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Abstract
Operation of reservoirs is a fundamental issue in water resource management. We herein investigate well-posedness of an

optimal control problem for irrigation water intake from a reservoir in an irrigation scheme, the water dynamics of which is

modeled with stochastic differential equations. A prototype irrigation scheme is being developed in an arid region to

harvest flash floods as a source of water. The Hamilton–Jacobi–Bellman (HJB) equation governing the value function is

analyzed in the framework of viscosity solutions. The uniqueness of the value function, which is a viscosity solution to the

HJB equation, is demonstrated with a mathematical proof of a comparison theorem. It is also shown that there exists such a

viscosity solution. Then, an approximate value function is obtained as a numerical solution to the HJB equation. The

optimal control strategy derived from the approximate value function is summarized in terms of rule curves to be presented

to the operator of the irrigation scheme.

Keywords Optimal control problem � Value function � Hamilton–Jacobi–Bellman equation � Viscosity solution �
Irrigation scheme � Reservoir operation

1 Introduction

A stock-and-flow structure is a key concept in economics

as well as in water resource management. Stocks of water

in reservoirs, such as dams, aquifers, lakes, ponds, and

tanks, regulate flows of water, which are intrinsically

uneven and uncertain (Borgomeo et al. 2014; Zhang and

Babovic 2011). Stochastic processes and control theories

have been applied to water resource management problems

in both the design and operation stages (Leroux and Martin

2016; Cui and Schreider 2009; Zhao et al. 2014; Pelak and

Porporato 2016; Basinger et al. 2010). An extreme case is

being studied in a harsh environment, where a small

reservoir is constructed to collect ephemeral water flows

from flash floods in order to fully irrigate perennial plants,

as shown in Fig. 1 (Unami et al. 2015). The structure

harvesting flash floods consists of a gutter cutting across a

16 m wide valley bottom and a conveyance channel of

60 m long to guide the water to the reservoir. The con-

veyance channel is equipped with a spillway to release

excess backwater from the reservoir. Operation of the

reservoir involves an optimal control problem considering

the inherently stochastic occurrence of flash floods, while

the operator can make decisions on the intake flow rate

from the reservoir for irrigation. The entire irrigation

scheme, which consists of a reservoir with flash flood

harvesting facilities and a command area of plant cultiva-

tion, is so small that the decision maker has perfect

information. The water dynamics in the irrigation

scheme is modeled as a set of stochastic differential

equations (SDEs) representing the water balance in the

reservoir as well as the uncertain occurrence and intensity

of flash floods and droughts. The performance index to be

minimized is the expected deficiency of water in the future.

In the present paper, we attempt to establish well-posed-

ness for such an optimal control problem with mathemat-

ical rigor, which is lacking in earlier practical papers on

relevant topics (Unami et al. 2013, 2015; Sharifi et al.

2016).
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In the context of dynamics programming, the Hamilton–

Jacobi–Bellman (HJB) equation governs the value function

from which an optimal control strategy is derived for a

time-continuous problem. The versatility of the HJB

equation is evident as its industrial applications are so vast,

covering the fields of population dynamics (Guo and Sun

2005), financial engineering (Junca 2012; Leach et al.

2007; Bo et al. 2013), aircraft flight mechanics (Almgren

and Tourin 2015), climate risk assessment (Chaumont et al.

2006), and energy systems (Sieniutycz 2009, 2012, 2015).

The notion of viscosity solutions is a powerful vehicle for

approaching the HJB equation, which is nonlinear and

degenerate in most cases, and comparison theorems are

fundamental in discussing uniqueness and stability of

solutions (Fleming and Soner 2006; Kawohl and Kutev

2007; Ishii 1987; Ishii and Lions 1990; Crandall and Lions

1983). Peron’s method is a standard means of constructing

viscosity solutions (Crandall et al. 1992). However, the

HJB equation derived from the optimal control problem

considered herein encounters some difficulties. The com-

parison theorems known thus far are not applicable because

of irregular conditions imposed when the reservoir is

empty or full. Therefore, special auxiliary functions are

sought to establish a comparison theorem, which guaran-

tees the uniqueness of a continuous viscosity solution to the

HJB equation with a relaxed Hamiltonian. Another theo-

rem is also proven to show the existence of the viscosity

solution as well as to justify a numerical approach,

embedding a space of weak solutions into the space of

viscosity solutions, in a manner analogous to a previous

study dealing with one-dimensional stationary Hamilton–

Jacobi equations of first order (Guermond and Popov

2008).

An approximate value function obtained as a numerical

solution to the HJB equation yields the optimal control

strategy in the real world. Concurrent use of the finite

difference and finite element methods is a promising dis-

cretization technique for nonlinear and degenerate partial

differential operators. The optimal control strategy is the

maximizer of a characteristic function depending on the

value function. Assuming that the control strategy derived

from the approximate value function is optimal, it is

summarized in terms of rule curves for reservoir operation

(Senga 1991; Khan et al. 2012; Moghaddasi et al. 2013),

and a simplified chart is presented to the operator for actual

implementation. This is an innovative demonstration test in

the prototype irrigation scheme based on a rigorous

mathematical foundation.

As usual, the notations C, C1, C2, and C1 shall be used

for the sets of continuous and continuously differentiable

functions.

Fig. 1 Panoramic view of irrigation scheme with reservoir for harvesting flash floods
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2 Formulation of the optimal control
problem

A stochastic model is developed for water dynamics in the

irrigation scheme. Then, an optimal control problem is

formulated with a performance index to be minimized, in

order to deduce the optimal control strategy for irrigation

water intake from the reservoir harvesting flash floods.

2.1 Stochastic model for water dynamics

The dynamics of the storage volume Xt of the reservoir at

time t is governed by the water balance equation

dXt ¼ Qin � Qout � uð Þdt ð1Þ

where Qin is the inflow rate of the harvested flash flood,

which is equal to the runoff discharge of the flash flood

after subtracting the rate of overflow from the spillway,

Qout is the outflow rate due to evaporation and seepage, and

u is the intake flow rate as a control variable constrained in

a set U of admissible controls. A virtual variable Yt referred

to as the water flow index is considered to model the

dynamics of Qin and Qout. The one-dimensional Langevin

equation is assumed to govern Yt as

dYt ¼ �rYtdt þ
ffiffiffiffiffiffi

2D
p

dBt ð2Þ

where r is a reversion coefficient, D is a diffusion coeffi-

cient, and Bt is the standard Brownian motion (Øksendal

2007). The advantages of using this virtual model (2) are

capability in comprehensively representing the stochastic

flow rate dynamics of flash floods as well as the occurrence

of dry spells. A non-decreasing function QinðyÞ is assumed

to define the relationship between Yt and Qin, while Xt and

Yt determine Qout with another function Qoutðx; yÞ. The

storage volume Xt of the reservoir is assumed to almost

surely not exceed its capacity V , because of the well-

functioning spillway. It is also trivial that Xt cannot

decrease when it is equal to 0. Consequently, the domain of

Xt is restricted to the closed interval 0;V½ �, as is common in

most reservoir operation problems. Consequently, (1) is

rewritten as

dXt ¼ a Xt; Yt; uð Þdt ð3Þ

with

a x; y; uð Þ ¼
0 ^ Qin yð Þ � Qout x; yð Þ � uð Þ if x ¼ V

Qin yð Þ � Qout x; yð Þ � u if 0\x\V

0 _ Qin yð Þ � Qout x; yð Þ � uð Þ if x ¼ 0

8

<

:

ð4Þ

where ^ and _ represent the minimum and the maximum,

respectively. A target flow rate Qtrg of irrigation water as a

function of the time t is set within the maximum capacity

of the intake facility, e.g., a pump. Depending on the fea-

sibility of intake from the reservoir, the admissible set U is

prescribed as

U ¼ 0;Qtrg

� �

if Xt [ 0 or Qtrg �Qin � Qout

0f g if Xt ¼ 0 and Qtrg [Qin � Qout

�

: ð5Þ

2.2 Performance index and HJB equation

The current time s is assumed to be in an irrigation period

0; T½ Þ (T\1). The performance index Juðs; x; yÞ at time

t ¼ s with storage volume Xs ¼ x and water flow index

Ys ¼ y is defined as

Ju s; x; yð Þ ¼ Es;x;y

Z T

s

f t; u t;Xt; Ytð Þ; Ytð Þdt þ V � XT

� �

ð6Þ

where Es;x;y represents the expectation with respect to the

probability law of the stochastic processes starting at point

s; x; yð Þ, and f is a bounded non-negative penalty function

evaluating the departure of the actual intake flow rate u

from the target Qtrg. The value XT at the end of the irri-

gation period is the bequest to be maximized. The choice of

u is optimized to attain the infimum of Ju s; x; yð Þ. It is

assumed that u is a Markov control, the choice of which at

time t depends only on the current values of Xt and Yt. The

infimum U ¼ U s; x; yð Þ of Ju s; x; yð Þ exists because f � 0

and 0�V � XT �V , and is referred to as the value func-

tion. The control u� attaining U is referred to as the optimal

control. Therefore,

U s; x; yð Þ ¼ Ju
�
s; x; yð Þ

¼ Es;x;y

Z T

s

f t; u� t;Xt; Ytð Þ; Yð Þdt þ V � XT

� �

:

ð7Þ

As mentioned in Chapters IV and V of Fleming and Soner

(2006) including the verification theorem, the HJB equation

oU
os

þ a x; y; u�ð Þ oU
ox

� ry
oU
oy

þ D
o2U
oy2

þ f s; u�; yð Þ

¼ inf
u2U

oU
os

þ a x; y; uð Þ oU
ox

� ry
oU
oy

þ D
o2U
oy2

þ f s; u; yð Þ
� �

¼ 0

ð8Þ

governs the value function U and the optimal control u� for
s; x; yð Þ in the set G ¼ 0; T½ Þ � 0;Vð Þ � R, with the ter-

minal condition

UðT ; x; yÞ ¼ V � x: ð9Þ

No boundary condition is imposed in the x-direction,

because of the special treatment specified in (4). That value

Stochastic Environmental Research and Risk Assessment (2018) 32:3169–3182 3171

123



function U should be understood as a viscosity solution to

the HJB Eq. (8), which is degenerating. The optimal con-

trol u� at any point in G is obtained as

u� ¼ argmax
u2U

wðuÞ ð10Þ

where w is the characteristic function defined by

wðuÞ ¼ wðu; t; x; y;UÞ ¼ u
oU
ox

� f ðt; u; yÞ: ð11Þ

Then, the HJB equation (8) is rewritten as

oU
os

þ DQ
oU
ox

� ry
oU
oy

þ D
o2U
oy2

� wðu�Þ ¼ 0 ð12Þ

where

DQ ¼
u� ^ Qin � Qoutð Þ if x ¼ V

Qin � Qoutð Þ if 0\x\V

u� _ Qin � Qoutð Þ if x ¼ 0

8

<

:

: ð13Þ

A penalty function is chosen as

f ðt; u; yÞ ¼ cðyÞ if u 6¼ QtrgðtÞ
0 if u ¼ QtrgðtÞ

�

ð14Þ

where c is a positive bounded weight depending on the

water flow index y, which is assumed here to be

c ¼ Qtrg

1þ exp y� Kð Þ ð15Þ

where K is a model parameter, which will be determined

from physical data observed in the real world (Sect. 5). For

a feasible operational flow rate Qp of the intake facility, the

irrigation period 0; T½ Þ is divided into N þ 1 non-irrigation

hours I2i ¼ t2i; t2iþ1½ Þ and N irrigating hours

I2iþ1 ¼ t2iþ1; t2iþ2½ Þ, where Qtrg ¼ 0 and Qtrg ¼ Qp,

respectively, so that 0; T½ Þ ¼ t0; t2Nþ1½ Þ ¼ [
2N

k¼0
Ik. This par-

tition of the entire irrigation period into a sequence of time

intervals reduces the original problem into a sequence of

the HJB equations with Hamiltonians independent of time.

Under the above-mentioned conditions, it is easy to verify

the boundedness of U:

Remark 1 For any s 2 0; T½ Þ,
0�U� T � sð Þmax Qp

	 


þ V : ð16Þ

When Qtrg ¼ Qp, (10) and (11) are reduced to

u� ¼

0 if Qp

oU
ox

\� c

8u 2 U if Qp

oU
ox

¼ �c

Qp if Qp

oU
ox

[ � c

8

>

>

>

>

>

<

>

>

>

>

>

:

ð17Þ

and

w ¼ Qp

oU
ox

_ �c: ð18Þ

Otherwise, these two equations are reduced to

u� ¼ 0 ð19Þ

and

w ¼ �c: ð20Þ

The optimal control u� may not be unique, as in (17).

However, eliminating u� reduces the HJB Eq. (12) with

(18) and (20) to obtain

oU
os

þ 0 ^ Qin � Qoutð Þð Þ oU
ox

� ry
oU
oy

þ D
o2U
oy2

þ c ¼ 0 if Qp

oU
ox

� � c

oU
os

þ 0 ^ Qin � Qout � Qp

	 
	 
 oU
ox

� ry
oU
oy

þ D
o2U
oy2

¼ 0 if Qp

oU
ox

� � c

8

>

>

<

>

>

:

if x ¼ V ; ð21Þ

oU
os

þ Qin � Qoutð Þ oU
ox

� ry
oU
oy

þ D
o2U
oy2

þ c ¼ 0 if Qp

oU
ox

� � c

oU
os

þ Qin � Qout � Qp

	 
 oU
ox

� ry
oU
oy

þ D
o2U
oy2

¼ 0 if Qp

oU
ox

� � c

8

>

>

<

>

>

:

if 0\x\V; ð22Þ

and

oU
os

þ 0 _ Qin � Qoutð Þð Þ oU
ox

� ry
oU
oy

þ D
o2U
oy2

þ c ¼ 0 if Qp

oU
ox

� � c

oU
os

þ 0 _ Qin � Qout � Qp

	 
	 
 oU
ox

� ry
oU
oy

þ D
o2U
oy2

¼ 0 if Qp

oU
ox

� � c

8

>

>

<

>

>

:

if x ¼ 0: ð23Þ
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3 Uniqueness of viscosity solution
to the HJB equation

For each non-negative integer k� 2N, the temporal vari-

able is inverted as

s ¼ tkþ1 � s 2 0; tkþ1 � tkð �; ð24Þ

and the value function U ¼ U s; x; yð Þ is defined on the set

Gk ¼ 0; tkþ1 � tkð � � 0;V½ � � R. Then, the HJB equa-

tions (21), (22), and (23) is further rewritten as

oU
os

þ H s; x;U;rU;r	rUð Þ ¼ 0 ð25Þ

where x ¼ x

y

� �

, and H is the Hamiltonian defined as

H s; x;w; p;Mð Þ ¼ H s; x; p;Mð Þ
¼ Ĥ s; x; y; pxð Þ þ rypy � Dlyy ð26Þ

with

Ĥ s; x; y; pxð Þ ¼ �a x; y; 0ð Þpx � c if Qppx þ c� 0

�a x; y;Qp

	 


px if Qppx þ c� 0

�

ð27Þ

and

a x; y;Qð Þ ¼
0 ^ Qin yð Þ � Qout x; yð Þ � Qð Þ if x ¼ V

Qin yð Þ � Qout x; yð Þ � Q if 0\x\V

0 _ Qin yð Þ � Qout x; yð Þ � Qð Þ if x ¼ 0

8

<

:

ð28Þ

where p ¼ px
py

� �

and M ¼ lxx lxy
lyx lyy

� �

. However, the

discontinuity appearing in (28) when x ¼ 0 and x ¼ V

hinders the comparison theorem, which holds if the func-

tion a x; y;Qð Þ is relaxed as

ag x; y;Qð Þ

¼

V � x

g
a V � g; y;Qð Þ þ 1� V � x

g

� �

a V ; y;Qð Þ if x�V � g

a x; y;Qð Þ if x ¼ g\x\V � g

1� x

g

� �

a 0; y;Qð Þ þ x

g
a g; y;Qð Þ if x� g

8

>

>

>

>

>

<

>

>

>

>

>

:

ð29Þ

where g is a small positive relaxation parameter, so that

ag x; y;Qð Þ uniformly approaches a x; y;Qð Þ as g ! 0.

Henceforth, this ag x; y;Qð Þ will be used in (27) instead of

a x; y;Qð Þ. The definitions of a x; y; uð Þ and DQ will be

accordingly revised as ag x; y; uð Þ and DQg in (4) and (13),

respectively. The assertion of Remark 1 is still valid for the

relaxed case.

Remark 2 Ĥ s; x; y; pxð Þ with the relaxed (29) is Lipschitz

continuous in each Ik with respect to s, x, and y.

Now, we move on to viscosity solution to the relaxed

HJB equation. A real-valued function U defined on a set E

is called upper semi-continuous, if for any s; xð Þ 2 E 
 R3

and any e[ 0 there exists d such that U s0; x0ð Þ\U s; xð Þ þ
e for all s0; x0ð Þ 2 Bd s; xð Þ \ E, where Bd s; xð Þ represents

the d-neighborhood of s; xð Þ. Similarly, it is called lower

semi-continuous in the case where the inequality is

replaced by U s0; x0ð Þ[U s; xð Þ � e. Let USC Eð Þ and

LSC Eð Þ denote the sets of all upper and lower semi-con-

tinuous functions defined on E, respectively. The upper and

lower semi-continuous envelopes UU and UL of a real-

valued function U on Gk are defined as

UU s; xð Þ ¼ lim sup
s0;x0ð Þ! s;xð Þ

U s0; x0ð Þ ð30Þ

and

UL s; xð Þ ¼ lim inf
s0;x0ð Þ! s;xð Þ

U s0; x0ð Þ; ð31Þ

respectively. Note that UL 2 USC �Gkð Þ and UL 2 LSC �Gkð Þ.
For UU 2 USC �Gkð Þ, being a viscosity sub-solution to (25)

implies that

ow

os
þ H s; x;w;rw;r	rwð Þ� 0 at ŝ; x̂ð Þ 2 Gk ð32Þ

for any test function w 2 C2 Gkð Þ, such that

w�UU in �Gk; w ¼ UU at ŝ; x̂ð Þ: ð33Þ

For UL 2 LSC �Gkð Þ, being a viscosity super-solution to (25)

implies that

ow

os
þ H s; x;w;rw;r	rwð Þ� 0 at ŝ; x̂ð Þ 2 Gk ð34Þ

for any test function w 2 C2 Gkð Þ, such that

w�UL in �Gk; w ¼ UL at ŝ; x̂ð Þ: ð35Þ

If UU is a viscosity sub-solution and UL is a viscosity

super-solution, then U is called a viscosity solution.

We firstly discuss the continuity of viscosity solutions,

which are value functions of the optimal control problem,

at s ¼ 0.

Theorem 1 Suppose that Uv is a bounded viscosity

solution to (25) with (29) and that UU
v 0; xð Þ ¼ UL

v 0; xð Þ for
x 2 0;V½ � � R. If Uv 0; xð Þ ¼ UU

v 0; xð Þ ¼ UL
v 0; xð Þ as a

function of x is continuous in 0;V½ � � R, then

lim
s0;x0ð Þ! 0;xð Þ

Uv s0; x0ð Þ � Uv 0; xð Þj j ¼ 0: ð36Þ

Proof For s0 2 0; tkþ1 � tk½ � and x0 2 0;V½ � � R, it holds

that
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Uv s0; x0ð Þ �Etkþ1�s0;x0
Z tkþ1

tkþ1�s0
f t; u; Y 0

t

	 


dt þ Uv 0;X0 0; uð Þð Þ
� �

ð37Þ

with

X0 s; uð Þ ¼ X0
tkþ1�s

Y 0
tkþ1�s

� �

¼ x0 þ
Z tkþ1�s

tkþ1�s0

ag Xt; Yt; uð Þ
�rYt

� �

dt

þ
Z tkþ1�s

tkþ1�s0

0
ffiffiffiffiffiffi

2D
p

� �

dBt ð38Þ

for any admissible u, because Uv is a value function of the

optimal control problem. For any e[ 0, there exists an

admissible ~u such that

Uv s0; x0ð Þ

þ e[Etkþ1�s0;x0
Z tkþ1

tkþ1�s0
f t; ~u; Y 0

t

	 


dt þ Uv 0;X0 0; ~uð Þð Þ
� �

:

ð39Þ

With the chosen penalty function (14), the first part of the

expectation in the right hand side of (39) is evaluated as

Etkþ1�s0;x0
Z tkþ1

tkþ1�s0
f t; ~u; Y 0

t

	 


dt

� �

�Qtrgs
0; ð40Þ

and then subtracting Uv 0; xð Þ from the inequalities (37) and

(39) leads to

Uv s0; x0ð Þ � Uv 0; xð Þj j � Etkþ1�s0;x0
Z tkþ1

tkþ1�s0
f t; ~u; Y 0

t

	 


dt

�








þUv 0;X0 0; ~uð Þð Þ � Uv 0; xð Þ
�








�Qtrgs
0 þ Etkþ1�s0;x0 Uv 0;X0 0; ~uð Þð Þ � Uv 0; xð Þ½ �








�Qtrgs
0 þ Etkþ1�s0;x0 Uv 0;X0 0; ~uð Þð Þ � Uv 0; xð Þj j½ �

ð41Þ

for any x 2 0;V½ � � R. By the definition (38)

lim
s0;x0ð Þ! 0;xð Þ

Uv 0;X0 0; ~uð Þð Þ � Uv 0; xð Þj j ¼ 0 ð42Þ

and therefore (36) holds. h

The following comparison theorem coupled with The-

orem 1 proves the uniqueness of viscosity solutions of (25)

with (29).

Theorem 2 Suppose that U1 2 USC �Gkð Þ is a bounded

viscosity sub-solution to (25) with (29) and that U2 2
LSC �Gkð Þ is a bounded viscosity super-solution to (25) with

(29). Then,

sup
s;xð Þ2 �Gk

U1 s;xð Þ�U2 s;xð Þð Þ¼ sup
n2 0;V½ ��R

U1 0;nð Þ�U2 0;nð Þð Þ:

ð43Þ

Proof We opt for proof by contradiction in two stages.

Firstly, an auxiliary function W is defined as

W s; x; r; nð Þ ¼ U1 s; xð Þ � U2 r; nð Þ

� 1

2d
s� rj j2� 1

2e
x� nk k2�u rð Þ ð44Þ

where n ¼ n
f

� �

, and u sð Þ 2 C1 0; tkþ1 � tk½ �ð Þ is a func-

tion satisfying u sð Þ� 0 and u sð Þ ¼ 0 if s ¼ 0. Two points

�s; �xð Þ and �r; �n
	 


of �Gk are assumed to maximize W as

W �s; �x; �r; �n
	 


¼ sup
s;xð Þ; r;nð Þ2 �Gk

W s; x; r; nð Þ: ð45Þ

Then, the inequality

U1 �s; �xð Þ � U2 �r; �n
	 


� 1

2d
�s� �rj j2� 1

2e
�x� �n
�

�

�

�

2

¼ W �s; �x; �r; �n
	 


þ u �rð Þ
�W �r; �n; �r; �n

	 


¼ U1 �r; �n
	 


� U2 �r; �n
	 


ð46Þ

leads to evaluations

�s� �rj j �
ffiffiffiffiffiffiffiffi

K1d
p

and �x� �n
�

�

�

��
ffiffiffiffiffiffiffi

K1e
p

ð47Þ

where K1 is a non-negative constant given by

K1 ¼ 4 max
s;xð Þ2 �Gk

U1 s; xð Þj j; U2 s; xð Þj jð Þ\þ1: ð48Þ

Assume that �s[ 0 and �r[ 0. We set a smooth function

v s; xð Þ as

v s; xð Þ ¼ 1

2d
s� �rj j2þ 1

2e
x� �n
�

�

�

�

2 ð49Þ

which turns out to be a test function for a viscosity sub-

solution because

U1 s; xð Þ � v s; xð Þ ¼ W s; x; �r; �n
	 


þ U2 �r; �n
	 


þ u �rð Þ
ð50Þ

and therefore

�s; �xð Þ 2 arg max
s;xð Þ2Gk

U1 s; xð Þ � v s; xð Þf g: ð51Þ

This implies that
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ov

os
þ H s; x;rv;r	rvð Þ ¼ 1

d
s� �rð Þ

þ H s; x;
1

e
x� �n
	 


;
1

e
I

� �

¼ 1

d
s� �rð Þ

þ Ĥ s; x;
1

e
x� �n
	 


� �

þ ry
1

e
y� �f
	 


� �

� D

e
� 0

at �s; �xð Þ:
ð52Þ

An eligible function u sð Þ is chosen here as

u sð Þ ¼ 1

2
bs2 þ 2D

e
s ð53Þ

with b[ 0, to set another smooth function v̂ s; xð Þ as

v̂ r; nð Þ ¼ � 1

2d
�s� rj j2þ 1

2e
�x� nk k2þu rð Þ

� �

ð54Þ

which turns out to be a test function for a viscosity super-

solution because

U2 r; nð Þ � v̂ r; nð Þ ¼ �W �s; �x; r; nð Þ þ U1 �s; �xð Þ ð55Þ

and therefore

�r; �n
	 


2 arg min
s;xð Þ2Gk

U2 r; nð Þ � v̂ r; nð Þf g: ð56Þ

This implies that

ov̂

or
þ H r; n;rv̂;r	rv̂ð Þ ¼ �br� 2D

e
þ 1

d
�s� rð Þ

þ H r; n;
1

e
�x� nð Þ;� 1

e
I

� �

¼ �br� 2D

e
þ 1

d
�s� rð Þ

þ Ĥ r; n;
1

e
�x� nð Þ

� �

þ rf
1

e
�y� fð Þ

� �

þ D

e
� 0

at �r; �n
	 


:

ð57Þ

Comparing (52) and (57) yields

b�rþ 1

e
r �y� �f
	 
2 � Ĥ �r; �n;

1

e
�x� �n
	 


� �

� Ĥ �s; �x;
1

e
�x� �n
	 


� �

: ð58Þ

The left-hand side of (58) remains positive for any positive

b, d, and e, while its right-hand side approaches to zero as

d; e ! þ0 because Ĥ is continuous, to yield a contradic-

tion. Therefore, �s ¼ 0 or �r ¼ 0 or both.

Now, we prove

sup
s;xð Þ2 �Gk

U1 s;xð Þ�U2 s;xð Þð Þ� sup
n2 0;V½ ��R

U1 0;nð Þ�U2 0;nð Þð Þ:

ð59Þ

Assume that (59) is not true. Then, there exists a point

sM;xMð Þ 2Gk such that

U1 sM ; xMð Þ � U2 sM ; xMð Þ
¼ sup

s;xð Þ2Gk

U1 s; xð Þ � U2 s; xð Þð Þ

[ sup
n2 0;V½ ��R

U1 0; nð Þ � U2 0; nð Þð Þ;
ð60Þ

while one of the inequalities

U1 �s; �xð Þ � U2 �s; �xð Þ� sup
x2 0;V½ ��R

U1 0; xð Þ � U2 0; xð Þð Þ if �s ¼ 0

U1 �r; �n
	 


� U2 �r; �n
	 


� sup
n2 0;V½ ��R

U1 0; nð Þ � U2 0; nð Þð Þ if �r ¼ 0

8

>

<

>

:

ð61Þ

holds. By the evaluations (47), it is possible to choose e and
d such that �s� �rj j þ �x� �n

�

�

�

�� q for any q[ 0. Then,

considering the properties of upper and lower semi-con-

tinuous functions, q is chosen so that

U2 �s; �xð Þ � U2 �r; �n
	 


\e0 if �s ¼ 0

U1 �s; �xð Þ � U1 �r; �n
	 


\e0 if �r ¼ 0

�

ð62Þ

for any e0 [ 0. Adding (62) to (61) results in

U1 �s; �xð Þ � U2 �r; �n
	 


� sup
n2 0;V½ ��R

U1 0; nð Þ � U2 0; nð Þð Þ þ e0

ð63Þ

to obtain

W �s; �x; �r; �n
	 


¼ U1 �s; �xð Þ � U2 �r; �n
	 


� 1

2d
�s� �rj j2� 1

2e
�x� �n
�

�

�

�

2�u �rð Þ

� sup
n2 0;V½ ��R

U1 0; nð Þ � U2 0; nð Þð Þ

þ e0 �
1

2d
�s� �rj j2� 1

2e
�x� �n
�

�

�

�

2�u �rð Þ

\ sup
s;xð Þ2Gk

U1 s; xð Þ � U2 s; xð Þð Þ þ e0:

ð64Þ

On the other hand,

W sM; xM ; sM; xMð Þ ¼ U1 sM; xMð Þ � U2 sM; xMð Þ � u sMð Þ
¼ sup

s;xð Þ2Gk

U1 s; xð Þ � U2 s; xð Þð Þ � u sMð Þ:

ð65Þ

Combining (64) and (65) results in
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W �s; �x; �r; �n
	 


\ sup
s;xð Þ2Gk

U1 s; xð Þ � U2 s; xð Þð Þ þ e0

¼ W sM; xM ; sM; xMð Þ þ u sMð Þ þ e0: ð66Þ

Another choice of u sð Þ as

u sð Þ ¼ 1

2
bs2 ð67Þ

with b[ 0 is also eligible and leads to

W �s; �x; �r; �n
	 


\W sM; xM; sM ; xMð Þ ð68Þ

as b; e0 ! þ0. However, (68) contradicts (45) and thus

(59) is true. Consequently, we reach to (43). h

Remark 3 If there is a viscosity solution to (25) with (29)

satisfying a specified continuous initial condition in the

sense of Theorem 1, then its uniqueness and continuity are

direct consequences of Theorem 2.

4 Existence of viscosity solution to the HJB
equation

A weak solution to the HJB equation (25) with (29) from a

specified initial condition is considered in order to show the

existence of a viscosity solution as well as to provide a

framework for approximate numerical solution.

Transformation of the independent variable y to z with

z ¼ tan�1
ffiffiffiffiffi

r
2D

p

y
� �

makes the domain bounded. Indeed, Gk

is mapped to G�
k ¼ 0; tkþ1 � tkð � � �Xx � Xz, where Xx ¼

0;Vð Þ and Xz ¼ �p=2; p=2ð Þ. Let Xs denote 0; tkþ1 � tkð Þ.
Then, the HJB equation (25) is formally transformed into

oU
os

þ Ĥ s; x;

ffiffiffiffiffiffi

2D

r

r

tan z;
oU
ox

 !

þ r sin z cos z 1þ cos2 z
	 
 oU

oz
� r

2
cos4 z

o2U
oz2

¼ 0; ð69Þ

but U at each s 2 0; tkþ1 � tkð � shall be sought in the

function space H1
xz, which is completed with the norm

Uk kH1
xz
¼
Z

Xz

Uk kH1 Xxð Þdzþ
Z

Xx

Uk kH1 Xzð Þdx ð70Þ

where

Uk kH1 X�ð Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z

X�

U2 þ oU
o�

















2
 !

d*

v

u

u

t ð71Þ

for � ¼ x or z, to satisfy the weak form

d

ds

Z

Xx

ŵx

Z

Xz

ŵzUdzdx

¼ �
Z

Xx

ŵx

Z

Xz

rŵz sin
3 z cos zþ r

2
cos4 z

oŵz

oz

� �

oU
oz

�

þŵzĤ s; x;

ffiffiffiffiffiffi

2D

r

r

tan z;
oU
ox

 !!

dzdx

ð72Þ

for any weights ŵx 2 H1 Xxð Þ and ŵz 2 H1 Xzð Þ, where

H1 X�ð Þ is the Sobolev space equipped with the norm (71).

For � ¼ s or x or z, it is known that there are embeddings

H1 X�ð Þ ! CB X�ð Þ and H1 X�ð Þ ! C �X�
	 


, where CB X�ð Þ
is the set of all bounded continuous functions on a domain

X�, and C �X�
	 


is the set of all bounded uniformly con-

tinuous functions on a domain X�. Both of CB X�ð Þ and

C �X�
	 


are Banach spaces equipped with the uniform norm,

and C �X�
	 


is a closed subspace of CB X�ð Þ (Adams and

Fournier 2003). Let CB G�
k

	 


denote the set of all bounded

continuous functions on G�
k , which is a Banach space

equipped with the uniform norm Uk k1¼ sup
s;x;zð Þ2G�

k

Uj j.

Consider the function g of ŵx, ŵz, and UðjÞ with time

increment ds as

g ŵx; ŵz;UðjÞ
	 


¼
Z

Xx

ŵx

Z

Xz

ŵzUðjÞdzdx

� ds
Z

Xx

ŵx

Z

Xz

F ŵz;UðjÞ
	 


dzdx ð73Þ

where

F ŵz;Uð Þ ¼ rŵz sin
3 z cos zþ r

2
cos4 z

oŵz

oz

� �

oU
oz

þŵzĤ s; x;

ffiffiffiffiffiffi

2D

r

r

tan z;
oU
ox

 !

:

ð74Þ

For fixed ŵz and UðjÞ, g is a continuous linear functional on

H1 Xxð Þ. For fixed ŵx and UðjÞ, g is a continuous linear

functional on H1 Xzð Þ. Applying the Riesz representation

theorem (Adams and Fournier 2003) twice, g is identified

with another function Uðjþ1Þ 2 H1
xz. Starting from an initial

value Uð0Þ, iterations UðjÞ
� �

j¼1;2;3...
with ds ¼ s=Ns and

Ns � 1 yield the Riemann sum
Z

Xx

ŵx

Z

Xz

ŵzUðNsÞdzdx ¼
Z

Xx

ŵx

Z

Xz

ŵzUð0Þdzdx

� s
1

Ns

X

Ns�1

l¼0

Z

Xx

ŵx

Z

Xz

F ŵz;UðlÞ
	 


dzdx:

ð75Þ

Equation (75) approaches
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Z

Xx

ŵx

Z

Xz

ŵzUdzdx ¼
Z

Xx

ŵx

Z

Xz

ŵzUð0Þdzdx

� s
Z

Xx

ŵx

Z

Xz

F ŵz;Uð Þdzdx ð76Þ

as Ns approaches þ1, which is consistent with (72).

Remark 4 There exists at least one solution Uw ¼
Uw s; x; zð Þ to the initial value problem (72) with an initial

value Uð0Þ 2 H1
xz. Here, Uw 2 H1

xz for any s 2 0; tkþ1 � tkð �
and Uw 2 CB Xsð Þ for any x; zð Þ 2 �Xx � Xz, implying that

Uw 2 CB G�
k

	 


.

The following theorem asserts that the above-mentioned

weak solution accords with the viscosity solution to (25).

Theorem 3 Suppose that Uv ¼ Uv s; xð Þ ¼ Uv s; x; yð Þ is a
bounded viscosity solution to (25) with (29) satisfying the

initial condition Uv 0; xð Þ ¼ Uv 0; x; yð Þ ¼
U 0ð Þ x; tan�1

ffiffiffiffiffiffiffiffi

r
2D

y
p

� �� �

for any x; zð Þ 2 �Xx � Xz and that

Uw ¼ Uw s; x; zð Þ is a weak solution to (72) with (29) sat-

isfying the same initial condition. Then,

Uv s; x; yð Þ ¼ Uw s; x; tan�1

ffiffiffiffiffiffiffiffiffi

r

2D
y

r

� �� �

ð77Þ

in Gk.

Proof Let UU
v and UL

v be the upper and lower semi-con-

tinuous envelopes of Uv, respectively. Namely, UU
v and UL

v

are the viscosity sub-solution and the viscosity super-so-

lution, respectively. From Theorem 1,

UU
v 0; xð Þ ¼ UL

v 0; xð Þ ¼ Uv 0; xð Þ 2 CB 0;V½ � � Rð Þ ð78Þ

where CB 0;V½ � � Rð Þ is the set of all bounded continuous

functions on 0;V½ � � R. There exists a sequence

U nð Þ s; x; zð Þ
� �


 C1 G�
k

	 


\ C2 Xzð Þ converging to Uw.

Namely, for any e[ 0, there exists a natural number N1

such that

Uw s; x; zð Þ � U nð Þ s; x; zð Þ
�

�

�

�

H1
xz

\e ð79Þ

for any n[N1 at all s 2 0; tkþ1 � tkð �. Because of the

embeddings H1 Xxð Þ ! C �Xx

	 


and H1 Xzð Þ ! CB Xzð Þ,
there exists another natural number N2, such that

Uw s; x; zð Þ � U nð Þ s; x; zð Þ
�

�

�

�

1\e ð80Þ

for any n[N2 at all s 2 0; tkþ1 � tkð �. Consequently,

U nð Þ s; x; zð Þ
� �

becomes a Cauchy sequence converging to a

limit Uc s; x; zð Þ in CB G�
k

	 


, and thus Uw s; x; zð Þ ¼
Uc s; x; zð Þ in G�

k . Furthermore, for any d[ 0, there exists a

natural number N3 such that

oU nð Þ

os
þ H s; x;

ffiffiffiffiffiffi

2D

r

r

tan z;U nð Þ;rU nð Þ;r	rU nð Þ

 !




















\d

ð81Þ

for any n[N3 in G�
k . For each n, let d nð Þ

i (i ¼ 1; 2) be real

numbers such that

d nð Þ
1 ¼ inf d� 0 d

ffiffiffi

s
p

[UU
v s; x;

ffiffiffiffiffiffi

2D

r

r

tan z

 !

� U nð Þ s; x; zð Þ










( )

ð82Þ

and

d nð Þ
2 ¼ sup d� 0 d

ffiffiffi

s
p

\UL
v s; x;

ffiffiffiffiffiffi

2D

r

r

tan z

 !

� U nð Þ s; x; zð Þ










( )

:

ð83Þ

Then, test functions w
nð Þ
i are chosen as

w
nð Þ
i ¼ w

nð Þ
i s; x; yð Þ

¼ U nð Þ s; x; tan�1

ffiffiffiffiffiffiffiffiffi

r

2D
y

r

� �� �

þ d nð Þ
i

ffiffiffi

s
p

ð84Þ

so that

w
nð Þ
1 �UU

v in �Gk; w
nð Þ
1 ¼ UU

v at ŝ1; x̂1ð Þ ð85Þ

and

w
nð Þ
2 �UL

v in �Gk; w
nð Þ
2 ¼ UL

v at ŝ2; x̂2ð Þ ð86Þ

for some ŝi; x̂ið Þ 2 Gk. This implies that w
nð Þ
i are indeed

eligible for test functions of viscosity sub-solution UU
v and

viscosity super-solution UL
v , resulting in

ow
nð Þ
1

os
þ H ŝ1; x̂1;w

nð Þ
1 ;rw

nð Þ
1 ;r	rw

nð Þ
1

� �

¼ oUðnÞ

os
þ H ŝ1; x̂1;U

ðnÞ;rUðnÞ;r	rUðnÞ
� �

þ d nð Þ
1
ffiffiffi

s
p � 0 ð87Þ

and

ow
nð Þ
2

os
þ H ŝ2; x̂2;w

nð Þ
2 ;rw

nð Þ
2 ;r	rw

nð Þ
2

� �

¼ oUðnÞ

os
þ H ŝ2; x̂2;U

ðnÞ;rUðnÞ;r	rUðnÞ
� �

þ d nð Þ
2
ffiffiffi

s
p � 0 ð88Þ

at respective ŝi; x̂ið Þ. In order to satisfy (87) and (88), d nð Þ
i

must approach zero as n ! 1, because of (81). Finally, we

obtain
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UU
v s; x; yð Þ ¼ UL

v s; x; yð Þ ¼ Uc s; x; tan�1

ffiffiffiffiffiffi

r

2D

r

y

� �� �

ð89Þ

in Gk, and thus (77). h

5 Application with numerical demonstration

A prototype irrigation scheme including a reservoir for

harvesting flash floods is being developed at the Agricul-

tural Research Station of Mutah University, located in the

Lisan Peninsula of the Dead Sea near the town of Ghor al

Mazrah in Jordan. The model parameters are determined

from the physical dimensions of the structures as well as

from hydro-meteorological observation conducted from

September 27th, 2014 through September 22nd, 2016.

Indeed, the reservoir consists of two sections: a 300 m3

section enclosed in a greenhouse, and a 700 m3 section, the

surface of which is exposed to open air. Once a flash flood

is harvested in the open section, the water is immediately

transferred to the closed section if there is room. Therefore,

the sections are regarded collectively as a single reservoir

of V = 1000 m3 with Qout x; yð Þ varying in the x-direction.

The irrigation period 0; T½ Þ is set as 5.2560 9 105 min of a

non-leap year from May 1st through April 30th. No flash

flood is expected during the months from May through

October. The period from 08:00 a.m. through 08:12 a.m. is

prescribed as the irrigation hours for every day throughout

the irrigation period. Without loss of generality, the dif-

fusion coefficient D is assumed to be unity. In the two

consecutive winter rainy seasons of 2014–2015 and 2015–

2016 included in the observation period, there were 16

events of flash floods (10 events in 2014–2015 season and 6

events in 2015–2016 season), out of which 8 events (3

events in 2014–2015 season and 5 events in 2015–2016

season) yielded substantial harvesting. The model param-

eter K represents the supremum of y, where there is no

inflow of flash flood to the reservoir, and its value is esti-

mated to be 2.4165. The most likely value of the reversion

coefficient in terms of the compatible transition probability

density function is 0.0011421 per minute. The functions

Qin yð Þ and Qout x; yð Þ are determined as shown in Fig. 2.

The blue line in the figure indicates Qin in the unit of m3/

min during the wet months from November through April,

identified from statistical analysis of the observed data as

Qin yð Þ ¼

60:000 if 58:181\y

18:305 log y� 14:3833 if 3:7700\y� 58:181
27:641y� 94:299 if 3:6000\y� 3:7700
3:6107 y� Kð Þ2:1767 if K\y� 3:6000
0:0000 if y�K

8

>

>

>

>

<

>

>

>

>

:

;

ð90Þ

while Qin � 0 during the dry months from May to October.

Seepage is negligible because of plastic sheets covering the

bottom of the reservoir, and the closed section is free from

evaporation. Evaporation from the water surface of the

open section is estimated at 10= 1þ exp y� Kð Þð Þ mm/day.,

which is multiplied by the water surface area depending on

x to yield Qout x; yð Þ. Note that there is no significant dif-

ference in observed evaporation between the wet and dry

months.

To approximately solve the HJB equation (72) with (29)

from a specified initial condition and then to derive the

optimal control strategy, a computational procedure is

developed as follows. The z-domain Xz is divided into nz
sub-domains of equal length Dz ¼ p=nz. The x-domain Xx

is also divided into nx sub-domains of equal length

Dx ¼ V=nx, and the unknown U is attributed to each node

x ¼ iDx; z ¼ kDzf g as Ui;k. For discretization in the z-di-

rection, the finite element scheme developed by Unami

et al. (2015) is applied to the weak form (72). For dis-

cretization in the x-direction, the first-order upwind finite

difference scheme is used. The mesh size Dx is regarded as

the relaxation parameter g. Then, the system of ordinary

differential equations resulting from those discretization

O
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Fig. 2 Prescribed inflow discharge Qin yð Þ and outflow discharge Qout x; yð Þ according to observed data
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schemes is numerically solved in the s-direction using the

Runge–Kutta method with a constant time step Ds to

update the value of each Ui;k. The optimal control strategy

u� is derived from the computed Ui;k, according to (10). A

computational run with nx ¼ 100, nx ¼ 120, and Ds ¼

1=60 minutes was completed within nine days and four

hours using the supercomputer system of the Academic

Center for Computing and Media Studies, Kyoto Univer-

sity. Distribution of computed optimal control u� is delin-

eated in Figs. 3, 4, 5, 6 and 7 for the irrigation hours of

Day 0

8:11
8:10

8:09
8:08

8:07
8:06

8:05
8:04

8:03
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p

Fig. 3 Distribution of computed

optimal control u� during

irrigation hours on May 1st

(Day 0)

Day 91
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Fig. 4 Distribution of computed

optimal control u� during

irrigation hours on July 31st

(Day 91)

Day 182
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representative days, which are May 1st (Day 0), July 31st

(Day 91), October 30th (Day 182), January 29th (Day 273),

and April 30th (Day 364). The boundary between two

adjacent cells of u� ¼ 0 and u� ¼ Qp in the x-y domain for

each s 2 0; t2iþ2 � t2iþ1½ Þ is marked as a segment in a dif-

ferent color at each time stage of 1-min intervals. If there is

a surface of xh such that

u� ¼ Qp if x[ xh
0 if x\xh

�

ð91Þ

in the s–y domain, the surface is referred to as a rule curve.

Possibly due to the coarse discretization, oscillations in the

delineated segments appear slightly in Figs. 3, 4, 5 and 6

and more visibly near y ¼ �1 in Fig. 7. However, prac-

tically significant rule curves can be extracted. The rule
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Fig. 6 Distribution of computed

optimal control u� during

irrigation hours on January 29th

(Day 273)
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Fig. 7 Distribution of computed

optimal control u� during

irrigation hours on April 30th

(Day 364)
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Fig. 8 Rule curves presented to operator of irrigation scheme
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curves are mostly monotonically increasing with respect to

y, and, throughout the irrigation period, water should not be

withdrawn from the reservoir under sufficiently wet con-

ditions. The restriction on intake is strictest on Day 0 and is

then relaxed as time evolves. Rule curves vanish after Day

182 under dry conditions.

The chart for the rule curves actually presented to the

operator, which includes only three cases of water flow

index y ¼ �3:2935 ¼ �1:3629K ¼
ffiffiffiffiffiffiffiffiffiffiffi

2D=r
p

tan �p=40ð Þ
and y ¼ 0, is shown in Fig. 8. The operator has also been

told that irrigation should not be performed during flash

floods. On the other hand, the rule curve for y ¼ �3:2935

should be applied under much drier conditions.

6 Conclusions

A prototype irrigation scheme with a reservoir for har-

vesting flash floods motivated the mathematical analysis of

the present paper. A water dynamics model was con-

structed based on practically acceptable assumptions, and

the model parameters were determined from the observed

data.

The optimal control problem formulated for the model

was shown to have a unique value function, which solves

the HJB equation in the viscosity sense. In other words, it

was successfully demonstrated that the optimal control

problem was well-posed. Skillful use of the properties of

viscosity sub-solutions and viscosity super-solutions, as

well as the choices of auxiliary functions, played key roles

in the proofs of the non-trivial theorems. The innovative

construction method for the weak solution rationalized the

numerical approximation of the value function. The com-

parison theorem, Theorem 2, is independent of Theorem 1

and is applicable to discontinuous viscosity solutions in

general.

The rule curves for operation of the reservoir were

numerically derived, suggesting that the optimal control is

also unique. This is another remarkable outcome of the

present study, because optimal control in a deterministic

reservoir operation problem may be not unique, but may be

arbitrary. Field verification of the optimal control strategy

is being initiated in the real world, cultivating a perennial

plant species Phoenix dactylifera in the irrigated command

area.
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