods that can substantially reduce return level estima-

tion uncertainty relative to methods such as POT.

More recently, much focus has been given to the

extension, and practical application, of the theory of mul-

tivariate extremes, often motivated by the need to account

for spatial dependence between extremes. Davison et al.

(2012) provide a comprehensive coverage of the develop-

ment of models for extremes occurring spatially: again, the

aim is for the estimation of return levels, albeit on maps

over a spatial grid. The increasing sophistication of models

to address issues such as temporal dependence, seasonal

variability and trend, coupled with an increase in dimen-

sionality required of an analysis which is—for example—
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spatial in flavour, often makes inference within a maximum

likelihood setting difficult. Moreover, the complexities that

such modelling issues bring are often more naturally han-

dled within a Bayesian framework (e.g. the specification of

prior distributions for seasonal effects within a random

effects model; see for example, Fawcett and Walshaw

2006a).

The incorporation of external sources of information

through the prior distribution is an obvious element of

appeal for any analyst of extremes working with scarce

data. Also appealing is the natural extension within the

Bayesian framework to prediction; as Fawcett and Wal-

shaw (2016) discuss, an estimate of the r-year posterior

predictive return level, zr;pred, provides practitioners with a

point summary capturing estimation uncertainty. It is sur-

prising, then, that there are not more examples of Bayesian

inference for extremes in the literature. Certainly, it is our

experience that few practitioners will perform analyses

within a Bayesian setting.

Coles and Powell (1996) provide a solid review of

Bayesian inference for extremes up to that date. Since then,

Coles and Tawn (1996) and Smith and Walshaw (2003)

have investigated the merits of expertly-elicited priors

whereas Beirlant et al. (2004) and Eugenia Castellanos and

Cabras (2007) have considered objective priors for the

GEV and GP models. Various authors have used the

Bayesian paradigm to exploit meteorological structure in

their data via hierarchical models for extremes—for

example, Fawcett and Walshaw (2006a), Sang and Gelfand

(2009, 2010) and Davison et al. (2012). Smith (1999)

compares predictive inference under the Bayesian and

frequentist paradigms and Coles and Tawn (1996) give

some informal comparisons between predictive return

levels and estimates based solely on the posterior distri-

bution for zr. Fawcett and Walshaw (2006a, 2008, 2016)

demonstrate predictive inference for return levels of wind

speed and sea-surge extremes, recommending ẑr;pred as the

most convenient, and useful, representation of a return

level for practitioners. However, no published work sup-

ports this through a formal investigation into the perfor-

mance of the predictive return level. The main contribution

of this paper, then, is to explore the properties of ẑr;pred. In

particular, we focus on a comparison of the exceedance

probabilities of ẑr;pred to their intended values r�1, and the

general performance of ẑr;pred relative to other estimative

summaries obtained directly from the posterior distribution

for zr.

This paper is organised as follows. In Sect. 2 we give

some practical motivation for this work, including some

results from an analysis of wind speed extremes at a

location in the southwest of the UK. This section will

include a primer in extreme value techniques and

associated modelling procedures for readers who might be

unfamiliar with this area, with a particular focus on

recently-proposed methods for handling temporal depen-

dence; the use of Bayesian methods for extremes will be

discussed by illustration. In Sect. 3 we discuss the aims and

design of our simulation study for investigating the per-

formance of the predictive return level, followed by a

detailed discussion of our findings from this study. We

conclude with some general comments and areas for future

work in Sect. 4.

2 Practical motivation and modelling

In this section, we introduce the wind speed data we use

throughout the paper. We then give a brief overview of the

basic methods for modelling extremes on such processes,

including some general background on Bayesian sampling

and specific details relating to the posterior predictive

return level. Some results are then presented comparing

estimative and predictive return levels for our wind speed

series.

2.1 Data

Figure 1 shows boxplots, and a plot of each observation

against its lag 1 counterpart, for a series of hourly gust

wind speed maxima observed at Yeovilton in southwest

England between January 1st 2003 and December 31st

2012 (inclusive). The boxplots reveal clear seasonal vari-

ability in the wind speed extremes, and there is also sig-

nificant first-order autocorrelation (persisting above

monthly-varying high thresholds). Estimates of zr or zr;pred
based on fitting an appropriate model to the wind speed

extremes might be used to inform the design of a new

structure. For example, the British Standards Institute (BSI)

use estimates of the 50-year wind speed to produce contour

maps displaying the strength requirements for new struc-

tures. Similarly, the Office for Nuclear Regulation (ONR)

recommends that structures at nuclear sites in the UK are

built to protect against the 10,000-year return level asso-

ciated with variables to which these structures might be

vulnerable. We argue that a Bayesian approach to return

level inference can improve the estimation procedure, with

the potential to reduce estimation uncertainty (through the

incorporation of prior knowledge) and, in practical terms,

the ability to provide practitioners with a single point

summary that incorporates uncertainty due to model esti-

mation through the predictive return level.
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2.2 Statistical modelling

2.2.1 The basics

Let fXng denote a stationary sequence of random variables

with common distribution function (d.f.) F, and let

Mn ¼ maxfXng. It is typically the case that, as n ! 1,

PrðMn � xÞ � FnhðxÞ; ð1Þ

where h 2 ð0; 1� is known as the extremal index; e.g.

Leadbetter and Rootzén (1988). As h ! 0 there is

increasing dependence in the extremes of the process; for

an independent process, h ¼ 1. In practice, F is unknown,

and very small discrepancies in estimates of F obtained

from observed data can lead to rather substantial discrep-

ancies for Fnh. Initially concerned with the independent

case (i.e. h ¼ 1), classical extreme value theory sought

families of limiting models for Fn for large n. This leads to

the GEV distribution (e.g. Jenkinson 1955), with d.f.

GðyÞ ¼ exp � 1þ nðy� lÞ=1ð Þ�1=n
h i

; n 6¼ 0;

exp �exp �ðy� lÞ=1ð Þ½ �; n ¼ 0;

(
ð2Þ

defined on fy: 1þ nðy� lÞ=1[ 0g, where �1\l\1,

1[ 0 and �1\n\1 are location, scale and shape

parameters (respectively). The GEV can be used to model a

set of block maxima fMsg with block length s; the calendar
year is often used for s, giving rise to an annual maxima

analysis.

Pickands (1975) showed that for large u the distribution

of ðX � uÞjX[ u is approximately GP with d.f.

HðyÞ ¼ 1� 1þ ny=rð Þ�1=n; n 6¼ 0;
1� exp �y=r½ �; n ¼ 0;

�
ð3Þ

defined on fy: y[ 0 and ð1þ ny=rÞ[ 0g, where r ¼ 1þ
nðu� lÞ and n are the GP scale and shape parameters

(respectively). The GP distribution, being the limiting

distribution for excesses over a high threshold u, provides a

natural way of modelling extremes of time series such as

our wind speed data. Modelling extremes in this way can

be less wasteful than a block maxima approach using the

GEV, since more extremes are usually pressed into use.

Thus, in this paper we will focus on the use of the GP

distribution as a model for excesses over a high threshold.

2.2.2 Practicalities

Using the GP distribution to model threshold excesses, the

linearity of E½X � ujX[ u� in u can be exploited in a mean

residual life plot (MRL plot; see Coles 2001, Ch. 4) to help

find a suitably high threshold u for the classification of

extremes. To maximise estimation precision, Fawcett and

Walshaw (2016) suggest making use of all excesses over u,

despite the obvious temporal dependence often present.

Specifically, they propose fitting (3) by adopting one of the

following strategies:

1. Parametric modelling of dependence

As in Smith et al. (1997) and Fawcett and Walshaw

(2006a), where appropriate assume a first-order

Markov structure for the temporal evolution of

extremes over u; that is, assume the following likeli-

hood for w:

LðwÞ ¼
Yn�1

i¼1

f ðxi; xiþ1;wÞ
,Yn�1

i¼2

f ðxi;wÞ; ð4Þ

where w is a parameter vector containing marginal and

dependence parameter(s) and f, as appropriate, denotes

a joint or marginal density function. Appealing to

bivariate extreme value theory, transformation from

GP to standard Fréchet margins gives a range of

models to use for the dependence of consecutive
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Fig. 1 Boxplots (by month, left) and each observation plotted against

its lag 1 counterpart (right) for a series of hourly gust wind speed

maxima observed at Yeovilton between January 1st 2003 and

December 31st 2012 (inclusive). The blue lines in the first plot

correspond to high thresholds that have been chosen to identify

observations as extreme
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extremes, the most commonly-used being the logistic

family with d.f.:

Gðxi; xiþ1Þ ¼ exp � x
�1=a
i þ x

�1=a
iþ1

� �an o
; ð5Þ

here, independence and complete dependence are

attained when a ¼ 1 and a ! 0 respectively. Differ-

entiation of (5), with careful censoring when either one

or both of ðxi; xiþ1Þ lies sub-threshold, gives pairwise

contributions to the numerator in (4); univariate con-

tributions to the denominator are given through (3).

The polynomial relationship:

h � 0:013� 0:092aþ 1:833a2 � 0:756a3; ð6Þ

as constructed in Fawcett and Walshaw (2012) and

discussed in the Appendix, can then be used—after

estimation of w ¼ ðr; n; aÞT—to provide the fitted

distribution for the right-hand-side of (1), using (3) as a

model for Fn. Within this class of models for asymp-

totic dependence, other models can be used—for

example, the bilogistic model, which allows for

asymmetry in the dependence structure between

ðxi; xiþ1Þ through the inclusion of an additional

dependence parameter b (0\a; b\1); see Coles

(2001, Ch. 8) for more details. Indeed, Fawcett and

Walshaw (2012) suggest polynomial expressions for

the extremal index based on the fitted values of the

dependence parameters here, too.

Of course it might be that, for the dependence

structure, asymptotic independence is more appropri-

ate; that is,

v ¼ lim
z!z�

PrðXiþ1 [ zjXi [ zÞ;

where z� is the upper limit of the support of the mar-

ginal distribution, takes the value zero (in the case of

asymptotic dependence, v[ 0).1 Here, a standard time

series model such as a Gaussian ARð1Þ process can be

used in place of the models we have outlined for

consecutive variables that are asymptotically depen-

dent (a marginal transformation being used to convert

to GP form for observations exceeding the threshold).

Here, h ¼ 1, although Ancona-Navarrete and Tawn

(2000) derive penultimate approximations for hðupÞ, a
threshold-dependent extremal index with threshold up
set at the p-% quantile; for example, for an ARð1Þ
process, hðu0:95Þ � 0:711 and hðu0:99Þ � 0:855. As

with the approximation in (6), in the Appendix we also

construct approximations for hðupÞ for an ARð1Þ pro-

cess with dependence parameter A, and threshold up.

The crucial censoring device employed when either

one or both of ðxi; xiþ1Þ lies sub-threshold (explained

above in the context of the models used for asymptotic

dependence) is also used in the application of an ARð1Þ
process.

We note here that, within our description of models

for asymptotic dependence, formal tests are available

for selecting the most suitable model for first-order

dependence; see for example, Coles (2001, Ch. 8). We

also note that in both the asymptotic dependent/inde-

pendent cases it is straightforward to investigate the

merits of a higher-order dependence (e.g. by invoking

d-variate extreme value models (see for example,

Coles and Tawn 1991), or an ARðdÞ process, to model

dependence between d consecutive values in the

process).

2. Direct estimation of the extremal index

Here, initially ignore dependence and proceed by

fitting the GP distribution to all excesses over u to

approximate Fn in (1). Then estimate the extremal

index directly to adjust for extremal dependence and

hence complete the right-hand-side in (1). Fawcett and

Walshaw (2016) make various recommendations for

the extremal index estimator that should be used under

this approach, but a simulation study shows that the

estimator of Ferro and Segers (2003), given by

�h ¼ min 1;
2
PK�1

i¼1 ðTi � aÞ
n o2

ðK � 1Þ
PK�1

i¼1 ðTi � bÞðTi � cÞ

0
B@

1
CA; ð7Þ

where Ti are the K � 1 inter-arrival times between our

K threshold excesses (a ¼ b ¼ c ¼ 0 if the largest

inter-arrival time is no greater than 2, and a ¼ b ¼ 1

and c ¼ 2 if the largest inter-arrival time is greater than

2), strikes a good balance between optimising accuracy

and precision and providing an easy-to-use estimator.

In the presence of seasonal variability, Fawcett and Wal-

shaw (2016) recommend a seasonal piecewise approach to

modelling, with a unique GP model for extremes within

each season. Of course, this should only be attempted

where there is confidence that it is the same physical

mechanism generating extremes at different times of the

year, seasonal variability in the extremes arising as a result

of just a change in the scale of this mechanism. This

assumption seems reasonable for wind speeds in temperate

climates (e.g. the UK), where it is usually the same alter-

nating sequence of anticyclones and depressions leading to

most of the storms that occur throughout the year. For

example, assuming either (1) or (2) above to capture

temporal dependence, estimates of ðrm; nm; hmÞ;m ¼

1 In practice, the pair ðv; �vÞ are often considered together, with v
summarising the strength of extremal dependence when �v ¼ 1

(asymptotic dependence) and �v measuring the strength of extremal

dependence when �v\1 (and so v ¼ 0; asymptotic independence). See

Coles (2001, Ch. 8) for more details.
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1; . . .;M; might be obtained for each season m, the analysis

perhaps being simplified by assuming a common shape

parameter n or extremal index h across all seasons (where

appropriate). Anecdotal evidence in (for example) Wal-

shaw (1994) and Fawcett and Walshaw (2006a) indicates

there are no real gains to be made, in terms of return level

inference, by allowing the GP parameters to vary smoothly

through time.

Though not a feature of our data in Fig. 1, trends in

extremes can be modelled by imposing a time dependence

on the GP scale parameter, i.e. r ¼ expfb0 þ b1tg, t ¼
1; 2; . . .; where t is an indicator of time. More generally, a

dependence on covariates can be induced by writing the

parameters in the form hðXTbÞ, where h is a specified

function, b is a vector of parameters and X is a model

vector. For applications of General Additive Models

(GAMs) to extremes, see (for example) Yee and Stephen-

son (2007) and Chavez-Demoulin and Davison (2005).

2.2.3 Return levels

Inversion of the right-hand-side of (1), assuming a GP

model for threshold excesses, gives the following expres-

sion for the r-year return level:

zr ¼
uþ rn�1 k�1

u wr

� ��n�1
h i

n 6¼ 0

u� rlog k�1
u wr

� �
n ¼ 0;

(
ð8Þ

where wr ¼ 1� 1� ðrnyÞ�1
h i1=h

, ku is the rate of thresh-

old excess and ny is the (average) number of observations

per year. Under approach (1), as outlined in Sect. 2.2.2,

ðr; n; hÞ in Eq. (8) can be replaced with their maximum

likelihood estimates/Bayesian estimates to obtain estimates

of zr, with an assessment of uncertainty being made

through standard errors/posterior standard deviations and

(profile-likelihood) confidence intervals/credible intervals,

respectively, in the usual way. Under approach (2), ðr; nÞ
can be replaced with their maximum likelihood or Baye-

sian estimates and h replaced with an estimate obtained via

Eq. (7), with a bootstrap procedure as proposed in Fawcett

and Walshaw (2012) enabling the incorporation of uncer-

tainty in estimates of h into estimates of zr.

To recombine seasonally-varying parameters when

estimating return levels, assuming independence between

seasons we can solve the following for x ¼ zr:

YM
m¼1

HmðxÞnmhm ¼ 1� r�1; ð9Þ

where Hm is the GP d.f. in season m with parameter set

ðkum ; rm; nmÞ, and hm/nm are the extremal index/number of

observations in season m. Of course, as discussed earlier,

inference can be simplified if we assume a constant shape

or dependence across all seasons.

2.3 Bayesian inference for wind speed extremes

After performing investigations into the dependence

structure of our wind speed extremes, such as those

described in Fawcett and Walshaw (2006b), we conclude

that a first-order Markov structure, assuming asymptotic

dependence according to the logistic model (Eq. 5), is

appropriate (specifically, diagnostics such as the v/�v plots

as discussed in Coles (2001, Ch. 8) implied asymptotic

dependence; comparisons between the bivariate logistic

model and other models, and model-orders, did not

improve over a fit of the former to consecutive pairs of

extremes). Thus, we adopt approach (1) as outlined in Sect.

2.2.2 for handling dependence of consecutive observations.

Given the seasonal variability observed in the wind speed

extremes, and our earlier discussion in Sect. 2.2.2, we

adopt a seasonal piecewise approach to modelling.

Specifically, following discussions about the UK wind

climate in Walshaw (1994), we use the calendar month as

our seasonal unit, assuming stationarity of wind speed

extremes within each month. Here, MRL plots have been

used for the selection of monthly-varying thresholds.

Following the recommendations of Fawcett and Wal-

shaw (2016) we adopt a fully Bayesian approach to infer-

ence, using Markov chain Monte Carlo (MCMC)

techniques to draw approximate samples from the marginal

posteriors for ðrm; nm; hmÞ, m ¼ 1; . . .; 12, and hence zr
through Eq. (9). Details on MCMC techniques are now

extensively published (e.g. Gamerman and Lopes 2006);

Sect. 2.3.2 gives more specific information about the

algorithm we employ.

2.3.1 Prior specification

Generally, we work with a re-parameterised GP scale:

g ¼ logðr� nuÞ:

This re-parameterisation gives a scale that is threshold-

independent (unlike r); working with the natural logarithm

retains the positivity of this parameter in our MCMC

sampling scheme. Based on work in Fawcett and Walshaw

(2016), we adopt an informative prior specification for the

parameter vector ðgm; nm; amÞT based on observations on

wind speed extremes made at a nearby location. Specifi-

cally, we use:

ðgm; nmÞ�N24 l;Rð Þ and am �Betað10; 19Þ;

m ¼ 1; . . .; 12. The components of the mean vector l are

chosen to closely match our beliefs about what are the most

likely values of ðgm; nmÞ based on our study of wind speeds

at the nearby location; we specify values for covðgm; nmÞ
according to our beliefs about the covariances between
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these parameters at the nearby location, scaled (albeit

rather crudely) to reflect our uncertainties about differences

between monthly wind speeds at the two locations. We

choose our priors for am for similar reasons and, as is often

the case, we assume independence between the marginal

and dependence parameters. Of course, given the re-pa-

rameterisation to a threshold-independent scale parameter,

more objective priors could be used in the absence of any

such external information.

2.3.2 MCMC sampling

We set initial values for all parameters to their prior means,

using a simple Metropolis update to give successive draws

ðg½j�m ; n
½j�
m ; a

½j�
m Þ; j ¼ 1; . . .; 105;

after thinning to every tenth iteration. Within each

Metropolis step we use a random walk update to generate

candidate values for each of the parameters, tuning the

innovation variances to optimise the efficiency of our

sampler. Convergence is assessed by starting each chain at

multiple new initial values and observing the trace plots.

No formal MCMC diagnostics are employed, although

checks such as the Gelman–Rubin convergence diagnostic,

and effective sample size computations (see for example,

Gamerman and Lopes 2006), could be employed here.

Equation (6) is used to obtain a sample from the posterior

for the extremal index hm, after which a posterior sample for

zr is obtained on substitution of successive draws for the GP

parameters and the extremal index into Eq. (9).

2.3.3 Prediction

As discussed earlier, one of the advantages of a Bayesian

analysis of extremes is the natural extension to prediction

via the posterior predictive distribution. If Y denotes a

future extreme of our wind speed series, then we can write

Pr Y � yjxf g ¼
Z

W

Pr Y � yjwf gp wjxð Þdw ð10Þ

for the predictive distribution of our extremes, where x

represents past observations, w is a generic parameter

vector and pðwjxÞ is the posterior density for w. Solving

Pr Y � zr;predjx
� �

¼ 1� r�1 ð11Þ

for zr;pred therefore gives an estimate of the r-year return

level that captures uncertainty in parameter estimation.

Although (10) is analytically intractable, it can be

approximated since we have estimated the posterior dis-

tribution using MCMC. Regarding the sample

wð1Þ; . . .;wðSÞ as realisations from the stationary distribution

pðwjxÞ, we have

Pr Y � zr;predjx
� �

� 1

S

XS
j¼1

Pr Y � zr;predjw½j�
n o

; ð12Þ

which we can set equal to 1� r�1 and solve for zr;pred
using a numerical solver. In our analysis of wind speed

extremes, we have w ¼ ðgm; nm; hmÞT, m ¼ 1; . . .; 12.

2.3.4 Some results

Table 1 shows some estimative return levels for the wind

speed extremes; that is, some point summaries from the

posterior distributions for zr, for some specific r. Also

shown are summaries of the spread of these posteriors via

95% credible intervals. Accompanying these estimative

return level summaries are their predictive counterparts

ẑr;pred. Figure 2 shows plots of both ẑr and ẑr;pred over a

range of values for r (on the usual logarithmic scale for

these plots to magnify results for long-range return periods;

posterior means are shown for ẑr, along with the 95%

credible intervals). It is clear from both Table 1 and Fig. 2

that designing a structure to withstand the extremes of wind

speed as suggested by the estimative return levels could

result in under-protection (especially when using the pos-

terior mode), relative to the predictive estimates. This is

more apparent for long return periods—recall from Sect.

2.1 that the ONR in the UK currently recommends that

nuclear structures are protected against the 10,000 year

event. Indeed, although not the case here, studies often

report the predictive return level lying beyond even the

95% credible upper bound for zr; as an example, see the

second block of results in Table 1 for another wind speed

location in the Peak District of Central England.

As discussed in Fawcett and Walshaw (2016), the pre-

dictive return level estimate might be preferred since it

provides the practitioner with a single point summary that

encapsulates uncertainty in parameter estimation. How-

ever, open questions remain about the quantity zr;pred. For

example, how do exceedance probabilities of zr;pred com-

pare to the intended values r�1 (on an annual scale)? How

do these probabilities compare to those under an estimative

approach for zr? Given results in, for example, Coles and

Tawn (1996) and Fawcett and Walshaw (2016), we might

expect zr;pred to give exceedance probabilities considerably

lower than r�1; implicit in the predictive return level is the

allowance for uncertainty in parameter estimation, result-

ing in higher estimates of zr and correspondingly lower

estimates of r�1. But is this really the case, and if so, can

these discrepancies be quantified and could they result in

substantial over-protection? At the very least, practitioners

should be aware of these discrepancies, should they choose

to work with zr;pred. Are there any advantages of using

zr;pred as opposed to using some other point summary from
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the posterior for zr, such as the upper end-point of the 95%

credible interval or perhaps some other quantile? We aim

to answer these questions, and more, in the simulation

study in the next Section.

3 Simulation study

3.1 Study design

The first stage of our simulation study requires the simu-

lation of a stationary reference series yðRefÞ of length N

years with Ny observations per year, where N is very large.

We assume a first-order Markov structure, and we consider

a range of models for the dependence between neigh-

bouring extremes in yðRefÞ. Specifically, under the

assumption of asymptotic dependence we use the logistic

and bilogistic models as discussed in Sect. 2.2.2, covering a

range of temporal dependencies through specific choices

for a/ða; bÞ. To account for scenarios in which asymptotic

independence might be a more plausible assumption, we

also obtain yðRefÞ from an AR(1) process with lag 1 auto-

correlation A, again covering a range of temporal depen-

dencies through specific choices for A. Marginally, our

reference series are primarily GP-distributed with scale and

shape ðr; nÞ giving scale and shape ðr� ¼ rþ nu; n� ¼ nÞ
for excesses over some threshold u; see Coles (2001, Ch.

4). However, we also consider chains yðRefÞ from

Table 1 Posterior means, modes

and 95% credible intervals for

return levels zr , with estimates

of the corresponding predictive

return levels zr;pred

Return period (r years)

10 50 200 1000 10,000

Yeovilton (see Fig. 2)

ẑr (knots)

Post. mean 51.4 56.8 61.3 66.4 73.5

Post. mode 51.0 55.8 60.2 62.5 67.4

95% CI (47.9, 56.4) (51.4, 64.9) (54.1, 72.7) (56.9, 82.2) (60.3,96.8)

ẑr;pred (knots)

54.2 57.6 63.3 70.5 82.7

Bradfield (after Fawcett and Walshaw 2016)

ẑr (knots)

Post. mean 96.9 103.5 112.2 128.1

Post. mode 94.8 99.9 108.2 123.3 —

95% CI (95.0,98.9) (94.1, 116.1) (95.2, 125.6) (117.6, 140.3)

ẑr;pred (knots)

104.4 113.1 120.0 147.3
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Fig. 2 Means (blue) taken from the MCMC samples of the posterior distributions for return levels zr across a range of return periods r, with 95%

credible intervals (outer light blue shaded area). Also shown, in red, are corresponding estimates of the predictive return levels zr;pred
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distributions in one of the domains of attraction of the GP

distribution.

Now, at each replication ‘ in our simulation study,

‘ ¼ 1; . . .;L, we simulate a stationary series yð‘Þ of length n

years, with ny observations per year, n perhaps being typical

of what we might usually work with in terms of environ-

mental extremes. As with the reference dataset, we assume

a first-order Markov structure according to models for

asymptotic dependence and asymptotic independence, with

the same marginal assumptions as before. For each series

yð‘Þ we perform a full MCMC procedure, primarily using

objective (and, where available, conjugate) priors. For

example, for the ARð1Þ process with lag 1 autocorrelation A,
we have that yð‘Þjl; s�Nðl ¼ 0; s�1 ¼ ð1� A2Þ�1Þ. We

thus assume the conjugate prior specification

ljs�N 0;
1

cs

	 

and s�Gaðg; hÞ;

yielding

ljs; yð‘Þ �N
n�y‘

cþ nny
;

1

ðcþ nnyÞs

	 


and

sjyð‘Þ �Ga gþ nny

2
; hþ

cnny �y‘
� �2

2ðcþ nnyÞ
þ nnys

2

2

 !
;

where �y‘ and s2 are the mean and variance (respectively) of

the simulated series yð‘Þ, c ¼ 10�1 and g ¼ h ¼ 10�3. This

enables posterior inferences to be made on the autore-

gressive parameter A and hence the extremal index h via

the polynomial approximation constructed in the Ap-

pendix. An example in the case of asymptotic dependence

is where we use the logistic model with dependence

parameter a; assuming the prior a�Uð0; 1Þ, we then per-

form Metropolis–Hastings sampling, as outlined in Sect.

2.3.2, to obtain draws from the posterior for a using the

likelihood in Eq. (4), and hence for the extremal index h
via Eq. (6). In the case of asymptotic dependence/inde-

pendence we then transform the margins from standard

Fréchet/Normal, respectively, to GP with scale and shape

ðr; nÞ, before performing a full MCMC procedure on

excesses over a range of u.

The procedures outlined above yield S iterations after

burn-in to obtain approximate samples r�ð‘Þ and n�ð‘Þ,
‘ ¼ 1; . . .;L, of length S from the posterior distributions of

the GP scale and shape r� and n�, as well as approximate

samples from the posteriors of the dependence parameters

(i.e. a or A) and hence samples hð‘Þ from the posterior of the

extremal index; see Sect. 2.2.2. At each replication ‘, via

Eq. (8) we also obtain posterior samples zr
ð‘Þ from the r-

year return levels for a range of return periods r. From

these draws we can obtain the posterior mean �z
ð‘Þ
r , the

posterior mode _zð‘Þr and the posterior 95% credible interval

upper bound z
ð‘Þ
r;upper; we also obtain the predictive return

level z
ð‘Þ
r;pred via Eq. (12), essentially giving sampling dis-

tributions of length L for each of these return level sum-

maries. Defining p to be the proportion of annual maxima

in yðRefÞ exceeding each of �z
ð‘Þ
r , _zð‘Þr , z

ð‘Þ
r;upper and z

ð‘Þ
r;pred,

‘ ¼ 1; . . .;L, gives sampling distributions for p�zr , p _zr , pzr;upper
and pzr;pred , respectively. Other than the sampling distribu-

tions for each of the return level summaries themselves, of

particular interest might be comparisons between each of

the proportions p� and the intended exceedance probabili-

ties r�1 (the * subscript used here to denote generically any

one of our estimators for r�1).

3.2 Parameters in our study

In our study, we use N ¼ 105 and Ny ¼ 365:25	 24, in

line with having hourly measurements on our variable. We

use a ¼ f0:3; . . .; 0:9g for the logistic model; for the bilo-

gistic model we fix a at 0.5 and use b ¼ f0:3; . . .; 0:9g; for
the ARð1Þ process we use A ¼ f0:2; . . .; 0:8g.

Marginally, we hold r unit constant (i.e. r ¼ 1) but

consider a range of tail behaviours through the GP shape

parameter n, where n ¼ f� 0:4;� 0:1; 0; 0:1; 0:3g, yielding
r� ¼ nuþ 1 and n� ¼ n, where we use

u ¼ fu0:9; u0:95; u0:99g. We perform L ¼ 1000 replications,

within which we simulate chains yð‘Þ of length n ¼ 50

years with ny ¼ Ny; for each chain, we perform MCMC

with S ¼ 10;000 iterations after an appropriate burn-in

discard. For each combination of ðr�; n�; hÞ across all

dependence models considered, we perform small MCMC

pilot runs in a bid to select suitable values for the MCMC

tuning parameters before running the full simulation study,

aiming for acceptance rates of 20–30%.

3.3 Results

In this section we present the findings of our simulation

study, focusing on comparisons between the predictive

return level and the other summaries obtained directly from

the posterior distribution for zr. Specifically, we give

attention to the return level exceedance probabilities

associated with the different Bayesian estimators for zr, and

we look at how these compare to the intended values r�1.

We consider the cases of asymptotic dependence (Sect.

3.3.1) and independence (Sect. 3.3.2), but also the effects

of model mis-specification on return level inference when

asymptotic dependence/independence is incorrectly

assumed (Sect. 3.3.3). We investigate the effects of prior
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specification on estimates of return level exceedance

probabilities (Sect. 3.3.4), relative to those discussed in

Sects. 3.3.1 and 3.3.2; specifically, we look at the effects of

using informative priors on marginal and dependence

parameters, and the effects of mis-chosen informative

priors (unless otherwise stated, all results in other sections

lean on objective prior specifications). For information, we

investigate the performance of the predictive return level

under our approach, which uses information an all

threshold excesses, to that obtained under the commonly-

used POT approach (Sect. 3.3.5). We also assess the effects

of using chains that are drawn marginally from distribu-

tions within the domain of attraction of the GP distribution,

rather than directly from the GP distribution itself (Sect.

3.3.6). At the end of this Section we give some general

comments on the sensitivity of our comparisons between

the different estimators of r�1 to the marginal structure of

the simulated chains (Sect. 3.3.7).

3.3.1 Asymptotic dependence

One arm of the study: logistic dependence structure with
n= -- 0:4 and u= u0:95 Figure 3 shows sampling distri-

bution means, and 95% confidence intervals, for

logð1þ rp�Þ. The horizontal dotted lines are at

log2 ¼ log½Eðrp�Þ þ 1� 
 E½logð1þ rp�Þ�, according to

Jensen’s inequality, in effect giving a theoretical upper

bound to the means of our sampling distributions for

logð1þ rp�Þ. The target of each of our estimators is a

probability close to zero; also, over-estimation of these

probabilities would arise from under-estimation of the

corresponding return levels, perhaps resulting in under-

protection from a safety point-of-view if such estimates

were to be used as design parameters. Thus, over-estima-

tion of r�1 by p� might be seen as more costly than under-

estimation, but the root mean squared error (RMSE), given

by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L�1

XL
‘¼1

p
ð‘Þ
� � r�1

� �2
vuut ;

punishes under- and over-estimation equally. Thus, linear-

exponential errors—or linex errors (e.g. Zellner 1986)—

given by

exp dðp� � r�1Þ
� �

� dðp� � r�1Þ � 1; d[ 0;

can be used to impose an asymmetric error favouring

under-estimation of r�1. Table 2 therefore reports the mean

linex error (MLE) in each component of our simulation

study, along with the standard RMSE for comparison. Both

of these error measures in Table 2 accompany the esti-

mated bias for each estimator p�. For these particular

results the simulated chains display asymptotic dependence

according to the bivariate logistic model for consecutive

pairs in the process; marginally, n ¼ �0:4 and u ¼ u0:95.

The superiority of the predictive return level over the

most commonly-used posterior summary—the posterior

mean—is obvious, especially for longer return periods. For

example, Table 2 and Fig. 3 show that the predictive return

level yields exceedance probabilities pzr;pred that are

increasingly more accurate and precise as the return period

r increases, especially as the extremal dependence in the

series weakens (i.e. as a ! 1). In comparison, the return

level posterior mean is (at best) on a par with the predictive

return level, in terms of its associated exceedance proba-

bilities, when r ¼ 10; for longer return periods the bias of

these estimated exceedance probabilities is noticeably lar-

ger than those produced by the predictive return level

(increasingly so as r increases), as is our uncertainty in

these estimates. Where both the predictive return level and

the return level posterior mean lead to exceedance proba-

bilities that over-estimate r�1, there is usually a smaller

bias in pzr;pred than in p�zr . For most strengths of dependence,

and for larger return periods, the sampling distribution

means for logð1þ rp�Þ are within their range (i.e. � log 2)

when p� ¼ pzr;pred , and certainly on more occasions than

when p� ¼ p�zr . As we might expect, r�1 is often under-

estimated when using the return level posterior 95%

credible upper bound; especially for shorter-range return

periods, we might expect zr;upper to over-estimate zr,

leading to too-small values for pzr;upper . The return level

posterior mode consistently produces estimates p _zr that are

too large. These are always substantially larger than those

produced by the other three estimators, and with the largest

uncertainty, casting doubt on the value of the posterior

mode as a useful summary of the return level posterior

distribution.

As with Fig. 3, the top row of Fig. 5 shows sampling

distribution means for our four estimates of r�1, but now

across a smooth range of values for r for some fixed values

of the logistic dependence parameter. Here, we choose

a ¼ 0:3, a ¼ 0:5 and a ¼ 0:9, representing fairly strong

extremal dependence (similar to that observed in our wind

speed extremes), moderate extremal dependence and near-

independent extremes, respectively. We see that estimates

based on the return level posterior mean and the predictive

return level consistently over-estimate r�1 when a ¼ 0:3,

but with estimates based on the predictive return level

always being substantially less biased than those based on

the posterior mean, especially for longer return periods.

Interestingly, for this level of dependence estimates of r�1

based on the return level 95% credible upper bound are

closest to the intended exceedance probability, and this
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observation is supported by the results in Table 2. As the

extremal dependence weakens, we see an even closer

agreement between our estimated exceedance probabilities

based on the predictive return level and the intended

exceedance probabilities r�1, with estimates using the

return level posterior mean consistently displaying a larger

bias in our plots in Fig. 5. In agreement with the results

shown in Fig. 3, the plots in Fig. 5 show that across all

values for r
 100, estimated exceedance probabilities

based on the return level posterior mode are always most

biased, with substantial over-estimation of the exceedance

probability.

To put these results into a practical context, recall from

Sect. 2.1 that we discuss the use of the 10,000-year return

level estimate by the ONR in the UK, as a design

requirement for structures at nuclear sites. For our wind

speed data, monthly estimates (posterior means) of the

logistic dependence parameter a are around 0.3. Focusing

on the final plot in Fig. 3, and the first plot in Fig. 5, we see

the much smaller bias in estimates of r�1 produced by the

predictive return level than the return level posterior mean,

and with greater precision in the predictive estimates;

however here, for this long-range return period, the 95%

credible upper bound for zr produces the best estimate of

r�1. An over-estimate of r�1 could result in significant

under-protection (as this arises from an under-estimate of

zr), and we note here that—relative to the estimates of r�1

based on the predictive return level and return level 95%

credible upper bound—those based on the return level

posterior mean are much over-estimated (and with more

uncertainty).

Other arms of the study: main findings Here, we report

some findings from other arms of the study in which the

simulated chains displayed asymptotic dependence. Lar-

gely, the general direction of the results already reported

was replicated in other arms. For instance, sticking with the

logistic model but changing the marginal shape parameter

still resulted in return level exceedance probabilities more

in line with the intended values r�1 when using the pre-

dictive return level compared to the return level posterior

mean, with substantially smaller biases for return periods

of practical interest and much smaller values of RMSE/

MLE. As an example, with n ¼ 0:1 and a ¼ 0:3 or 0.5,

biases incurred by p�zr were always larger than those
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Fig. 3 Sampling distribution means (bullets) and 95% confidence

intervals (vertical lines, running between the sampling distribution 2.5

and 97.5% quantiles) for logð1þ rp�Þ, using (1) direct summaries

from the return level posterior distribution (blue; solid ¼ posterior

mean, dashed ¼ posterior mode, dot-dashed ¼ posterior 95%

credible upper bound) and (2) the posterior predictive return level

(red). Here, the simulated data are constructed with asymptotic

dependence according to a bivariate logistic model with dependence

a. The horizontal dotted line is at log2, representing the maximum of

E½logð1þ rp�Þ�. Marginally, n ¼ �0:4 and u ¼ u0:95
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incurred by pzr;pred (around five times larger for

r ¼ 10; 000), with consistently narrower 95% confidence

intervals; when a ¼ 0:9, the outperformance of zr;pred rel-

ative to �zr was even more marked. One difference to note is

in estimates of r�1 using the return level posterior mode:

for simulated chains with increasingly heavy tails (e.g.

when positive values for n were used), we observed smaller

biases than those reported in Figs. 3, 5 and Table 2 (for

which n ¼ �0:4), perhaps indicating that this summary

would be more useful for very positively skewed data.

Switching to the bilogistic model for consecutive

extremes, allowing for asymmetry in the dependence

structure, did not result in noticeable deviations from the

results discussed so far, for combinations of dependence

parameters a and b resulting in similar levels of observed

extremal dependence as given by the dependence param-

eter a in the logistic model. This might suggest a robust-

ness of our findings across different dependence structures

within an overall framework of asymptotic dependence.

Similarly, our results were consistent across the other two

threshold levels considered (u0:9/u0:99, the 90/99% marginal

quantiles respectively).

3.3.2 Asymptotic independence

One arm of the study: ARð1Þ with n= -- 0:4 and
u= u0:95 Figure 4 shows the same information as Fig. 3

but now for the case of asymptotic independence where our

simulated chains are ARð1Þ processes with lag 1

Table 2 Estimated biases (	100), root mean squared errors (RMSE, 	100) and mean linex errors (MLE, 	100), for each of our four estimators of

the return level exceedance probability r�1

The top part of the table summarises results when our simulated series exhibit asymptotic dependence according to the logistic model with

dependence parameter a; the bottom part when our simulated series exhibit asymptotic independence according to an ARð1Þ process with lag 1

autocorrelation A. Marginally, we have n ¼ �0:4 and u ¼ u0:95. Values in bold or bold italics are those which are the smallest in each component

of the study
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autocorrelation A; as in Sect. 3.3.1, marginally n ¼ �0:4

and u ¼ u0:95. The bottom half of Table 2 reports the

estimated bias, RMSE and MLE for our four estimators of

r�1. The superiority of the predictive return level relative to

estimates obtained using the return level posterior mean, is

obvious, and more apparent than in the previous section

when considering series with asymptotic dependence. For

example, the sampling distribution means for logð1þ rp�Þ
are all within their range (i.e. � log 2) when p� ¼ pzr;pred ,

regardless of the return period r and strength of dependence

A; this is not the case when p� ¼ p�zr . As in the case of

asymptotic dependence, we also note greater precision in

estimates based on the predictive return level, with nar-

rower 95% confidence intervals (substantially so for larger

return periods). The results reported in the bottom half of

Table 2 confirm this, with smaller biases typically being

observed for pzr;pred than for p�zr and much smaller values of

RMSE/MLE. As in Sect. 3.3.1, estimates based on the

return level posterior mode perform most poorly, with

estimates based on the return level 95% credible upper

bound seemingly performing well (though not as well as

those based on the predictive return level) for some large

values of r. These results are supported by the plots in the

bottom row of Fig. 5, in which we see estimates of the

intended exceedance probability r�1 based on the predic-

tive return level being consistently less biased than all the

others, for the three levels of dependence we focus upon

(A ¼ 0:7, A ¼ 0:5 and A ¼ 0:3, representing reasonably

strong, moderate and weak dependence, respectively).

Other arms of the study: main findings We report similar

findings for other arms of the study in which the simulated

chains display asymptotic independence according to an

ARð1Þ process, but with different values of n or different

thresholds being used. In all cases, estimates of the inten-

ded exceedance probability r�1 had smallest bias, and

RMSE/MLE, when based on the predictive return level, and

especially so for long return periods. Estimates based on

the return level posterior mean and posterior mode were

consistently too large.

3.3.3 Mis-specification of dependence

We now investigate the effects of mis-specifying the

dependence structure on our four estimates of the return

level exceedance probability r�1. Specifically, at each

iteration ‘, ‘ ¼ 1; . . .; 1000, we simulate y‘ from an ARð1Þ
process with lag 1 autocorrelation A; inference then
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Fig. 4 Sampling distribution means (bullets) and 95% confidence

intervals (vertical lines, running between the sampling distribution

2.5% and 97.5% quantiles) for logð1þ rp�Þ, using (1) direct

summaries from the return level posterior distribution (blue;

solid ¼ posterior mean, dashed ¼ posterior mode, dot-

dashed ¼ posterior 95% credible upper bound) and (2) the posterior

predictive return level (red). Here, the simulated data are constructed

with asymptotic independence according to an ARð1Þ process with lag
1 autocorrelation A. The horizontal dotted line is at log2, representing

the maximum of E½logð1þ rp�Þ�. Marginally, n ¼ �0:4 and u ¼ u0:95
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proceeds by assuming asymptotic dependence and fitting

the logistic/bilogistic model to consecutive pairs in the

process, and then obtaining estimates of r�1 using p�zr , p _zr ,

pzr;upper and pzr;pred in the way we describe in Sect. 3.1.

Conversely, we also simulate y‘ with asymptotic depen-

dence via the logistic/bilogistic models, inference then

proceeding assuming asymptotic independence through the

fitting of an ARð1Þ process. In reality, the precise form of

dependence structure is unknown; diagnostic checks such

as the v=�v-plots discussed in Coles (2001, Ch. 8) can be

used to help assess the nature of the dependence present,

although their interpretation can be difficult. Thus, the aim

of this part of the simulation study is to investigate our four

estimators of the return level exceedance probability under

an incorrect specification of dependence structure, some-

thing that could easily occur in an analysis of real data

when we attempt to press all threshold excesses into use.

Figure 6 (top row) shows plots similar to those in Fig. 5.

The simulated data exhibit asymptotic independence

through an ARð1Þ structure with lag 1 autocorrelation A,

but asymptotic dependence is incorrectly assumed with

dependence structure for consecutive pairs according to the

logistic model with parameter a. Compared to the results

shown in the bottom row of plots in Fig. 5, in which the

correct form of dependence was assumed, we see a larger

bias in estimates of r�1 with pzr;pred across all values of lag 1

autocorrelation A; however, the predictive return level still

clearly outperforms both the posterior mean and mode in

terms of the associated exceedance probabilities it yields

and their proximity to the intended values r�1. Although

not reported here, values of the RMSE/MLE were consis-

tently smaller for pzr;pred than the other three estimates

associated with the return level posterior distribution. For

the opposite case of mis-specification in terms of the

dependence structure—that is, when the data were simu-

lated to exhibit asymptotic dependence but an ARð1Þ pro-
cess was assumed—we observed an increase in the bias of

estimated exceedance probabilities associated with the

return level posterior mean, mode and 95% confidence

upper bound, but with the predictive return level yielding

estimates of r�1 close to the intended values.
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Fig. 5 Sampling distribution means for estimates of the return level

exceedance probabilities r�1, using (1) direct summaries from the

return level posterior distribution (blue; solid ¼ posterior mean,

dashed ¼ posterior mode, dot-dashed ¼ posterior 95% credible

upper bound), and (2) the posterior predictive return level (red).

Simulated data constructed with: asymptotic dependence according to

a bivariate logistic model with dependence a (top row); asymptotic

independence according to an ARð1Þ process with lag 1 autocorre-

lation A (bottom row). The black dashed line represents the target

exceedance probability r�1. Marginally, n ¼ �0:4 and u ¼ u0:95
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3.3.4 Prior specification

All results discussed so far have assumed an objective (and,

where possible, conjugate) prior specification for both

dependence and marginal components of our simulated

series. However, in keeping with our wind speed data

analysis in Sect. 2.3, for some arms of the study we also

adopt informative priors. For example, consider the case of

asymptotic dependence under the logistic model with

dependence parameter a. To emulate our approach to prior

specification in Sect. 2.3.1, at each replication ‘ a pair of

stationary series ðy‘; yy‘Þ is simulated, each series in this

pair being drawn from the same GP distribution marginally

and having the same dependence structure. Maximum

likelihood estimates of the marginal and dependence

parameters for yy‘, and the corresponding elements of their

covariance matrix, are then used to inform the prior spec-

ification for the marginal and dependence parameters for

y‘. Specifically, we assume that ðg� ¼ logðr� �
n�uÞ; n�Þ�N2ðl;RÞ and a�Betaða; bÞ, with sensible

choices for l, R, a and b based on our analysis of yy‘ (as

opposed to an objective specification using independent

N(0, v) priors for g� and n� with large v, and a U(0, 1) prior

for a, as used in Sect. 3.3.1).

Using informative priors based on yy‘ usually resulted in

no obvious change in the accuracy of the return level

exceedance probabilities obtained using our four Bayesian

estimates of return levels, relative to those obtained under

an assumption of objective priors (although occasionally

noticeable reductions in bias were observed under the

informative prior specification). However, as expected,

estimates were appreciably more precise, with much

smaller values of RMSE/MLE for estimates obtained using

all four of our Bayesian posterior summaries (particularly

so for those based on the predictive return level). As

examples, when a ¼ 0:5 using the logistic model for series

with asymptotic dependence, we see from Table 2 that: (1)

the bias, RMSE and MLE (	100) for r�1 ¼ 1=1000 are

0.379, 1.871 and 0.018, respectively, for estimates based on

the predictive return level—assuming informative priors

based on yy gives corresponding values of 0.371, 1.342 and

0.009; (2) the bias, RMSE and MLE (	100) for r�1 ¼

A= 0.3A= 0.5A= 0.7
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Fig. 6 Sampling distribution means for estimates of the return level

exceedance probabilities r�1, using (1) direct summaries from the

return level posterior distribution (blue; solid ¼ posterior mean,

dashed ¼ posterior mode, dot-dashed ¼ posterior 95% credible

upper bound), and (2) the posterior predictive return level (red).

Simulated data constructed with: asymptotic independence according

to an ARð1Þ process with lag 1 autocorrelation A, but when fitting,

asymptotic dependence assumed according to a bivariate logistic

model (top row); asymptotic dependence according to a bivariate

logistic model with dependence a, but dependence filtered using runs

declustering with cluster termination interval j ¼ 5 and j ¼ 20

(bottom row; results using j ¼ 20 giving the higher curve each time).

Marginally, n ¼ �0:4 and u ¼ u0:95
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1=10;000 are 0.134, 1.049 and 0.006, respectively, for

estimates based on the return level posterior mean—as-

suming informative priors based on yy‘ gives correspond-

ing values of 0.037, 0.447 and 0.001.

To investigate the effects of a mis-chosen prior, for

some arms of the study (‘strong’ dependence only—i.e.

a ¼ 0:3 and A ¼ 0:9 for the logistic model and ARð1Þ
processes respectively) we also allow l, R, a and b to be

informed by a maximum likelihood analysis of simulated

chains yz‘i , i ¼ 1; . . .; 5; unlike yy‘, these chains have

means/variances and temporal dependencies which are

(increasingly) dissimilar to those in y‘. Specifically, we set:

�yz‘i ¼ ð0:5iþ 1Þ 	 �y‘ and

s:d: ðyz‘i Þ ¼ ð� 0:2iþ 1:1Þ 	 s:d: ðy‘Þ

and, depending on whether the simulated chains exhibit

asymptotic dependence or asymptotic independence,

ayz‘
i

¼ 0:1iþ 0:4 or

Ayz‘
i
¼ �0:1iþ 0:8

respectively, meaning that the series yz‘5 is the most dis-

similar to y‘ (hence leading to the most ill-informed prior

specification). Informative priors based on yz‘ resulted in

some increases in the estimated bias, RMSE and MLE of

our return level exceedance probabilities, relative to those

based on yy‘, especially when using the most dissimilar

series on which to base our prior specifications (yz‘4 and

yz‘5 ). Here, biases in estimates of r�1 were notably larger

than those using the objective priors or the informative

priors based on yy‘ (but least so for estimates based on the

predictive return level and for the larger return periods),

and values of the RMSE/MLE were always larger than

those using informative priors based on yy‘ (again, least so
for estimates based on the predictive return level, espe-

cially for return periods r ¼ 1000 and r ¼ 10;000). Infor-

mative priors based on the least dissimilar series (yz‘1 and

yz‘2 ) yielded very similar results to those based on yy‘.

3.3.5 Comparisons with POT

In this part of the simulation study we investigate the

performance of our four methods for estimating the return

level exceedance probability r�1 when a standard declus-

tering scheme is employed to filter out a set of independent

threshold excesses. Under a POT procedure, a cluster of

extremes over some high threshold u is deemed to have

terminated once at least j consecutive sub-threshold

observations have been made; from each cluster identified

in this way the maximum is then carried forward into the

analysis, the GP distribution being used as a model for the

set of cluster peak excesses. Although in practice this is a

commonly-used procedure to circumvent the problems of

temporal dependence, as Fawcett and Walshaw

(2012, 2016) discuss, not only is it wasteful of data (often

leading to infeasibly wide credible intervals for quantities

such as return levels) but parameter and return level esti-

mates can be extremely sensitive to the choice of j. Thus,
we do not recommend a POT analysis at all, and we favour

an approach as detailed in Sect. 2.2.2 of this paper and used

so far in this simulation study. However, we include some

results based on declustered data here for information and

comparison purposes.

Figure 6 (bottom row) shows sampling distribution

means for our estimates of r�1 across a range of return

periods r, having declustered our simulated series y‘ at

each iteration ‘ ¼ 1; . . .; 1000 using j ¼ 5 and j ¼ 20. As

before, in separate arms of the study we simulate series

exhibiting asymptotic dependence and asymptotic inde-

pendence. However, since the aim is to eliminate depen-

dence between extremes, we assume the extremal index

h � 1 for our cluster peak excesses, and we bypass the

stage in our analysis where we estimate the dependence

parameter(s). Thus, the aim here is to compare results

based on declustered data to those from Sects. 3.3.1 and

3.3.2, in which all threshold excesses were used and the

dependence structure estimated; we can also investigate the

sensitivity of our estimators of r�1 to the choice of

declustering interval j. Regardless of the declustering

interval used, the predictive return level consistently yields

exceedance probabilities closer to the intended r�1 across

the full range of return periods considered, with both the

posterior means and modes resulting in relatively over-

estimated exceedance probabilities. When declustering, all

posterior summaries yield exceedance probabilities that are

more biased than those obtained having pressed all

extremes into use; see the top row of Fig. 5 for a

comparison.

3.3.6 Marginal domain of attraction assumption

So far, our simulated chains have always been drawn from

a GP distribution marginally, which is the limiting distri-

bution for excesses over a high threshold. In practice, our

threshold excesses will in fact arise from a distribution in

one of the domains of attraction (DoA) of the GP distri-

bution; see for example, Coles (2001, Ch. 3). Thus, for both

asymptotically dependent and independent extremes we

also simulate chains y‘ with Weibull, Fréchet and Uniform

margins (representing, respectively, models from the

Gumbel, Fréchet and Weibull DoA). Switching from GP
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margins to distributions in one of the DoA of the GP dis-

tribution did not seem to have any real effect on our esti-

mators for r�1, relative to the results shown in Figs. 3, 4

and 5 and Table 2. Similarly, switching between the three

DoA did not reveal anything over-and-above the differ-

ences we observed when changing the value of the shape

parameter under a GP marginal assumption (see the ‘‘Other

arms of the study: main findings’’ discussions in Sects.

3.3.1, 3.3.2). For example, after what we might reasonably

expect from sampling variability, the results shown in

Table 2 were in line with analogous results using chains

that had been marginally transformed to Uniform (Table 2

shows results for n ¼ �0:4, giving Weibull-type tails with

a finite upper endpoint).

3.3.7 Marginal structure: general remarks

The results reported in Table 2 and Figs. 3, 4, 5 and 6

compare our four return level summaries for simulated

chains with relatively short, bounded tails (the GP mar-

ginals here have n ¼ �0:4). As we discuss throughout

Sect. 3.3, similar findings were obtained across most other

parameters in our study design. However, comparisons in

some arms of the simulation study were clearly being

influenced by the marginal shape parameter n. As might

be expected, for much heavier-tailed margins the resulting

posterior distribution for zr was substantially more right-

skewed, resulting in larger biases for estimates of r�1

based on the return level posterior mean and the return

level 95% credible upper bound. For these arms of the

study, estimates of r�1 based on the posterior mode (p _zr )

out-performed the other estimative summaries, although

estimates based on the predictive return level seemed to

be generally less biased and with smallest error. Gener-

ally, as the value of n increases the performance of p�zr
and pzr;upper deteriorate in terms of estimated bias, RMSE

and MLE, but pzr;pred retains the accuracy and precision

observed in Table 2 and Figs. 3, 4, 5 and 6. Comparisons

between our estimators do not appear to be sensitive to

the scale of the underlying GP distribution. Although the

GP marginal scale r is held unit constant, as discussed in

Sect. 3.2 excesses over u have a threshold- and shape-

dependent scale r�. For arms of the study in which n was

constant but r� varied, we did not see any real departure

from the general findings reported in Table 2 and Figs. 3,

4, 5 and 6. In short: comparisons between our estimators

are more sensitive to shape than to scale of the underlying

GP distribution, but estimates of r�1 produced by the

predictive return level seem relatively robust to changes

in scale and shape.

4 Conclusions

4.1 General summary

In this paper we have discussed the merits of a Bayesian

approach to inference on environmental extremes, and the

natural extension to prediction such an inferential frame-

work offers. In our experience, practitioners often find the

standard reporting of return level estimates—a point esti-

mate with some measure of uncertainty (e.g. a maximum

likelihood estimate with standard error/95% confidence

interval, or, within a Bayesian setting, the posterior mean

and standard deviation/95% credible interval)—difficult to

work with in practice. Certainly, as we discuss in this

paper, standard approaches such as POT analyses can yield

estimates of return levels with extremely and unrealisti-

cally wide confidence/credible intervals, sometimes giving

bounds that lie beyond the physical constraints of the

variable being studied. Although Bayesian credible inter-

vals have a more intuitive interpretation than frequentist

confidence intervals (i.e. providing the stated probability

coverage), our experience suggests that practitioners would

prefer to work with a single point summary in which

estimation uncertainty has been properly accounted for. For

this reason, Fawcett and Walshaw (2016) recommend the

posterior predictive return level estimate as the most

appropriate posterior summary to feed back to

practitioners.

We build on earlier work presented in Fawcett and

Walshaw (2016) in which an estimation strategy that

attempts to maximise precision is outlined. Our recom-

mended approach is to model all excesses over a threshold

with the GP distribution, accounting for temporal depen-

dence through estimation of the extremal index. Where

extremes vary seasonally, we recommend a piecewise

seasonal approach to modelling (where appropriate),

pressing threshold excesses from all seasons into use; other

features, such as trends, can be simply captured through

linear modelling of the GP scale parameter. We advocate a

Bayesian approach to analysis, in which precision can be

further increased through the specification of informative

prior distributions for the GP parameters and from which

predictive inference is neatly handled.

The main contribution of our work in this paper is to

assess the performance of the posterior predictive return

level relative to what we refer to as estimative return

levels—standard point estimates taken directly from the

return level posterior distribution. We do this through a

large scale simulation study, in which data with various

dependence structures, and tail behaviours, are simulated.

We compare posterior predictive inferences for return

levels to their estimative counterparts within the
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recommended modelling framework in Fawcett and Wal-

shaw (2016), in which all excesses are modelled, but also

within a more commonly-adopted POT modelling proce-

dure. For a range of return periods r, on a fine scale, and

across a range of temporal dependencies in the simulated

data, we compare exceedance probabilities for return level

summaries—specifically, the return level posterior mean,

posterior mode, and posterior 95% credible upper bound—

to those obtained from the posterior predictive return level,

and to their expected values r�1. Our general findings are

that, for most commonly-observed levels of temporal

dependence and for both asymptotically dependent and

independent extremes, the posterior predictive return level

has exceedance probabilities much more in line with what

we would expect to see than do the standard estimative

posterior summaries (e.g. posterior mean/mode). In our

simulation study, the posterior predictive return level also

yields estimates of exceedance probabilities with much

higher precision than the corresponding exceedance prob-

abilities obtained from the estimative summaries. We

believe the findings presented throughout Sect. 3 of this

paper lend firm justification for the adoption of the poste-

rior predictive return level as the best return level summary

for practitioners, whether the modelling framework of

Fawcett and Walshaw (2016) is adopted or a simple POT

analysis is used. Further, if all excesses are used as in

Fawcett and Walshaw (2016), but an incorrect assumption

regarding the dependence structure is made, the posterior

predictive return level still yields exceedance probabilities

more in-line with what we would expect, compared to the

other estimative summaries. The superiority of the pre-

dictive return level also seems to hold under informative

prior specification/mis-specification, and across different

marginal assumptions.

4.2 Further thoughts

One of the practical advantages of the posterior predictive

return level, as we discuss throughout this paper, is the

incorporation of estimation uncertainty into a single point

estimate, perhaps to be used to aid structural design.

Although the results of our simulation study in Sect. 3.3 go

some way to indicate the superiority of the predictive

return level relative to more standard point summaries from

the return level posterior distribution, it might be useful for

such point estimates to take account of the consequences of

error. Indeed, in a machine learning or Bayesian decision

theoretic context (e.g. Berger 2010), the aim is to choose

the decision function dðxÞ which minimises the a posteriori

expected loss for some model parameter w:

Z

W
Lðw; dðxÞÞpðwjxÞdw: ð13Þ

In Eq. (13), L represent a loss function: Lðw; dðxÞÞ ¼
ðw� dðxÞÞ2 gives squared errors, although as we discuss in

Sect. 3.3.1, for estimates of r�1 we might rather use linex

errors since over- and under-estimation might not be

equally serious. In a predictive setting, it is necessary to

have a predictive version of Eq. (13). Conditioning on the

observed (x) and averaging over the unknowns (e.g.

parameter(s) w and future observations y), gives
Z

Y

Lðy; dðxÞÞfYðyjxÞdy; ð14Þ

where fYðyjxÞ is the posterior predictive density for y. The

optimal decision dðxÞ can then be seen as the action that

minimises this predictive a posteriori expected loss. From

an inference point-of-view, dðxÞ is a function whose output

ŵ is an estimate of w.
Obviously, this sort of approach for formally taking

account of the consequences of error in our estimators for

r�1 will be highly sensitive to the choice of loss function.

For example, it can be shown that the posterior mean

minimises Eq. (13) when L returns squared errors, and the

posterior median when L returns absolute errors. Although

we outline a rationale for using linex errors for our prob-

lem, to penalise over-estimation of r�1 more heavily than

under-estimation, we feel that more work is needed to

determine the suitability of linex errors here, and more

generally a linex loss function for use in minimising

Eqs. (13) and (14).

The contribution of parameter uncertainty to the pre-

dictive return level can be estimated by comparing ẑr;pred to

what we call naı̈ve return level estimates. Figure 7 shows,

for one arm of our simulation study, sampling distribution

means for the predictive return level alongside sampling

distribution means for this naı̈ve estimator. Here, at each

replication in the simulation study, rather than account for

parameter uncertainty via Eq. (12) we assume that each of

our marginal and dependence parameters are fixed at their

posterior means; we substitute these means directly into

Eq. (8) (of course, we could fix the model parameters at

some other posterior summary, or indeed their likelihood

modes). Thus, the difference between the solid and dashed

lines in the plots in Fig. 7 can be seen as the average

contribution to zr;pred of the implicit allowance for uncer-

tainty in parameter estimation. The results are shown for

asymptotically dependent chains simulated according to a

bivariate logistic model for consecutive pairs in the series,

for three strengths of dependence; however, discrepancies

of similar magnitude were observed for other arms of the

study (although for heavier-tailed chains the naı̈ve
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estimator was more sensitive to the choice of posterior

summary used to fix the model parameters). In a real data

context, plots of �zr against ẑr;pred can be used to reveal such

contributions to the predictive return level.
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Appendix

Here, we present some results from a simulation study to

support the discussion in part (1) of Sect. 2.2.2 and the

main simulation study in Sect. 3. The aim is to establish a

simple polynomial approximation to the extremal index h
dependent on the parameter(s) in a model being used to

capture first-order temporal dependence. For example, in

the case of asymptotic dependence, we might assume a

logistic model with dependence parameter a (see Eq. 5) for

consecutive extremes in the process. Then, given an esti-

mate of this dependence parameter, we require an associ-

ated estimate of the extremal index—along with estimated

marginal parameters from the GP distribution—to estimate

return levels via Eqs. (8) or (9).

Define (arbitrarily) xn such that FnðxnÞ ¼ 1=2 in Eq. (1).

Then, using Eq. (1), we can define

hn ¼ � logPr maxfX1; . . .;Xng� xnð Þ
log 2

; ð15Þ

and so hn ! h as n ! 1. We can use Eq. (15) to inves-

tigate the relationship between h and a in the logistic

model. Specifically, we simulate N first-order Markov

chains, each of length n, with logistic dependence a gov-

erning the strength of temporal dependence present in the

extremes of the process; then the probability in the

numerator of Eq. (15) is estimated as the proportion of

simulated chains whose maximum does not exceed xn. The

first plot in Fig. 8 shows the results of such simulations for

a ¼ f0:05; 0:10; . . .; 1:00g, using N ¼ n ¼ 10; 000; the

other two plots show corresponding results when using the

bilogistic model (see Sect. 2.2.2) and another model

occasionally used for bivariate extremes [the negative

logistic model with dependence parameter q; see for

example, Coles (2001, Ch. 8)]. The smooth line in each of

these plots shows a fitted polynomial, giving that in Eq. (6)

for the logistic model and as used in the simulation study in

Sect. 3. In the case of the logistic model, and as a check,

the simulated values and resulting fitted polynomial are

compared to limiting values obtained via a computationally

intensive Fourier transform method outlined in Smith

(1992). We use polynomial relationships rather than

smoothing splines (for example) because they are extre-

mely simple, and as the comparisons to Smith’s results

show, are more than adequate.

For the asymptotically independent case we use a

Gaussian ARð1Þ process in our simulation study in Sect. 3,

with lag 1 autocorrelation A. To establish a polynomial
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approximation for the extremal index in this setting, for

each value A ¼ f0:05; 0:10; . . .; 0:95g we simulate N ¼
10;000 ARð1Þ processes, each of length n ¼ 10;000. Then,

using the approach of Ferro and Segers (2003) (which we

discuss in part (2) of Sect. 2.2.2 of this paper), our

approximation to the extremal index h for each value of A

is the sampling distribution mean of �h obtained via Eq. (7).

Of course, Gaussian ARð1Þ processes exhibit asymptotic

independence and thus h ¼ 1 regardless of the value of A.

However, as Ancona-Navarrete and Tawn (2000) discuss,

such processes might exhibit dependence above thresholds

of practical interest, resulting in estimators such as that in

Eq. (7) estimating hðupÞ (rather than h itself), a threshold-

based penultimate approximation to h. Figure 9 shows the

results of this simulation study for three thresholds up,

where we use p ¼ 0:9, 0.95 and 0.99. Again, simple

polynomials are fitted to the points in each plot to obtain

approximations to hðupÞ depending on the value of A.
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