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Abstract
Hand, foot, and mouth disease (HFMD) is a global infectious disease resulting in millions of cases and even hundreds of

deaths. Although a newly developed formalin-inactivated EV71 (FI-EV71) vaccine is effective against EV71, which is a

major pathogen for HFMD, no vaccine against HFMD itself has yet been developed. Therefore, establishing a sensitive and

accurate early warning system for HFMD is important. The early warning model for HFMD in the China Infectious

Disease Automated-alert and Response System combines control chart and spatial statistics models to detect spatiotem-

poral abnormal aggregations of morbidity. However, that type of early warning for HFMD just involves retrospective

analysis. In this study, we apply a Bayesian belief network (BBN) to estimate the increased risk of death and severe HFMD

in the next month based on pathogen detection and environmental factors. Hunan province, one of the regions with the

highest prevalence of HFMD in China, was selected as the study area. The results showed that compared with the

traditional early warning model for HFMD, the proposed method can achieve a very high performance evaluation (the

average AUC tests were more than 0.92). The model is also simple and easy to operate. Once the structure of the BBN is

established, the increased risk of death and severe HFMD in the next month can be estimated based on any one node in the

BBN.

Keywords Hand, foot, and mouth disease � Early warning � Spatiotemporal abnormal aggregation � Moving percentile

method � Bayesian belief network

1 Introduction

Hand, foot, and mouth disease (HFMD) is a viral illness

common in infants and children younger than 5 years old.

Since the first HFMD case was reported in New Zealand in

1957, many parts of the world have reported epidemics of

HFMD. The Asia Pacific Region is one of the major

HFMD-endemic regions. Most countries there have

reported HFMD epidemics in the past 30 years, including

Australia (Burry et al. 1968), Japan (Daisuke and Masahiro

2011), South Korea (Ryu et al. 2010), Malaysia (Chua and

Kasri 2011), Singapore (Ang et al. 2009), Thailand

(Puenpa et al. 2011), Vietnam (Tu et al. 2007), and China
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(Xing et al. 2014a, b). Although HFMD is a mild viral

infection, children under 5 years of age are particularly

susceptible to the neurologic complications of this infec-

tion, which can result in encephalitis and death. During

2008–2013, 9,048,244 probable cases of HFMD were

reported to the Chinese Center for Disease Control and

Prevention (China CDC), of which 355,563 (3.9%) were

laboratory confirmed, 92,503 (1.02%) were severe, and

2,707 (0.03%) were fatal (Xing et al. 2014a, b). Pathogen

detection results have shown that EV71 causes approxi-

mately 50% of cases of HFMD in China and that it is a

significant cause of morbidity and mortality (Pallansch and

Roos 2007; Lin et al. 2002). Currently, there is no available

vaccine against HFMD, even though a newly developed

formalin-inactivated EV71 (FI-EV71) vaccine has been

tested in clinical trials and has shown efficacy against

EV71 (Tsou et al. 2015). Therefore, the early detection of

the aberration of infectious disease occurrence and the

estimated disease outbreak risk is significant for slowing

down the epidemic spread and reducing the morbidity and

death caused by the disease.

Some methods for forecasting disease outbreaks of

HFMD have been successfully applied in some countries

and regions. In Japan, an index calculated from the number

of cases per week per sentinel medical institution was used

as a disease warning threshold. If the index in an area

exceeds the critical value for the onset of an epidemic and

continues until the index in that area is lower than the

critical value for the end of an epidemic, it can predict that

there is an unusual aberration of HFMD cases (Murakami

et al. 2004). In China, a nationwide web-based automated

system for outbreak detection and rapid response was

developed in 2008. In the China Infectious Disease Auto-

mated-alert and Response System (CIDARS), the fixed-

threshold detection method, the temporal detection method,

and the spatial detection method were applied to detect

three disease aberrations (Yang et al. 2011). HFMD

surveillance has been included in CIDARS. In some

regions of China with a high HFMD prevalence,

researchers have proposed many statistical models to esti-

mate local development trends of HFMD. These research

results give support for local early warnings of HFMD. In

Shandong province, a conditional logistic regression was

used to explore an early warning index of HFMD death

based on clinical treatment, past medical history, clinical

symptoms, and signs of ill children (Liu et al. 2013). A

hybrid model combining a seasonal autoregressive inte-

grated moving average (ARIMA) model and a nonlinear

autoregressive neural network (NARNN) was proposed to

predict the expected incidence of cases in Shenzhen city

from December 2012 to May 2013 (Yu et al. 2014). In

Dalian city, a negative binomial regression model was used

to estimate the weekly baseline number of HFMD cases

and identified the optimal alerting threshold between dif-

ferent tested threshold values during the epidemic and non-

epidemic year (An et al. 2016). Most of these early warning

models use historical case data to forecast an imminent

outbreak; in fact, these models use only retrospective

research (Edmond et al. 2011). The operation of these

models also closely depends on the data integrity of the risk

factor variables. However, in many cases, the risk factor

variables are difficult to collect completely in time.

A Bayesian belief network (BBN) is a graphical model

for probabilistic relationships among a set of variables; it

can express the mutual dependencies between variables in

terms of quality and quantity, and it provides a good

explanation for knowledge representation and reasoning

(Holický et al. 2013). This method can also produce

uncertainty estimates even with missing values. Because of

its simplicity and soundness, BBN has been used in many

fields, especially in medical and industrial diagnosis (Liao

et al. 2010; Liu et al. 2012). So this study establishes an

early warning model based on BBN to predict the outbreak

risk of severe HFMD and death. Hunan province, one of

the regions with the highest prevalence of HFMD in China,

was selected as the study area. According to previous

study, children under 5 years old accounted for most of the

HFMD cases (Deng et al. 2013), and EV71 predominated

in laboratory-confirmed cases, accounting for 45% of mild,

80% of severe, and 93% of fatal cases (Pallansch and Roos

2007; Lin et al. 2002). In order to analysis the potential

seasonal drivers of HFMD, social-economic factors such as

gross domestic product and gross regional product were

also put into account (Xing et al. 2014a, b). Meanwhile, a

variety of studies identified that meteorological factors

including temperature, rainfall, relative humidity, air

pressure, and hours of sunshine all have a strong associa-

tion of the prevalence of HFMD (Deng et al. 2013; Xing

et al. 2014a, b; Yu et al. 2014). Therefore, in the proposed

model, the monthly pathogen detection ratio, demographic

factors, socioeconomic factors, and monthly meteorologi-

cal factors are all taken into account to estimate the out-

break risk of death and severe HFMD in the next month.

Based on the characteristic of BBN, once the structure is

established and parameters are learned, the risk of death

and sever HFMD can be estimated based on any one node

(factor) in the BBN, which can handle the situation where

the data of some variables are unavailable.

2 Data and method

2.1 Study area

In this study, Hunan, a province in south central China, was

selected as the study area. Hunan is located south of the
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middle course of the Yangtze River and south of Lake

Dongting, situated between the 108�470–114�160 east lon-
gitudes and the 24�380–30�080 north latitudes. It covers an

area of 211,800 square kilometers and is divided into 14

cities. Mountains and hills occupy more than 80% of the

area, with plains comprising less than 20% of the whole

province. Hunan’s climate is subtropical, where sunshine

and rainfall are both abundant concentrated. In spring, the

temperature would fluctuate in a wide range, whereas in

summer and autumn, it is pretty hot and humid, and in

winter it’s usually cool and damp. According to the

meteorological data, the annual average temperature of

Hunan is around 16–19 degree centigrade, with average

38 �C (37–46 �F) in January and average 27–30 �C
(81–86 �F) in July. The average annual precipitation is

1200–1700 mm and has an uneven distribution (informa-

tion from Wikipedia article, ‘‘Hunan’’) (Fig. 1).

In terms of the socioeconomic condition, according to

the statistical yearbook of Hunan province, during the

study period, there were around 66,380,000 people living

in Hunan with a GDP of 32903.71 RMB per capita, and the

people living in cities accounted for 46.65% of the total

population. Since its geographical environment advantages

and rich natural resources, the development of Hunan’s

economy is good.

During 2009–2013, 547,027 HFMD cases were reported

in Hunan. The 5-year prevalence reached 167.83 per

100,000 persons. There were 5,638 severe cases (1.03% of

all cases). There were 296 cases of death, a mortality rate

of 0.05%. The annual HFMD prevalence varied signifi-

cantly over these 5 years, ranging from 287.32 (in 2012) to

54.31 per 100,000 persons (in 2009). According to the

results of previous studies, there was also a significant

difference in HFMD prevalence among the 14 cities in

Hunan. The HFMD prevalence in Hunan also showed a

seasonal trend in 2009–2013; April to July and September

to November are the peak months of HFMD in Hunan

(Yang et al. 2015). Hence, a clustering method for panel

data was used to classify experimental scenarios based on

(1) the monthly rate, severity, and mortality of HFMD in

the all cities during the study period; (2) the monthly

increase in the rate, severity, and mortality in the all cities

during the study period; and (3) the rate of change of the

rate, severity, and mortality increment in the all cities

during the study period. Four experimental scenarios

included a risk assessment of death and severe HFMD in

the next month (1) in high-incidence cities during a peak

period, (2) in high-incidence cities during a non-peak

period, (3) in low-incidence cities during a peak period,

and (4) in low-incidence cities during a non-peak period

(Fig. 2).

2.2 Data sources

The period of the study was from January 1, 2011, to

December 31, 2013, and the study unit was a city. The

study included the rate, severity, and mortality of HFMD

and the rate of pathogen EV71 detection in mild cases.

People older than 5 years of age were ignored in the study,

because HFMD mainly infects children under the age of

five. In addition, considering that prekindergarten children

and kindergarten students have different routes of exposure

to pathogen EV71, we separately calculated the rates of

pathogen EV71 detection in mild cases for children

0–3 years old and children 3–5 years old. All HFMD cases

and pathogen detection laboratory data were collected from

the local CDC.

The environmental factors in this study were meteoro-

logical and socioeconomic. In accordance with previous

studies (Yang et al. 2015; Gao et al. 2014), the meteoro-

logical data mainly included the average monthly air

pressure, maximum monthly wind speed, average monthly

wind speed, average monthly relative humidity, minimum

monthly relative humidity, and average monthly tempera-

ture, monthly temperature difference, monthly rainfall, and

monthly sunshine. The meteorological data of all cities

were obtained from the China Meteorological Data Sharing

Service System and were interpolated by the inverse dis-

tance weighted interpolation method, based on the data of

the 756 stations nationwide. The socioeconomic factors

included the density of the susceptible population (i.e.,

children under the age of five) and urbanization levels.

These data were extracted from the Hunan Statistical

Yearbook. ArcGIS 10.0 was used to store the geographic

data and display the results of this study.

2.3 Methodology

The framework for establishing an early warning model

based on BBN to predict the outbreak risk of severe HFMD

and death in Hunan comprises three parts: (1) defining the

risk level; (2) building the BBN construct; and (3) calcu-

lating the joint probability of the target variable in the BBN

and assessing the outbreak risk. In this study, the BBN

software tool used was BN PowerSoft (Cheng and Greiner

1999).

2.3.1 Classification of risk level

In this study, we introduced the dynamic control

chart percentile method (Yang et al. 2014; Xiong et al.

2013) to determine the risk level of HFMD outbreak; this

model had been successfully used in CIDARS. In the

dynamic control chart percentile method, to account for the
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stability of the data, the most recent one-month period is

used as the current observation period. The corresponding

historical period included the same one-month period, the

preceding one-month period, and the following 1-month

period over the preceding 3 years of historical data. The

current observation period and historical data block were

dynamically moved forward month by month.

The reported death and severe incidence in the nine

blocks of historical data were first arranged in ascending

order, X1;X2; . . .;Xd; . . .;Xn n ¼ 9ð Þ. Then the percentile of

the nine blocks of historical data was set as the indicator of

potential aberration; p is a specified percentile of historical

data, and XP can be calculated as follows:

d ¼ 1þ ðn� 1Þp ð1Þ
XP ¼ X d½ �ð Þ þ X d þ 1½ �ð Þ � X d½ �ð Þð Þ d � d½ �ð Þ ð2Þ

([] means take the integer of the number.)

Finally, the method defined the outbreak risk level of

severe HFMD and death by comparing the reported death

and severe incidence in the current 1-month period to

different control limits of the corresponding historical

period at the city level. That is, the risk was regarded as

high and the risk level could be set at 2 if the actual

incidence exceeded the upper control limit (P80). If the

actual incidence was greater than P50 and less than P80, the

risk was moderate, and the risk level was set as 1. If the

actual incidence was less than P50, the risk level was set at

0. The selection of these threshold values takes the ones

used in CIDARS as the standard.

2.3.2 Building the BBN construct

A Bayesian network is represented by BN ¼ N;A;Hh i,
where N;Ah iis a directed acyclic graph (DAG)—each node

n 2 N represents a domain variable (corresponding perhaps

to a database attribute), and each arc a 2 A between nodes

represents a probabilistic dependency between the associ-

ated nodes. Associated with each node ni 2 N is a condi-

tional probability distribution (CPtable), collectively

represented by H ¼ hif g, which quantifies how much a

node depends on its parents (see Pearl 1988). In this study,

the BBN is presented composed of a set of nodes, repre-

senting the risk variables of severe HFMD and death, and a

set of edges, representing the probabilistic causal depen-

dence among the variables. Before inputting the variables

into the BBN, continuous variables were discretized by the

entropy method. In the entropy method, the minimum

entropy value in a numerical attribute is chosen as a split

Fig. 1 Location of Hunan province in China
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point, and then the classified results of the intervals

recursively and eventually gain discretized results.

In the BBN, the nodes with edges directing into them are

called ‘‘child’’ nodes, and the nodes from which the edges

depart are called ‘‘parent’’ nodes. That is, if there is an

edge from node N1 to another node N2, N1 is called the

parent of N2. Nodes without arches directing into them are

called ‘‘root’’ nodes. Therefore, a proper BBN network

construct is very significant for assessing a future increase

in the outbreak risk of severe HFMD and death, based on

the BBN.

Generally, three methods—the expert knowledge

method, the network structure learning algorithm, and an

integration of the above two methods—are applied to build

the Bayesian belief network. The expert knowledge method

builds a network according to experts’ comments and the

results of literature reviews, while the network structure

learning algorithm is based on the independence test pro-

posed by Cheng and Greiner (1999). The network structure

learning algorithm has three phases: drafting, thickening,

and thinning (Liao et al. 2017). In the first phase, the

algorithm computes the mutual information of each pair of

nodes as a measure of closeness, and it creates a draft based

on this information. In the second phase, the algorithm

adds arcs when the pairs of nodes cannot be d-separated.

The node X is said to be d-separated from node Y if there is

no active undirected path between X and Y. The result of

the second phase is an independence map (I-map) of the

underlying dependency model. In the third phase, if an

open path separate from the current arc remains, it will be

brought from the set of directed arcs joining vertices. Then

the independence of the corresponding block set that

blocks each open path between these two nodes by a set of

minimum number of nodes is tested. The arc will be

removed from the I-map if the two nodes of the arc can be

d-separated. The result of the third phase is the minimal

I-map. In the study, we applied an integration of the expert

knowledge method and the network structure learning

algorithm to construct the network.

2.3.3 Assessing the outbreak risk of severe HFMD
and death

After the structure of Bayesian network was constructed

(i.e., determining what depends on what), the next step is

learning the parameters (i.e., the strength of these depen-

dencies, as encoded by the entries in CPtables). For each

BBN node, a conditional probability formula or table,

which represents the probabilities of each value of the node

given the conditions of its parents, is supplied. Meanwhile,

the distributions of the parents can be calculated given the

values of their children (Cooper and Herskovits 1992).

Fig. 2 High-incidence and low-incidence cities in Hunan (Xiangxi is not included due to low data quality)
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After the conditional probability table is obtained, the joint

probability distributions can be decomposed into local

probability distributions (Liu et al. 2012). Therefore, in the

study, the assessment of the outbreak risk of severe HFMD

and death was performed simply by calculating the con-

ditional probabilities among the variables, based on their

cause and consequence relationships. The conditional

probability distribution in the BBN can be expressed as

follows:

P X1 ¼ x1; . . .;Xn ¼ xnð Þ ¼ P x1; . . .; xnð Þ

¼
Yn

i¼1

P xijParents Xið Þð Þ ð3Þ

where P x1; . . .; xnð Þ refers to the probability of a specific

combination of values x1; . . .; xn from the set of variables

X1; . . .;Xn, where Parent (Xi) refers to the set of X
0
is

immediate parent nodes. Thus, P xijParents Xið Þð Þ reflects

the conditional probability, which is related to the node Xi

based on its parent nodes (Liao et al. 2010).

3 Results

3.1 BBN structure for assessing the outbreak risk
of severe HFMD and death

As described in Sect. 2.1, four BBN structures were

applied to assess the risk of death and severe HFMD in the

next month in different experimental scenarios. Before

entering the data into the models, all the data used in this

research should be discretized. Table 1 shows the results of

each variable classification attribute in the BBN. The

experimental scenarios included (1) in high-incidence

cities during a peak period, (2) in high-incidence cities

during a non-peak period, (3) in low-incidence cities during

a peak period, and (4) in low-incidence cities during a non-

peak period. In each experimental scenario, 70% of the

surveillance data was used to build the early warning

model for the outbreak of severe HFMD and death in the

next month. Thirty percent of the surveillance data was

applied to evaluate the accuracy of the model.

Figure 3 illustrates the network structures of the BBN

used to estimate the outbreak risk of severe HFMD and

death in the next month in the four experimental scenarios.

In each network structure, we selected the variable

‘‘Risklevel’’ as the parent node of the various factors. All

independent variables were represented by nodes; the arcs

between the nodes indicated the relationships of the vari-

ables. As seen in Fig. 3, the effect on the outbreak risk of

severe HFMD and death in the next month varied among

the selected factors. However, in all the experimental

scenarios, there were some common risk factors for this

outbreak risk. The common risk factors included the total

current monthly rates of pathogen EV71 detection in mild

cases (the variable ‘‘EV71_rate’’), the current monthly

rates of pathogen EV71 detection for children aged

0–3 years (the variable ‘‘EV71_rate_1’’) and aged

3–5 years (also the variable ‘‘EV71_rate_1’’). In addition

to the influence of the spread of pathogen EV71, some

meteorological variables, including the current maximum

monthly wind speed (the variable ‘‘MaxWinSpeed’’), the

average monthly temperature (the variable ‘‘AveTemp’’),

and the average monthly relative humidity (the variable

‘‘AveReHumidy’’), affected the outbreak risk of severe

HFMD and death in the next month in the high-incidence

cities. During the peak period, the outbreak risk of severe

HFMD and death in the next month in all cities was also

related to the current monthly temperature and the maxi-

mum monthly wind speed. Nevertheless, the meteorologi-

cal factors that had a direct impact on the outbreak risk of

severe HFMD and death in the next month during the non-

peak time were changed into the current monthly rainfall

(the variable ‘‘Rainfall’’) and the average monthly relative

humidity. The influence of all socioeconomic factors on the

outbreak risk of severe HFMD and death in the next month

also varied in the different experimental scenarios.

In our BBN structures, the total current monthly rates of

pathogen EV71 detection in mild cases was one of risk

factors with the most direct influence on the outbreak risk

of severe HFMD and death in the next month. Different

from how they influenced this outbreak risk, socioeco-

nomic factors mainly affected the total current monthly

rates of pathogen EV71 detection in mild cases in all the

experimental scenarios. However, meteorological factors

also had an impact on the spread of pathogen EV71 in

some experimental scenarios. For example, the total cur-

rent monthly rates of pathogen EV71 detection in mild

cases in the high-incidence cities were directly related to

the current monthly rainfall. During the peak period, the

current maximum monthly wind speed also influenced the

total current monthly rates of pathogen EV71 detection in

mild cases.

3.2 Outbreak risk assessment of severe HFMD
and death in Hunan

As we constructed four BBN network structures for these

four study areas, a probabilistic inference reflecting the

dependence relationships between the risk level of severe

HFMD and death and the relevant risk factors was essen-

tial. Table 2 pinpoints the conditional probability distri-

bution of the four BBNs for estimating the HFMD outbreak

risk in the four study areas. It is obvious that there are two

dominant aspects.
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First, the primary variables that impact the risk levels

differ to a great extent in these four different areas, and

various probabilities are inferred by the Bayesian posterior

probability estimation. In other words, there are various

probabilities of the different values of the variables in

estimating the risk levels (i.e., the three risk levels 0, 1, 2).

In high-incidence cities during the peak period, as in the

BBN structure described above, the variables that most

notably produce an effect on the risk level of severe HFMD

and death are the rate of pathogen EV71 detection in mild

cases for children 0–5 and 3–5 years old, the urbanization

level, the average wind speed, the maximum wind speed,

the average relative humidity, the temperature difference,

the average temperature, the average air pressure, and

sunshine hours. The probabilistic inference results of all

these relative variables linked in the above structure vary

because of their different influences on the HFMD risk

level. For instance, when the value of the rate of pathogen

EV71 detection in mild cases for children aged 3–5 is in

class one (\ 0.05), the risk levels for 0, 1, and 2 are 0.422,

0.305, and 0.388, respectively, so we can conclude that the

probability of no risk in this area is greater. However, when

the values of the rate of pathogen EV71 detection for

children 3–5 years old increase, the probabilistic inference

results of all risk level are reduced, which means that the

higher the rate of pathogen EV71 detection for children

3–5 years old, the lower the risk forecast for any risk level.

A similar situation occurs with other influencing vari-

ables, such as urbanization level, while the average tem-

perature variable is just the opposite. When the value of

this variable is in class 5 ([ 27.321), the probability

experiences a peak at the risk level of 0, with 0.462, which

means that the areas with these temperatures are safe. In

high-incidence cities during a non-peak period, the vari-

ables that most notably produce an effect on the risk level

of severe HFMD and death are the rate of pathogen EV71

detection in mild cases for children aged 0–3 and 3–5, the

urbanization level, the average relative humidity, and

rainfall. Similarly, the probabilistic inference results of

these relative variables may vary. If the rainfall is in class 4

(3.157–5.044), the probability will be 0.545 at a risk level

of 2, so these places should be aware of the corresponding

protective measures taken by CDC or governments. In low-

incidence cities during a peak period, the variables are the

rate of pathogen EV71 detection in mild cases for children

0–5 and 3–5 years old, the average temperature, and the

average air pressure. In low-incidence cities during a non-

peak period, the variables are the rate of pathogen EV71

detection in mild cases for children aged 0–5, the rate of

pathogen EV71 detection in mild cases for children aged

3–5 years, the urbanization level, the average wind speed,

the average relative humidity, the temperature difference,

the average air pressure, and rainfall.Ta
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Secondly, the same variable can have a different impact

on different areas. In Table 2, we can see that the rate of

pathogen EV71 detection in mild cases for children aged

0–5 has an impact in all four study areas, while other

variables impact just some areas. For example, rainfall has

effects on both high-incidence and low-incidence cities

during a non-peak period. In addition, in all areas, the

density of the susceptible population and the minimum

relative humidity have no relationship with the outbreak

risk assessment of severe HFMD and death, so they have

been ignored in Table 2. Otherwise, the probabilities of the

same variable will vary in different areas.

Take a factor, Average Relative Humidity (ARH), as an

example: For high-incidence cities during peak period area,

when the value of ARH falls in ‘‘70.850–73.994’’, it

belongs to the ‘‘class 2’’ according to the discretization

results in Table 1. Then, we can utilize Table 2, which

shows that the probability of risk level 0 is 0.333, the

probability of risk level 1 is 0.176, and the probability of

risk level 2 is 0.175, to predict the most probable risk level

of HFMD outbreak in high-incidence cities during peak is

0. Meanwhile, for high-incidence cities during non-peak

period area, when the ARH value is in class 2

(47.044–53.535), the probability of risk level 2, 0.455, is

the highest. Other variables experience the same situation.

3.3 Accuracy analysis

The model performance was evaluated with receiver

operating characteristic (ROC) analysis, which has been

widely used in evaluating the predictive accuracy of a

binary classifier. A typical ROC curve plots the true posi-

tive rate (sensitivity) against the false positive rate (1-

specificity) for the entire range of possible thresholds, thus

providing a unified representation for assessing the overall

model performance. The area under the curve (AUC) can

be used as a single performance measure to decide whether

the model prediction is better than random (0.5). A perfect

model will yield an AUC value of 1. Training AUC values

is fairly high across models and is higher than the testing

AUC values, as anticipated. The testing AUC values,

which demonstrate the model’s actual predictive powers,

suggest whether the model predictions are better than

random.

Because the ROC curve applies only to binary classi-

fiers, we need to reclassify the HFMD outbreak risk level

(0 or 1 or 2) into two classes. Situation 1: we define

level = 0 as the class that means there is no HFMD out-

break, and we merge level = 1 and level = 2 as the other

class to represent the outbreak. Situation 2: we merge

level = 0 and level = 1 to signify that the epidemic is not

Fig. 3 BBN structures a in high-incidence cities during a peak period, b in high-incidence cities during a non-peak period, c in low-incidence

cities during a peak period, and d in low-incidence cities during a non-peak period
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serious, and level = 2 is a representation that the HFMD

outbreak risk is very high.

As can be seen from Fig. 4, which clearly illustrates the

performance of the BBN models applied in the four

experimental scenarios, in terms of 10 times the average

testing AUC value, no matter how the risk levels were

reclassified, the models achieved the best predictive accu-

racy in the first scenario (high-incidence cities during a

peak period), where the average testing AUC value was

0.9636 for reclassification 1 and 0.9139 for reclassification

2. This was followed by the third scenario (low-incidence

cities during a peak period) and the fourth scenario (low-

incidence cities during a non-peak period). The second

scenario (high-incidence cities during a non-peak period)

produced a comparatively low AUC value of 0.7285, which

was also actually a good performance value. In terms of the

standard deviation, which illustrates the stability of the

predictive precision, the same order can be found, in which

the most stable predictive accuracy applied to the first

scenario, followed by the third and fourth scenarios; the

second scenario produced the highest standard deviation

value, and its predictive accuracy was the most unstable.

A conclusion that can be drawn from the analysis above

is that whether the situation involves a peak or non-peak

period has a crucial influence on the performance of the

BBN Model. In a peak period, the model’s AUC value is

high and the SD value is low, which means an outstanding

predictive performance. Otherwise, in a non-peak period,

the model achieves a comparatively low AUC value and a

high SD value, which means that the performance of the

model is not as good, and the predictive result is very

unstable.

Meanwhile, as a comparison with other predictive

models, we also applied the logistic regression model,

which is a strong scientific method utilizing one or more

variables to forecast another dependent variable value. We

also applied the rough set method, proposed by Pawlak in

1982, which has been used successfully in diagnosis and

outcome prediction, for the same data of high-incidence

cities during a peak period. In order to verify the accuracy

and reliability of the different models, we process bootstrap

resampling for 30 times, producing 30 sets of experimental

data, and input them to each model and evaluated the

predictive results through the ROC curve. The ROC curves

Fig. 4 ROC curve for belief network models applied in four experimental scenarios
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for each model’s average prediction of 30 replicate runs,

with a mean test AUC value and corresponding standard

deviation, are provided in Fig. 5.

In the lateral view, no matter how the risk level was

reclassified, the Bayesian network model achieved a very

high performance evaluation (the average AUC test was

0.9628 for situation 1 andwas 0.9234 for situation 2) andwas

better than the logistic regression model (where the average

AUC test was 0.8679 for situation 1 and 0.8342 for situation

2) and the rough setmethod (where the averageAUC testwas

0.606 for situation 1 and 0.5841 for situation 2). In the lon-

gitudinal view, the stability of the Bayesian network was

good (the standard deviation was 0.0382 for situation 1 and

was 0.0656 for situation 2), regardless of the classification of

the disease, and the logistic regression model (where the

standard deviation was 0.1166 for situation 1 andwas 0.1019

for situation 2) and the rough set method (where the standard

deviation was 0.1079 for situation 1 and was 0.0879 for

situation 2) did not have this advantage.

4 Discussion and conclusions

In this study, an early warning model was developed to

predict the outbreak risk of severe HFMD and death in

Hunan Province, China. In accordance with the temporal

spatial epidemic trend of HFMD in Hunan between January

2010 and December 2013, the study was divided into four

experimental scenarios. In each scenario, the proposed

model applied probabilistic inference based on a BBN

structure to assess the outbreak risk of severe HFMD and

death in the next month. In four BBN structures, the rela-

tionships among outbreak risk, the pathogen detection rate,

demographics, and socioeconomic and meteorological

factors varied. ROC analysis was applied to evaluate the

model’s performance. The results showed that the perfor-

mance of the proposed method was better than those of the

rough set algorithm and the logistic regression.

Different from previous early warningmodels for HFMD,

the proposed model used a network to express the mutual

dependencies between the outbreak risk of severe HFMD

and death and the risk factors. This clear representation of

variable relationships will help us to understand and explore

the causes of outbreaks of severe HFMD and death. More

importantly, this model canmake uncertainty estimates even

with missing values. Although the proposed method was

tested only in Hunan, it can be used as an early warning tool

to solve HFMD outbreak prevention and control problems in

any region, since BBN can provide a simple and unified

method to address different problems in different areas.

However, there are also some limitations. The BBN in

the proposed model can only deal with categorical data, so

all continuous data needs to be discretized before being

input to the model. This data discretization may lead to

information loss. Moreover, while an accurate network is

significant to the accuracy of the model, it is difficult to

choose suitable network construction algorithms. Because

the transmission path of HFMD in different areas varied, it

Fig. 5 ROC curve for Bayesian belief network model, logistic regression model, and rough set method prediction averaged on each of 30

replicate runs. (The 1:1 line indicates the condition if the prediction is completely out of random chance. (AUC = 0.5))
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was also hard to include all the risk factors in the study.

Therefore, in a later study, we should take more risk factors

of HFMD outbreaks into account.
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