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Abstract The risk from natural catastrophes is typically

estimated using complex simulation models involving

multiple stochastic components in a nested structure. This

risk is principally assessed via the mean annual loss, and

selected quantiles of the annual loss. Determining an

appropriate simulation strategy is important in order to

achieve satisfactory convergence of these statistics, without

excessive computation time and data storage requirements.

This necessitates an understanding of the relative contri-

bution of each of the stochastic components to the total

variance of the statistics. A simple framework using ran-

dom effects models and analysis of variance is used to

partition the variance of the annual loss, which permits

calculation of the variance of the mean annual loss with

varying numbers of samples of each of the components. An

extension to quantiles is developed using the empirical

distribution function in combination with bootstrapping.

The methods are applied to a European flood model, where

the primary stochastic component relates to the frequency

and severity of flood events, and three secondary compo-

nents relate to defence levels, exposure locations and

building vulnerability. As expected, it is found that the

uncertainty due to the secondary components increases as

the size of the portfolio of exposures decreases, and is

higher for industrial and commercial business, compared

with residential for all statistics of interest. In addition,

interesting insights are gained as to the impact of flood

defences on convergence.

Keywords Natural catastrophe model � Uncertainty �
Variance components � Insurance risk

1 Introduction

The ability to estimate the risk from natural catastrophes,

such as hurricanes and floods, is important for disaster risk

mitigation and essential for the existence of insurance

cover. Natural catastrophe models vary in scope and

complexity, depending on their purpose. At the simpler end

of the spectrum, models may just involve extrapolation of

historic data at a single site using extreme value theory. For

example, this type of approach may be used by engineers

when setting wind or flood design criteria (Castillo 1988).

Extensions to the basic model address issues such as sea-

sonality and other non-stationarities, and application to the

spatial domain [e.g. Fawcett and Walshaw (2016), Randell

et al. (2016)].

Often, however, the historical data is insufficient in both

quantity and quality to make meaningful extrapolations,

particularly when these are required over large spatial

areas, or when non-stationarity is significant and multidi-

mensional. For example changes in land-use, and the

introduction of risk mitigation measures such as flood

defences affect past and future risk. These and other such

shortcomings are addressed by more complex models,

which typically comprise multiple linked components,

involving both physical and statistical modules. The latter

often use Monte Carlo methods, one advantage of which is

their ability to model multiple metrics of interest from a

single catastrophe, over both time and space, in a natural

and consistent way. For example, when considering tropi-

cal cyclone risk, the dependence between wind speeds,

rainfall amounts and storm surge heights is captured by

& Jo Kaczmarska

jo.kaczmarska@rms.com

1 Risk Management Solutions, London, UK

123

Stoch Environ Res Risk Assess (2018) 32:591–605

https://doi.org/10.1007/s00477-017-1393-0

http://orcid.org/0000-0002-9113-5431
http://crossmark.crossref.org/dialog/?doi=10.1007/s00477-017-1393-0&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00477-017-1393-0&amp;domain=pdf
https://doi.org/10.1007/s00477-017-1393-0


generating these from the same storm track model, which

simulates the storm path and key storm parameters. Fur-

ther, multiple linked components allow estimation, not

only of the intensities of the physical phenomena, but also

of any resulting impacts of interest (such as building

damage, number of fatalities etc.), and these impacts may

also be modelled probabilistically. Examples of this type of

model, involving simulation and multiple linked compo-

nents, include Lin et al. (2010) (hurricanes), Goda and

Song (2016) (tsunami) Finney et al. (2011) (wildfire) and

Falter et al. (2016) (flood).

The natural catastrophe models used by the insurance

industry (known as catastrophe models) are of this type,

consisting of many components and sub-components, which

can be very different from each other in their nature, and

computational expense. Their principal purpose is to estimate

the expected insured loss and selected quantiles of the loss

over the following year on any given portfolio. These models

involve many sources of uncertainty. Firstly, there is an

inherent randomness in the frequency and severity of extreme

weather or earthquake events from year to year, which is

modelled via the statistical components. This natural ran-

domness, or aleatoric uncertainty, means that any statistics

that are estimated from a finite number of simulations are

themselves uncertain and subject to random variation. Other

sources of uncertainty include the limited nature of, and

uncertainties within, the historical data against which the

models are calibrated, incomplete knowledge of the science

behind the physical components, the known but practically

necessary approximations in the model and the uncertainties

involved in the choice of statistical distributions and model

input parameters. We focus here on the source of uncertainty

that is most readily controlled: the uncertainty in the key

statistics of interest due to the finite number of simulations

within the model. Having a sound understanding of this

uncertainty has become increasingly importantwith the recent

advent of cloud-based computing, and the consequent

increase in the use of simulation in themodels, replacingmany

of the necessary analytical approximations of the past.

Catastrophe models are run numerous times by multiple

users, with different portfolios as input—each run involv-

ing a specific set of insurance exposures and financial

contract terms. The variances of the loss estimates pro-

duced by the model, calculated from all the simulations,

depend on the model design, and the specific configuration

of any model runs including, in particular, the number of

simulations of each component. Ensuring an appropriate

balance between the precision of estimates produced by the

model, against run-times is therefore an important part of

the development process. In addition to estimating the total

variance of the estimates that is due to simulation uncer-

tainty, consideration of this balance also requires an

understanding of how the variance is broken down between

the various model components—for example, how much of

the uncertainty in the mean annual loss estimate from the

model is due to the simulation of the hazard, and how much

to the simulation of the building damage, given the hazard.

This understanding has multiple benefits. Firstly at the

development stage, such an analysis can highlight defi-

ciencies in the model, identifying areas to target to reduce

the uncertainty. At this stage it can also inform the model’s

design, including the default numbers of simulations to use,

and the level of flexibility to be offered within the model to

change these defaults. At the operational stage, such an

analysis can be used to provide information and guidance

to users to help them to determine how many samples of

each statistical component in the model they should run,

given the particular features of the analysis in question.

Features that will vary between analyses include the nature

and size of the portfolio of interest, the statistics of interest,

the user’s computational and data storage resources, the

time constraints for the analysis, and the user’s view as to

acceptable precision.

The motivation for our analysis is to develop a frame-

work to investigate the variance components of the esti-

mators of the mean annual loss, and the quantiles of the

annual loss. The framework needs to be easy to implement

and general enough to be readily applied to a range of

catastrophe models, whose statistical components could

differ. We apply this framework here to a development

version of a European flood model1. We used an artificial

portfolio that approximated the total industry (national-

level) market exposures, using typical contract structures.

The analysis was carried out for this whole portfolio, and for

a very large number of possible subsets of the portfolio, to

understand how the split between components varied with

key drivers, such as the size and nature of the portfolio.

We followed an analysis of variance (ANOVA)

approach, which is a statistical tool for partitioning the total

variance between factors, each of which may be assumed

to have all possible values represented within the dataset

(‘‘fixed effects’’), or only a random sample from a larger

population (‘‘random effects’’), the latter being appropriate

for this analysis [see for example Chapter 13 of Mont-

gomery (2013)]. ANOVA analyses have been popular in

recent years within the climate community. Yip et al.

(2011), for example, used a fixed effects ANOVA to par-

tition the uncertainty in climate model ensembles. North-

rop and Chandler (2014) and Geinitz et al. (2015) use a

Bayesian version of ANOVA for similar analyses, which

allows factors to be considered as both fixed and random in

a coherent way. Applications of ANOVA in the field of

hydrology have included Osuch et al. (2016) and Bosshard

et al. (2013).

1 The RMS Europe Inland Flood HD Models, development version.
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Our analysis was inspired by these, but differs from

them in that we calculate variance components for raw data

values first, and then use these to derive variance compo-

nents of statistics of the data values, rather than using

summary statistics in the ANOVAs themselves. Our data

values here are simulated annual loss estimates, and, as

discussed, we are interested in the variance components of

the estimated mean annual loss, and annual loss quantiles.

The calculations for the mean annual loss follow from a

random effects ANOVA on the annual losses in a fairly

straightforward way. However, no existing literature was

found that exactly addressed our requirement for quantiles.

Analytical methods for estimating the standard errors of

quantile estimators using asymptotic approximations exist

for independent data (Bahadur 1966), and have been

extended by various authors to scenarios where the data are

dependent (e.g. Olsson and Rootzén 1996; Assaad and

Choudhary 2013 considered quantile estimation for repe-

ated measurements). However, difficulties arise in the

required estimation of the density function. In cases where

analytical methods are difficult to apply, bootstrapping is a

natural alternative. However, problems with bootstrapping

for random effects models are well documented (Brennan

et al. 1987; McCullagh 2000; Field and Welsh 2007). Our

proposed method combines a bootstrap estimate of the total

variance with an asymptotic approximation for the variance

components using an ANOVA approach, obviating the

need to estimate the density directly.

In the next section we will briefly describe the nature

and structure of the natural catastrophe models that are

used within the insurance industry. In Sect. 3 we will

highlight features of the particular model on which our

analysis is based in more detail, focusing on the compo-

nents with a stochastic element. Section 4 describes the

statistical methodology used to partition the variance in the

estimates of the average annual loss and quantiles between

these components, with some results presented in Sect. 5.

Finally, in Sect. 6, we present some conclusions, including

thoughts on how our ideas could be of use for other natural

catastrophe models.

2 The nature of insurance catastrophe models

Natural catastrophe models are used by the insurance

industry, government bodies, and other interested parties to

estimate the risk from extreme events such as floods, trop-

ical cyclones, windstorms and earthquakes. The models are

developed in multi-disciplinary teams by both commercial

and public enterprises, with those involved including,

amongst others, meteorologists, hydrologists, engineers,

statisticians and actuaries. See Grossi and Kunreuther

(2005) for a comprehensive analysis of the history, structure

and applications of catastrophe models. The Florida Public

Hurricane Loss Model is an example of a publicly available

catastrophe model (Powell et al. 2005; Chen et al. 2009).

The models provide input into the whole range of insur-

ance functions, including pricing, portfoliomanagement and

the determination of capital requirements. The latest gen-

eration of models (described here) simulate losses ground-

up from the smallest risk unit (building, risk covered and

peril), with the hazard defined at an appropriately fine spatial

resolution, dependent on the peril. A peril in this context is a

natural phenomenon that generates insurance loss. Perils for

a tropical cyclone model, for example, include associated

inland and coastal flood, in addition to the principal peril,

wind. Hazard refers to the loss inducing characteristic, for

example the maximum wind speed or flood depth for each

event, at each of a set of grid points. The risks coveredmight,

for example, include buildings and contents damage and

business interruption. Losses can be aggregated up to any

required level of spatial resolution, over the risks and perils

covered, up to the total portfolio level.

The most important and computer-intensive component

of the catastrophe model simulates events over the required

spatial domain over tens of thousands of possible versions

of the following year. This component typically involves

many sub-components, with physical as well as statistical

routines, and its creation can take several months to run,

depending on the model. Once derived, therefore, the cat-

alogue of simulated years is fixed in the model, where it is

stored in a database, along with the event details and cor-

responding hazard values, to be accessed when the model is

run. Events in different simulation years are independent of

each other (since they represent individual realisations of

the possible experience over 1 year), but they are typically

dependent within years, allowing features such as temporal

clustering of events or time-related insurance contract

clauses to be allowed for.

The appropriate number of simulation years to include

in the model must therefore be decided at the development

stage, and once fixed, this determines the optimal conver-

gence of the estimated statistics that can be achieved in the

software: the user can reduce the number used in order to

get a quicker estimate, but they cannot increase it. The

uncertainty in the modelled losses and related statistics,

that pertains to the frequency and nature of the events is

called primary uncertainty.

In addition to the catalogue of simulated years, the

models comprise a number of components which depend

on the specific details of the portfolios, and which must

therefore be run within the software. Some of these com-

ponents involve further simulation. Any uncertainty in the

modelled losses that pertains to these other statistical

components is called secondary uncertainty. The nature of

these other components will depend on the specific model,
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but all models have a vulnerability component. This contains

a set of vulnerability functions, which determine the distri-

bution of the proportion of a risk item that is damaged, given

a hazard severity and the risk characteristics. When com-

bined with an insurer’s exposure (property details and con-

tract terms), and a financial module, the distribution of losses

due to the peril can be estimated over the following year. As

well as the mean loss for the year (referred to as the average

annual loss or AAL), the other important statistics are the

quantiles. These are referred to as ‘‘return levels’’ with, for

example, the 200 year return level equivalent to the 99.5%

quantile. Extreme quantiles are of particular interest for

capital requirements, whereas those with low return periods

are used by insurers for validating the catastrophe models.

Although the main products from the model are the esti-

mated statistics, users may also be interested in examining

individual years and events, for validation ‘‘what if’’ sce-

narios, or to compare to real time catastrophes.

The statistics of interest may be calculated from several

financial perspectives: for example, losses before any

adjustments, or after allowing for deductibles and limits in

the insurance contracts, or after the application of any basic

reinsurance treaties (referred to as ground-up, gross and net

pre-cat respectively).

3 High level description of example model
and components

The Europe Inland Flood model, which is the example

catastrophe model used here, includes flood events across

thirteen countries, with a hazard event set providing flood

depths on a high resolution grid. This hazard set is driven by a

stochastic precipitation model. The modelled precipitation is

fed into a hydrological model, which determines the resulting

river flow volumes and flood depths for all potentially loss-

causing events, assuming an undefended river network.

In addition to the simulated hazard, the Europe Inland

Flood model involves three further stochastic components,

which deal with flood defences, exposure locations and

building vulnerability. As discussed in the previous section,

these are incorporated within the software itself, and so

there is scope to vary the number of samples used for each

of these at run-time.

While some flood defences are permanent structures,

designed to protect against a flood with a specified return

period, many are temporary or offer an unknown level of

protection. In addition, defence levels change over time,

with the ageing of existing structures, and implementation

of new initiatives, and so any information sources on

defences involve some uncertainty. Defence levels are

therefore modelled as stochastic variables and re-sampled

within each simulation year, with a mean protection level

for each sub-catchment based on known data and random

variation around that mean. Another stochastic component

is required to model the exact locations of buildings, if only

low resolution exposure information is available. This is

very important for flood hazard, where the risk is highly

localised. For example, only the total insured value and

number of buildings at a postal code sector resolution may

be known. In that case, the risks are randomly allocated to

the high-resolution hazard cells within the aggregate

locations, using the multinomial distribution, based on a set

of exposure weights. The exposure location sampling here

reflects the inherent uncertainty in the precise location of

the buildings. As for the defences, the exposure locations

are re-sampled within every simulation year.

The final stochastic component is the vulnerability

component, which reflects the uncertainty in a building’s

characteristics and its response to a given level of hazard,

and is applied to each affected building, for each event,

given the sampled defence levels and locations. It involves

sampling a damage ratio from a statistical distribution,

whose parameters reflect the hazard level, building location

and assumed building characteristics.

Re-sampling from the defence level and exposure

location distributions independently multiple times for

each simulated year, and from the damage ratio distribution

multiple times for each building for each combination of

hazard, defences and exposure locations, improves the

accuracy of the average annual loss and quantiles, but adds

to the computational cost. The question of interest is to

understand to what extent each of these components con-

tributes to the variance of the estimate, and therefore how

valuable these additional samples are for any particular

analysis and input portfolio.

4 Statistical methodology

4.1 Average annual loss

We start by considering the simulation uncertainty of the

average annual loss, and assume that exposure is known

only at an aggregate postcode sector level. It is useful to

write the equation for the annual loss for some specific

portfolio as the statistical representation:

Lijkm ¼ lþ ai þ bij þ cik þ dijk þ eijkm: ð1Þ

Lijkm here is the annual loss in simulated year i (for

i ¼ 1; . . .I), with defence level sample j (j ¼ 1; . . .J),

exposure location sample k (k ¼ 1; . . .K), and vulnerability

sample m (m ¼ 1; . . .M). The parameter l represents the

average annual loss, and ai, bij, cik, dijk and eijkm are all

mutually independent random variables with zero mean.

Specifically, ai represents the random difference from the
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average loss due to the incidence and severity of the hazard

simulated within year i. The two variables bij and cik rep-

resent the random differences from the within-year aver-

age, due to the sampled defence levels and exposure

locations within that simulation year. Note that these

effects are nested within each simulation year i.e the

defence levels and exposure locations are re-sampled

within each simulation year. An interaction term between

exposure and defences is also required, since the impact of

the defence levels within a simulation year depends on

where the exposure is placed in that simulation year, and

this is represented by the variable dijk. Finally eijkm repre-

sents the random difference due to residual variability,

which for our model is the variability due to the uncertainty

in the vulnerability of buildings hit by the simulated events

in year i, given defence levels j and exposure locations k.

Since the random components are all independent, the

variance of Lijkm is given by the sum of the variances of the

individual components. We start by estimating the variance

components of the annual loss, using the standard statistical

method of analysis of variance (ANOVA), noting that the

statistical representation defined in Eq. (1) is effectively a

random effects model, also known as a multi-level or

variance components model (Montgomery 2013). The

ANOVA approach uses the method of moments to equate a

set of statistics with their expectations under the model. We

define the following parameters:

• r2h as the variance of ai, i.e. the variance due to primary

uncertainty,

• r2d, r2x , r2xd and r2v as the variances due to the

uncertainty in defence levels, exposure locations, the

defences-exposure interaction and vulnerability respec-

tively (the secondary uncertainties).

Table 1 gives the calculations required for the estimation

of the components (a bar denotes averaging, and the dots

indicate which terms have been averaged over). The Mean

Squares (m:s:C where C denotes the component in ques-

tion) are not shown in the table, but are given by the Sum

of Squares divided by the degrees of freedom. Unbiased

estimators for the parameters are given by:

r̂2v ¼ m:s:V ð2Þ

r̂2xd ¼
m:s:XD � m:s:V

M
ð3Þ

r̂2d ¼
m:s:D � m:s:XD

KM
ð4Þ

r̂2x ¼
m:s:X � m:s:XD

JM
ð5Þ

r̂2h ¼
m:s:Y � m:s:D � m:s:X þ m:s:XD

JKM
ð6Þ

In practice, the variances of the random components in

our model are not constant—for example the uncertainty in

the vulnerability will tend to be higher at lower hazard

levels. However, we can fit the model as if the variances

were constant, using Table 1 and Eqs. (2) to (6), as

described, noting that our parameters are then effectively a

shorthand for the expressions, given below, where the

annual loss, L, has been expressed as a function of hazard,

defence levels, exposure location and vulnerability

i:e: L ¼ gðH;D;X;VÞð Þ:
r2v ¼ EH;X;DðVarVjH;X;D½LjH;X;D�Þ ð7Þ

r2d þ r2xd ¼ EH;XfVarDjH;XðEVjH;X;D½LjH;X;D�ÞjH;Xg
ð8Þ

r2x ¼ EH½VarXjHfED;VjH;XðLjH;XÞgjH� ð9Þ

r2h ¼ VarHfED;V;XjHðLjHÞg ð10Þ

The parameter in Eq. (7), for example, which is represented

by r2v , should be interpreted as follows: we first calculate

the variance in losses due to the stochastic vulnerability

component, given each particular combination of hazard,

exposure and defences, and then calculate the average of

this conditional variance over all the possible

combinations.

To show that the statistics in Table 1 are indeed esti-

mating the expectations in Eqs. (7–10), we would follow a

standard ANOVA proof (see Montgomery 2013 for

example), but express each of the random variables

a; b; c; d and e as a difference between two conditional

expectations. For example, we would express a as

ED;X;V jHðLjHÞ � EH;D;X;VðLÞ, and b as

EX;V jH;DðLjH;DÞ � ED;X;VjHðLjHÞ. The variance of a,
would follow immediately, given the second term is a

constant, giving the expression for r2h in Eq. (10). The other
variances may be calculated by using the law of total

variance, with the law of iterated expectations allowing

simplification of the resulting expressions.

Having estimated the variance components of the annual

loss, we can now estimate the variance of the estimator of

the average annual loss, which is given by:

dAAL ¼ 1

IJKM

X
I

i¼1

X
J

j¼1

X
K

k¼1

X
M

m¼1

Lijkm: ð11Þ

The nested structure in the model means that the losses

Lijkm are not independent— Lijkm and Lij0k0m0 share the same

simulated events, for example. Calculating the variance of

a sum of dependent random variables requires the covari-

ance structure. Returning to the model of Eq. (1), this is

given by:
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CovðLijkm;Li0j0k0m0 Þ
¼ r2h1ði ¼ i0Þ þ r2d1ði ¼ i0; j ¼ j0Þ þ r2x1ði ¼ i0; k ¼ k0Þ
þ r2xd1ði ¼ i0; j ¼ j0; k ¼ k0Þ; ð12Þ

where 1ðxÞ is the indicator function, such that 1ðxÞ ¼ 1 if

x is true, and 0 otherwise.

Allowing for this covariance structure, the variance of

the AAL estimator can be shown to be given by:

Varð dAALÞ ¼ r2h
I
þ r2d

IJ
þ r2x
IK

þ r2xd
IJK

þ r2v
IJKM

: ð13Þ

The precision of the estimator can thus be varied by

changing any or all of I, J, K and M. The impact depends

both on the relative size of the variance component of the

annual loss (which will depend on the portfolio being

analysed), and on the position of that component within the

nested structure. This must be balanced against the com-

putational cost of additional samples of each component.

Adding additional simulation years clearly has the most

impact since I appears in the denominator of all the terms,

but as already discussed, is highly computationally oner-

ous, and can no longer be increased once development of

the model has been finalised.

4.2 Losses with selected return periods

In this section, we consider return levels i.e. the loss values

which are expected to occur once every N years for

selected values of N or the 1� 1=N quantiles of the annual

loss distribution. Both the distributions of the total loss in a

year and the maximum event loss (i.e. the maximum loss

from a single event in a year) are of interest to insurers, but

we focus here on the total annual loss. (The methodology

would be the same in either case).

Define the empirical distribution function F̂ðlÞ by:

F̂ðlÞ ¼ 1

IJKM

X
I

i¼1

X
J

j¼1

X
K

k¼1

X
M

m¼1

1ðLijkm � lÞ; ð14Þ

where 1ðxÞ is the indicator function as before. Define also

the estimator of the pth quantile as L̂p ¼ F̂
�1ðpÞ ¼ inffl :

F̂ðlÞ� pg i.e. we estimate the quantiles from the ordered

annual losses, across all the samples. Then, provided cer-

tain regularity conditions are met (most importantly that F

is continuously differentiable in a neighbourhood of lp,

with first derivative f, see Olsson and Rootzén (1996) for

conditions and a proof for a one-way random effects

model), it can be shown that:

L̂p � lp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðF̂ðlpÞÞ=fðlpÞ2
q !d N 0; 1ð Þ; I ! 1: ð15Þ

The variance of the estimator, L̂p, can thus be approximated

by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðF̂ðlpÞÞ=fðlpÞ2
q

, the term in the denominator, with

lp replaced by its estimator l̂p. In the case where the random

variables are independent, VarðF̂ðlpÞÞ ¼ pð1� pÞ=n, with n

the sample size. The variance of the Bernoulli random vari-

able, 1ðLijkm � lpÞ, is equal to pð1� pÞ. However, our interest
is in variance components, and for this purpose it is useful to

re-express it instead as a summation of component terms by

conditioning and using the general law of total variance, in

the same way as for the annual loss in Eqs. (2–6). We write:

Varð1ðLijkm � lpÞÞ ¼ s2ph þ s2pd þ s2px þ s2pxd þ s2pv ; ð16Þ

where s2ph , for example is the component due to the variation

in the hazard between simulated years (specifically

VarHfED;V;XjHð1ðLijkm � lpÞjHÞg), and the other components

Table 1 ANOVA table for decomposing the total variance into components

Source of variance Sum of squares (SS) Degrees of freedom E (Mean squares)

Hazard (H)
JKM

P
I

i¼1

ð�Li... � �L...Þ2
I � 1 r2v þMr2xd þ KMr2d þ JMr2x þ JKMr2h

Defences (D)
KM

P
I

i¼1

P
J

j¼1

ð�Lij:: � �Li...Þ2
IðJ � 1Þ r2v þMr2xd þ KMr2d

Exposure (X)
JM

P
I

i¼1

P
K

k¼1

ð�Li:k: � �Li...Þ2
IðK � 1Þ r2v þMr2xd þ JMr2x

Interaction (XD)
M

P
I

i¼1

P
J

j¼1

P
K

k¼1

ð�Lijk: � �Lij:: � �Li:k: þ �Li...Þ2
IðJ � 1ÞðK � 1Þ r2v þMr2xd

Vulnerability (V) P
I

i¼1

P
J

j¼1

P
K

k¼1

P
M

m¼1

ðLijkm � �Lijk:Þ2
IJKðM � 1Þ r2v

Total P
I

i¼1

P
J

j¼1

P
K

k¼1

P
M

m¼1

ðLijkm � �L...Þ2
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are due to the variations in the other sampled factors, con-

ditioned as appropriate given the nested structure.

Comparing Eq. (14) with Eq. (11), the similarity is clear.

Instead of averaging the annual losses Lijkm to estimate the

average annual loss, we average the indicator random

variables 1ðLijkm � lpÞ to estimate the distribution function,

FðlpÞ. The latter is equal to p by definition, but the point

here is not to carry out this calculation, but to provide an

insight into how the variance components of the quantile

estimates might be calculated, given different numbers of

samples. The similarity between Eqs. (14) and (11) sug-

gests using the same ANOVA approach to estimate the

variance components of 1ðLijkm � lpÞ, replacing the annual

loss in the equations in Table 1 with an indicator of 0 or 1,

depending on whether the loss in that year/sample is

greater or smaller than the estimated quantile of interest

(noting that this requires a separate set of indicators and

calculations for each required quantile).

Once we have estimated all the s2p components using the

ANOVA, these results can be used to estimate the variance

of F̂ðLpÞ with different numbers of samples in the same

way as we use the variance components of the annual loss

to estimate the variance of the AAL. Here, as for the AAL

(see Eq. 12) we need to allow for the dependencies

between the samples. This gives:

VarðF̂ðLpÞÞ ¼
ŝ2ph
I
þ
ŝ2pd
IJ

þ
ŝ2px
IK

þ
ŝ2pxd
IJK

þ
ŝ2pv

IJKM
: ð17Þ

So finally, an approximate variance of the quantile esti-

mator with I, J, K and M numbers of the different samples,

is given by:

VarðL̂pÞ ¼
ŝ2ph þ ŝ2pd=J þ ŝ2px=K þ ŝ2pxd=JK þ ŝ2pv=JKM

I f ðl̂pÞ2
:

ð18Þ

This equation requires an estimate of the density function,

f ðl̂pÞ. This could be estimated as the gradient of the empirical

CDF using a differencing method or by using kernel density

estimation or an alternative smoothing method. We found

this extremely difficult to do accurately, however, even with

a large number of observations. The difficulty related to

finding an automated method for selecting the required

smoothing parameter, that worked well across all required

quantiles and spatial resolutions. Given this difficulty, we

estimated the total variance using the bootstrapmethod. This

estimate was then used in combination with Eq. (18), obvi-

ating the need to estimate the density function directly.

Bootstrapping could not be used in isolation as a method

for estimating the variance components, since it is impossible

to maintain all the required elements of the random effects

model within the resamples without using a prohibitively

large number of samples of each of the factors: namely the

dependence structure due to the nestedmodel, the randomness

of the effects (i.e. the fact that they are just samples of the

populations, rather than spanning the whole population), and

the balanced design [see for example Field and Welsh (2007)

for a discussion of different bootstrap sampling schemes for

the one-way scenario and the biases involved with different

schemes].However, bootstrapping can be used to estimate the

total variance assuming I simulation years, if we ensure that

there is no dependence by having just a single sample of each

of the secondary uncertainty factors (J ¼ K ¼ M ¼ 1). The

experimental design is detailed in the next section, but note

that, for the estimation of the numerator of Eq. (18), the

ANOVA analysis will require J;K;M[ 1. In summary, the

steps involved here are:

• Design an appropriate computer experiment for the

ANOVA and use it to estimate the variance compo-

nents of F̂ðl̂pÞ for each required p. The sum of the

components will be pð1� pÞ.
• Carry out a simple bootstrap (with no nested structure)

to estimate the total variance of each quantile estimator.

Substitute this variance into Eq. (18) with I the number

of samples used, and J ¼ K ¼ M ¼ 1 in order to

estimate f ðl̂pÞ at each estimated quantile value.

• Use the equation with the estimated sp and densities,

with different values of I, J, K, M, to examine the

impact on the precision of the quantile estimates of

adding additional samples.

A limitation that remains is the fact that the asymptotic

variance equation is not appropriate for non-smooth func-

tions, but the loss density function may have discontinuities

at high levels of resolution (for example because of flood

defences) or for certain financial perspectives. However, in

practice, the return levels are of most interest at lower

levels of resolution and for the gross financial perspective,

where this is not an issue. In any cases where there is a lack

of smoothness, an estimate of the total standard error is

nevertheless available via the bootstrap.

4.3 Computer experiment

In order to estimate the variance components using the

methods described in Section 4, we set up a structured

computer experiment. A set of hazard events over 50,000

simulated years was pre-computed and loaded into the

catastrophe model software engine. Within the engine, the

defence levels, exposure location and vulnerability samples

are all controlled by random seeds (with a seed for each

component), so that running the software again with the same

seeds gives the same results. In order to create the balanced

design, the engine was run several times with different seeds,

and the results were then merged together. For our analysis,
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we used four combinations of two exposure location samples

and two defence samples, with two vulnerability samples

within each of these i.e. I ¼ 50; 000; J ¼ K ¼ M ¼ 2. Tak-

ing two exposure samples, for example, means that within

each year, we sample from the multinomial distribution

parametrised by our exposure weights twice, giving two

slightly different sets of assumed building locations.

The 50, 100, 200 and 500 year return levels were esti-

mated by ordering the 400,000 annual losses in descending

order, and taking the 8000th, 4000th, 2000th and 800th of

these respectively. For the bootstrap to estimate the total

variance of the quantile estimates, we sampled 50,000

annual losses randomly with replacement from the 400,000

and repeated 1000 times.

5 Results

In this section we investigate the variance components of

the average annual loss and return level estimators for a

specific set of input portfolios. All the figures and plots

have been based on the methodology described, with

sample numbers as in Sect. 4.3. We have then calculated

variance components for a single sample by setting I ¼
50; 000 and J ¼ K ¼ M ¼ 1 in Eqs. (13) and (18). This

permits assessment of the benefit of reducing the secondary

uncertainty by increasing the numbers of these samples.

Total standard errors for the estimates with this set-up were

also calculated (these are not shown in the plots). All losses

are on a gross of reinsurance basis.

The results are of interest at different levels of resolu-

tion, depending on the purpose of the analysis, and here we

consider country, CRESTA and postal code sector (sub-

sequently referred to as just postal code). CRESTA

(Catastrophe Risk Evaluating and Standardizing Target

Accumulations) is a standard system, widely used in the

reinsurance industry, which splits the world into natural

hazard risk zones. As an example of the scale, the UK,

excluding Northern Ireland, consists of 120 such zones. We

also consider three distinct lines of business: residential,

commercial and industrial. A representative industry

exposure data set has been used for each country, assuming

that the exposure is known at a postal code resolution.

The purpose of this analysis is to examine the variance

components of the AAL and selected quantiles over many

different example ‘‘portfolios’’ of different size, nature and

spatial domain, where each such portfolio includes the set

of exposures that fall within the specified spatial domain,

for the line of business being considered. For example,

when considering the CRESTA resolution, we have 360

such portfolios within the UK, one for each CRESTA zone

and line of business. The country level portfolios are rep-

resentative of the kind of analysis that users would run for

capital requirement purposes. The smaller portfolios

(CRESTA and postal code level) are of interest for

underwriting, pricing and exposure management.

Figure 1 shows the proportion of the variance of the

average annual loss that is due to primary uncertainty (i.e.

frequency and nature of hazard). The proportion reduces,

and shows increasing variability across portfolios, with

increasing resolution, and is highest for residential business,

and lowest for industrial. These results indicate that there is

little benefit, in terms of improving convergence, in sam-

pling any of the secondary components more than once if an

expected loss is required for a large diversified portfolio,

similar to the country resolution. This is because, even

though the uncertainty in these factors for an individual

event and building can be very high, summing over

numerous events and buildings smooths out these individual

effects. Standard errors of the AAL estimates at this reso-

lution are around 1–3% for a large country-wide portfolio. In

the UK for example, the simulations included over 200,000

events (over 4 per year on average) and over 20 million

insured buildings, with a standard error of 1.1%, across all

lines of business. Meaningful improvements could only be

achieved by increasing the total number of simulated years,

but this would arguably constitute spurious accuracy, given

the other sources of uncertainty discussed in Sect. 1.

What if we require an expected loss for a much smaller

exposure? There is clearly a high variability in the variance

components at postal code resolution. This leads to a very wide

range of standard errors if the secondary uncertainty compo-

nents are only sampled once. Only for residential business is

primary uncertainty still dominant, with a typical standard error

of around 5%, whereas errors are around 8–10% for com-

mercial and industrial, but with some locations with smaller

errors, and others where the errors are significantly larger.

Which of the secondary components is the most impor-

tant, and what drives the results? The ANOVA and related

analysis led to further insights here, which we briefly

summarise. Most of the variance in the average annual loss

estimate for industrial business at postal code resolution is

due to uncertainty in building vulnerability. The difference

compared with residential business is mainly due to the

greater concentration of the exposure in the industrial and

commercial lines of business (i.e. fewer buildings for the

same sum insured), so the diversification benefit is reduced.

Exposure location uncertainty can also lead to a high error

in postal codes with a small number of buildings to be

allocated across many hazard cells, particularly where rel-

atively uniform exposure weights are combined with a high

hazard gradient. The average annual loss may be well-

converged even for a single building, however, if it is in a

high flood risk location, where the events are not too dis-

similar, since each simulation year involves sampling from

the secondary uncertainty distributions.
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The component proportions depend on localised differ-

ences in hazard and defences, but a typical split for each line

of business at postal code resolution is shown in Table 2

(‘‘typical’’ here, being taken as the rounded median pro-

portion across all the postal code level portfolios). The

proportion of the variance of the AAL due to uncertainty in

defence levels and the exact exposure location generally

represent the smallest contributions. However, both of these

contributions to the AAL uncertainty can be much higher for

some postal codes. The 95% quantile of the defence level

contribution to AAL uncertainty across postal codes is

around 30% for residential business, 20% for commercial

and 15% for industrial, whereas the 95% quantile of the

exposure location component is around 20% for commercial

and industrial lines, and only 7% for residential.

We have considered the variance components and

standard errors of the average annual loss estimator. Next

we consider the split between primary and secondary

uncertainty for the return level estimators. Figure 2 shows

these for Country and CRESTA resolution, for 50, 100, 200

and 500 year return levels, by line of business. The pro-

portion of the variance due to primary uncertainty tends to

be fairly similar for return levels of 50–200 years, although

typically reducing slightly with return period, but signifi-

cantly lower at 500 years. Differences between the lines of

business are much less marked than for the AAL.

As for the AAL, variance components of the return

levels depend on localised features of the hazard and

defences, but of the secondary components, vulnerability is

again by far the most important, with an increasing pro-

portion with increasing return period. The uncertainty due

to exposure locations, which is generally very low, simi-

larly increases with increasing return period. The propor-

tion of the total variance that is due to defence level

uncertainty tends to be highest at a return period of around

50, and then reduces with increasing return period.

Intuitively, we might expect the total standard error

(expressed as a percentage of the estimator) to increase

with increasing return period, but this is not necessarily the

case. Equation (18) indicates that the total absolute stan-

dard error of the estimator of the pth quantile, assuming

J ¼ K ¼ M ¼ 1, is proportional to the standard deviation

of 1ðLijkm � lpÞ, and inversely proportional to the density of

events, f ðlpÞ. The standard deviation of 1ðLijkm � lpÞ, which
is equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1� pÞ
p

, is maximised at 0.5, and reduces in

the tails. The density typically also reduces in the upper tail

as the return period increases. When the standard error is

expressed as a percentage of the estimator, another factor is

that this itself is increasing with the return period. The

reduction in the density usually dominates these effects,

leading to higher errors and at countrywide resolution, it is

almost always true that the standard errors do increase with

increasing return period. Standard errors are typically

around 2–3% for the 50 year loss, rising to 3–5% for the

500 year loss, for a large country-wide portfolio.

However, at higher resolutions, local features are no

longer averaged out to the same extent, and this can lead to

density functions and distribution curves that do not follow

Fig. 1 Proportion of the

variance of the AAL due to

primary uncertainty, by line of

business, at different levels of

resolution: Country, CRESTA

and Postal Code. Each data

point represents a result from a

single portfolio (with of the

order of 10, 500 and 30,000

points at these resolutions

respectively, for each line of

business)

Table 2 Typical variance component proportions for the Average Annual Loss at postal code resolution, by line of business (the exposure/

defence interaction is included with the defence level proportion)

LOB Variance component due to uncertainty in

Hazard (Primary)

(%)

Vulnerability

(%)

Defence levels

(%)

Exposure location

(%)

Residential 80 15 5.0 0.0

Commercial 45 40 7.5 7.5

Industrial 15 75 5.0 5.0
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this typical pattern. For example, a region with defences

built to withstand a 100-year event will tend to have a

higher standard error for the 100 year loss (when expressed

as a percentage of that loss), than at higher return periods.

The defences have a gearing effect on the losses, particu-

larly if it is assumed that they either do not fail or fail

completely, with a large difference in losses either side of

the defence level leading to a high standard error. Examples

showing the standard errors of return levels for two UK

CRESTAs are shown in the Appendix. For each of these we

show a map with a set of assumed mean defence levels

(these are example values, but at realistic levels), followed

by an Exceedance Probability (EP) curve, and a plot of the

standard error as a percentage of the estimator, against the

return period. The first example is the region around Crewe

in Cheshire in the north-west of England. The River Weaver

flows from the south to the north, where it is joined by its

tributary, the River Dane. In this CRESTA, the level of

flood risk is relatively low in the main exposure areas, with

correspondingly limited defences. Here, the standard errors

are below 2% up to 100 years, increasing thereafter with

increasing return period. The second, contrasting example,

is the Bath CRESTA in the south-west of England, where

the River Avon flows directly through the high exposure

city of Bath itself. Extensive flood defence improvements

were carried out in the 1970s after severe flooding in the

1960s, with additional improvements currently in progress

(Environment Agency and Bath and North East Somerset

Council 2014). Here, a defence level assumed at 150 years

in our model in the area of high exposure has led to a spike

in the standard error around the 150 year loss, with a peak

error of around 9%.

Note that we are talking here about the impact of the

defences themselves, and not the uncertainty in the defences,

andmost of this error is attributable to primary uncertainty, and

hence not reducible with additional samples of the secondary

uncertainty components. In locations where the uncertainty in

the level of defences is high, the standard error of theAALwill

be increased accordingly, but the gearing effect of the defences

will be smoothed out over return periods, so the standard error

at the mean defence level will be lower than if the defences

were known for certain to be at this level.

6 Conclusion

In this paper we have demonstrated how the ANOVA

model can be used to quantify the components of simula-

tion uncertainty in a natural catastrophe model. We started

with an analysis of the variation in the annual loss using a

Fig. 2 Proportion of the

variance of selected return

levels due to primary

uncertainty at different levels of

resolution (Country, CRESTA),

by line of business. Each data

point represents a result from a

single portfolio (with of the

order of 500 and 30,000 points

at these resolutions respectively,

for each line of business)
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random effects representation and standard techniques. The

variance component estimates were then used to determine

how the standard error of the average annual loss would

change, with different numbers of samples of each of the

stochastic components in the model.

In addition to the average annual loss, selected quantiles

of the loss distribution are also highly important for

insurers and re-insurers, with the 200 year return level of

particular interest for solvency calculations. In order to

derive the variance components of quantiles, we first

extended the approach to the empirical cumulative distri-

bution function at quantiles of interest. Using an asymp-

totic result to relate the variance of quantiles to that of the

empirical CDF, in combination with a bootstrap estimate of

the total variance, we obtained the variance components of

the quantiles themselves, as required.

These analyses allowed us to address themain question that

had motivated the research: to consider the impact of using

different number of samples of each of the stochastic compo-

nents in the Europe Inland Floodmodel, for different portfolio

types. In summary, our results showed that for reserving/cap-

ital requirements when large portfolios are considered, there is

no need to take more than one sample for any of the secondary

uncertainty components. This would allow estimation of the

average annual loss, quantiles of the annual loss distribution,

and the total variance of annual losses, but not of the variance

components, forwhich at least two sampleswould be required.

For underwriting purposes, which involve small exposures,

additional vulnerability samples are highly important in almost

all cases, whereas the exposure and defence components are

important in selected cases only, depending on location. The

detailed analysis, including the sample portfolio results for

different lines of business and at the different levels of reso-

lution, has been used to provide guidance to users, and to help

decide which variance metrics should be included as output

from the model. Each user of the model can then make their

own decision as to the appropriate number of samples to use

(within the flexibility offered), based on their particular port-

folio, analysis, time constraints and computer set-up. The

output from the model will include standard errors of the

statistics, and (if at least two samples of secondary uncertainty

components are used) an indication of how these errors would

change with different numbers of samples.

In addition to addressing this question, the analysis

proved extremely useful at improving our understanding of

both our model, and the nature and uncertainties in the risk

being modelled. In particular, it indicated which components

of the system contribute most to the total uncertainty, for

different portfolios and metrics. At the model development

stage, this helped to identify areas to investigate, where that

uncertainty might productively be reduced, or code written

more efficiently. A summary of the process followed is

given in the flowchart in Fig. 3 of the Appendix.

The framework that we have developed is flexible, and

may readily be applied to other studies and models that use

simulation with multiple stochastic components. It is par-

ticularly useful for large scale studies, where hazard sim-

ulation is highly computer-intensive, and where the

ultimate question of interest relates to the impacts of the

hazard. Hazard impacts may be varied, and may be of

interest, not just at a global level, but also for subsets of the

domain. While the development of this type of model has

been limited in the past, due to its high computational

requirements, this is no longer the case, and models are

increasing in both their complexity, and in their use of

simulations. Understanding and minimising the simulation

uncertainty involved in such complex systems is therefore

an important research topic. The additional information

about simulation uncertainty also supports the move away

from the historical black-box models towards the increased

transparency required by today’s model users and gov-

ernment regulators.

An important aspect of the analysis here has been the

requirement to consider thousands of possible subsets of the

total exposure, in order to understandhow results vary by spatial

location, and size of portfolio. For the Europe Inland Flood

model, for example, calculations were required for over 1500

CRESTA/line of business combinations, and over 100,000

postal code/line of business combinations. Therefore a prag-

matic approach was important, and issues were addressed with

this in mind. As an example, splitting a variance into a large

number of components using what is effectively a ‘‘method of

moments’’ approach can occasionally give nonsensical results,

for examples negative estimates of variance components. This

would ideally be dealt with by re-fitting models excluding the

negative factor or factors. However, in practice such an

approach would require iteration and would result in multiple

differentmodels. Itwas not consideredviable or necessary here,

at least for the investigation stage,with any suchcomponents set

to zero, and others adjusted to retain the total.
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Appendix

Flowchart of model development process

See Fig. 3.
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Fig. 3 Flowchart for the model development process. The decisions are made after considering many different example portfolios. ‘‘Acceptable’’

is not formally defined, but assumed to depend, for example, on the portfolio’s size, level of risk and the statistics considered
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Impact of defences on standard errors of return

levels

See Figs.4, 5.

Fig. 4 Map showing colour-coded defence levels and plots of the Exceedance Probability curve and standard errors by return period for the

Crewe Cresta. Note that the confidence bands are horizontal i.e. they are bands around the quantile, not the probability
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