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Abstract Understanding the spread of any disease is a

highly complex and interdisciplinary exercise as biological,

social, geographic, economic, and medical factors may

shape the way a disease moves through a population and

options for its eventual control or eradication. Disease

spread poses a serious threat in animal and plant health and

has implications for ecosystem functioning and species

extinctions as well as implications in society through food

security and potential disease spread in humans. Space–

time epidemiology is based on the concept that various

characteristics of the pathogenic agents and the environ-

ment interact in order to alter the probability of disease

occurrence and form temporal or spatial patterns. Epi-

demiology aims to identify these patterns and factors, to

assess the relevant uncertainty sources, and to describe

disease in the population. Thus disease spread at the pop-

ulation level differs from the approach traditionally taken

by veterinary practitioners that are principally concerned

with the health status of the individual. Patterns of disease

occurrence provide insights into which factors may be

affecting the health of the population, through investigating

which individuals are affected, where are these individuals

located and when did they become infected. With the rapid

development of smart sensors, social networks, as well as

digital maps and remotely-sensed imagery spatio-temporal

data are more ubiquitous and richer than ever before. The

availability of such large datasets (big data) poses great

challenges in data analysis. In addition, increased avail-

ability of computing power facilitates the use of

computationally-intensive methods for the analysis of such

data. Thus new methods as well as case studies are needed

to understand veterinary and ecological epidemiology. A

special issue aimed to address this topic.

Keywords Epidemiology � Data analytics � Spatial

analysis � Temporal analysis � Networks � Computational

modelling

1 Introduction

Understanding the spread of any disease is a highly com-

plex and interdisciplinary exercise as biological, social,

geographic, economic, and medical factors may shape the

way a disease moves through a population and options -

for its eventual control or eradication (Moustakas and

Evans 2016a; Oleś et al. 2012). Disease spread poses a

serious threat in animal and plant health and has implica-

tions for ecosystem functioning and species extinctions

(Fisher et al. 2012) as well as implications in society

through food security and potential disease spread in

humans (Graham et al. 2008; Tomley and Shirley 2009).

Space–time epidemiology (Knox and Bartlett 1964) is

based on the concept that various characteristics of the

pathogenic agents and the environment interact in order to

alter the probability of disease occurrence and form tem-

poral or spatial patterns (Snow 1855; Ward and Carpenter

2000). Epidemiology aims to identify these patterns and

factors, to assess the relevant uncertainty sources, and to

describe disease in the population. Thus disease spread at

the population level differs from the approach traditionally

taken by veterinary practitioners that are principally con-

cerned with the health status of the individual (Arah 2009).

Patterns of disease occurrence (Markatou and Ball 2014)
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provide insights into which factors may be affecting the

health of the population, through investigating which

individuals are affected, where are these individuals loca-

ted and when did they become infected.

2 Technological advancements

With the rapid development of smart sensors (Aanensen

et al. 2009), social networks, as well as digital maps and

remotely-sensed imagery spatio-temporal data are more

ubiquitous and richer than ever before (Gange and Golub

2016) epidemiology in the big data era needs to integrate

novel methods (Mooney et al. 2015; Pfeiffer and Stevens

2015). The availability of such large datasets (big data)

poses great challenges in data analysis (Fan et al. 2014;

Najafabadi et al. 2015). In addition, increased availability

of computing power facilitates the use of computationally-

intensive methods for the analysis of such data (Moustakas

and Evans 2015). Data mining—methods combining

statistics and computer science—are increasingly

employed (Lynch and Moore 2016) and may provide novel

insights into epidemiological problems (McCormick et al.

2014; Nelson et al. 2014).

3 Let the data speak?

Can big data replace theory? It has been suggested that the

availability of a large volume of data, data deluge will

make the scientific method obsolete (Anderson 2008);

hypothesis-driven, or equation-driven research will become

irrelevant and data mining will be used instead (Anderson

2008). This thesis has generated a large scientific discus-

sion—for some examples across scientific disciplines see

(Benson 2016; Chiolero 2013; Levallois et al. 2013; Toh

and Platt 2013), for online discussions see: https://www.

edge.org/discourse/the_end_of_theory.html. Adding up to

the discussion it has been suggested that experts will

decline in importance in the big data sector (Mayer-

Schönberger and Cukier 2013). There are cases where

model-free forecasting (using machine learning methods)

outperforms the correct mechanistic model for simulated

and experimental data (Perretti et al. 2013). However if one

simply relies on data-driven science several components of

scientific methods will be made poorer: thought experi-

ments (McAllister 1996), stochastic reasoning (Christakos

2010; Pearl 1987), or theoretically-derived predictions may

open a new field and propose as a testable hypothesis

(Gorelick 2011); something feasible in the mathematical

universe is something that may happen in the biologi-

cal/physical universe (regardless upon how likely is that to

happen). A classic example derives from Einstein’s general

relativity theory. The theory was based on the observed

difference for Mercury’s precession between Newtonian

theory and observation i.e. the deviance between observa-

tion and a model. The theory at the time that was developed

lacked data but it was at later time steps verified by data. A

data-driven science is welcome but we cannot afford to

lose well established, tested through time scientific

methods.

4 Are more data always better?

While the answer may look an obvious yes and that the

only challenge is how to handle, visualise, and analyse

large datasets, this is not always the case. Big datasets

bring a lot of spurious correlations which appear to be

simply relationships between things that are just random

noise (Silver 2012). In addition big datasets allow easier

‘cherry-peaking’, people can choose which fractions of the

data to use in order to show something that they already

support or simply to produce a novel result, while a larger

dataset may have simply falsified the reported result (Silver

2012), or simply verified something that was already

known (Donoho and Jin 2015), therefore this would not

merit a groundbreaking result/publication (Silver 2012). In

addition, factor analysis in time series in econometrics

showed that collating several datasets together may gen-

erate cross-correlated idiosyncratic errors, or a dominant

factor in a smaller dataset may be a dominated factor in a

larger dataset (Boivin and Ng 2006). In such cases smaller

datasets have yielded results at least as satisfactory or in

fact even better than larger datasets (Boivin and Ng 2006;

Caggiano et al. 2011). Methods accounting for the effects

of cross correlated errors have been proposed (Blair and

Bar-Shalom 1996). While these examples are mentioned in

order to highlight problematic issues related with big data,

more often than not certainly more data are desirable than

fewer.

5 Data availability and model complexity

A study in climate modelling has shown that as the models

are becoming increasingly complex and realistic, they are

also becoming less accurate because of cumulative uncer-

tainties (Maslin and Austin 2012). In the case of climate

modelling earlier models did not account for many

important factors that are now being included (Maslin and

Austin 2012). The simplicity of the models also prevented

the uncertainties associated with these factors from being

included in the modelling. The uncertainty remained hid-

den. More complex models that include more factors are

also associated with higher uncertainties (Maslin and
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Austin 2012). There is thus the paradox that as models are

becoming more complex and more realistic (matching the

real world better) they also become more uncertain. Eco-

logical systems are quite complex with many small taper-

ing effects, large heterogeneity, and interactions that are

generally unknown. On an information-theoretic approach,

‘information’ about the biological system under study

exists in the data and the goal is to express this information

in a compact way (Evans et al. 2014; Lonergan 2014); the

more data available the more information exists, i.e. a more

complicated statistical model may approximate the data

(Burnham and Anderson 2002) and more complex pre-

dictive models (process based models such as individual

based models) may be calibrated (Evans and Moustakas

2016).

6 The importance of pubic data

While several new technologies providing a large volume

of data exist (mentioned earlier in this paper), publicly

available data from governmental organizations as well as

data sharing among scientists (Michener 2015) having

public data repositories are easier than ever due to large

computer storage availabilities as well as fast network

connections for downloading them. These public data

promote transparency and accountability in the analysis,

the potential for data expansion by merging several data-

sets together, as well as building up the impact of the work

(Kenall et al. 2014; Piwowar and Vision 2013). In order to

predict and mitigate disease spread informed decisions are

needed. Often decisions involve conflicts between several

stakeholders (Krebs et al. 1998; Moustakas 2016). These

decisions need to be taken based on data analysis and

predictive models calibrated with data. Making publicly

available data will greatly facilitate their analysis and to

informed decisions. For a review of publicly available

veterinary epidemiological data with web sources links see

(Pfeiffer and Stevens 2015).

7 Spatio-temporal data mining in veterinary
and ecological epidemiology

There is thus a need for new methods as well as case

studies to enhance our understanding in spatio-temporal

data mining in veterinary and ecological epidemiology. A

special issue in the journal Stochastic Environmental

Research and Risk Assessment aimed to address this topic.

Potential thematics included: spatiotemporal statistics

(Biggeri et al. 2016; Picado et al. 2007), stochastic analysis

(Heesterbeek 2000; Marx et al. 2015), Bayesian maximum

entropy modeling (Biggeri et al. 2006; Juan et al.

2016), big data analytics (Andreu-Perez et al. 2015;

Guernier et al. 2016), GIS and Remote Sensing (Ferrè et al.

2016; Norman et al. 2012), Trajectories and GPS tracking

(Demšar et al. 2015; Zhang et al. 2011), Agent Based

Modelling calibrated with data (Dion et al. 2011; Mous-

takas and Evans 2015; Smith et al. 2016), decision making

and risk assessment (Fei et al. 2016; Lowe et al. 2015),

network and connectivity analysis (Nobert et al. 2016;

Ortiz-Pelaez et al. 2006) and co-occurrence and moving

objects (Miller 2012; Webb 2005). Nine contributions were

finally accepted after peer reviewing.

Bayesian analysis of spatial data often uses a condi-

tionally autoregressive prior, expresses spatial dependence

commonly present in underlying risks or rates. These

conditionally autoregressive priors assume a normal den-

sity and uniform local smoothing for underlying risks often

violated by heteroscedasticity or spatial outliers encoun-

tered in epidemiological data. Congdon (2016) proposes a

spatial prior representing spatial heteroscedasticity within a

model accommodating both spatial and non-spatial varia-

tion. The method is applied both in a simulation example

based on US states, as well as in a real data application

considers Tuberculosis incidence in England (Congdon

2016). The code used for generating simulations is also

provided in R (R Development Core Team 2016).

An understanding of the factors that affect the spread of

endemic bovine tuberculosis is critical for the control of the

disease. Analyses of data need to account for spatial

heterogeneity, or spatial autocorrelation may inflate the

significance of explanatory covariates. Brunton et al.

(2016) used three methods, least-squares linear regression

with a spatial autocorrelation term, geographically weigh-

ted regression, and boosted regression tree analysis, to

identify the factors that influence the spread of endemic

bovine tuberculosis at a local level in England and Wales.

The methods identified factors related to flooding, disease

history and the presence of multiple genotypes of endemic

bovine tuberculosis and these factors were consistent

across two of the three methods (Brunton et al. 2016).

Early warning indicators are particularly useful for

monitoring and control of any disease. Malesios et al. (2016)

provide an early warning method of sheep pox epidemic

applied in data from Evros region, Greece. To provide

inference on the mechanisms governing the progress of

sheep pox epidemic (Malesios et al. 2016) follow a two-stage

procedure. At the first stage, a stochastic regression model is

fitted to the complete epidemic data. The second stage uses

an analogy of the fitted model with branching processes in

order to obtain a system of estimating the probability of the

epidemic going extinct at each of several time points during

this epidemic. The end result is an evidence-based early

warning system that could inform the authorities about the

potential spread of the disease, in real-time.
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Japanese encephalitis, a vector-borne disease transmitted

by mosquitoes and maintained in birds and pigs. To examine

the potential epidemiology of the disease in the USA, Riad

et al. (2016) use an individual-level network model that

explicitly considers the feral pig population and implicitly

considers mosquitoes and birds in specific areas of Florida

and Carolina. To model the virus transmission among feral

pigs, two network topologies are considered: fully connected

and random with a defined probability networks. Patterns of

simulated outbreaks support the use of the random network

similar to the peak incidence of the closely related West Nile

virus, another virus in the Japanese encephalitis group (Riad

et al. 2016). Simulation analysis suggested two important

mitigation strategies.

Disease outbreaks are often followed by a large volume

of data, usually in the form of movements, locations and

tests. These data are a valuable resource in which data

analysts and epidemiologists can reconstruct the transmis-

sion pathways and parameters and thus devise control

strategies. However, the spatiotemporal data gathered can

be both vast whilst at the same time incomplete or contain

errors. Enright and O’Hare (2016) provide a user friendly

introduction to the techniques used in dealing with the

large datasets that exists in epidemiological and ecological

science and the common pitfalls that are to be avoided as

well as an introduction to Bayesian inference techniques

for estimating parameter values for mathematical models

from spatiotemporal datasets. The analysis is showcased

with a large dataset from Scotland and the code and data

used in this paper are also provided (Enright and O’Hare

2016).

Mechanistic epidemiological modelling has a role in

predicting the spatial and temporal spread of emerging

disease outbreaks and purposeful application of control

treatment in animal populations. Lange and Thulke (2016)

address the newly emerging epidemic of African swine

fever spreading in Eurasian wild boar using an existing

spatio-temporally explicit individual-based model of wild

boar. Lange and Thulke (2016) propose a mechanistic

quantitative procedure to optimise calibration of several

uncertain parameters based on the spatio-temporal simu-

lation model output and the spatio-temporal data of

infectious disease notifications. The best agreement with

the spatio-temporal spreading pattern was achieved by

parameterisation that suggests ubiquitous accessibility to

carcasses but with marginal chance of being contacted by

conspecifics e.g., avoidance behaviour. The parameter

estimation procedure is fully general and applicable to

problems where spatio-temporal explicit data recording

and spatial-explicit dynamic modelling is performed.

In the last two decades, two important avian influenza

viruses infecting humans emerged in China, the highly

pathogenic avian influenza H5N1 virus, and the low

pathogenic avian influenza H7N9 virus. China is home to

the largest population of chickens and ducks, with a sig-

nificant part of poultry sold through live-poultry markets

potentially contributing to the spread of avian influenza

viruses. Artois et al. (2016) compiled and reprocessed a

new set of poultry census data and used these to analyse

H5N1 and H7N9 distributions with boosted regression

trees models. Artois et al. (2016) found a positive and

previously unreported association between H5N1 out-

breaks and the density of live-poultry markets.

Transmitted infectious diseases, aggregate regional

chronic diseases, and seasonal or transitory acute diseases

can cause extensive morbidity, mortality and economic

burden. Since the space–time distribution of a disease

attribute is generally characterized by considerable uncer-

tainty, the attribute distribution can be mathematically

represented as a spatiotemporal random field model.

Christakos et al. (2016) present a random field model of

disease attribute that transfers the study of the attribute

distribution from the original spatiotemporal domain onto a

lower-dimensionality travelling domain that moves along

the direction of disease velocity. The partial differential

equations connecting the disease attribute covariances in

the original and the travelling domain are derived with

coefficients that are functions of the disease velocity. The

theoretical model is illustrated and additional insight is

gained by means of a numerical mortality simulation study,

which shows that the proposed model is at least as accurate

but computationally more efficient than mainstream map-

ping techniques of higher dimensionality (Christakos et al.

2016).

Moustakas and Evans (2016b) use a very large dataset

generated by a calibrated agent based model to perform

network analysis, spatial, and temporal analysis of bovine

tuberculosis between cattle in farms and badgers. Infected

network connectedness was lower in badgers than in cattle.

The contribution of an infected individual to the mean

distance of disease spread over time was considerably

lower for badger than cattle. The majority of badger-in-

duced infections occurred when individual badgers leave

their home sett, and this was positively correlated with

badger population growth rates. The spatial aggregation

pattern of the disease in cattle and badgers is different

across scales—in badgers, we find that the disease is found

in clusters whereas in cattle the disease is much more

random and dispersed. There is little geographical overlap

between farms with infected cattle and setts with infected

badgers, and cycles of infections between the two species

are not synchronised. The findings reflect the movements

of the animals—for example, cattle move greater distances

within their grounds or they can be sold to farms further

afield. Conversely, badgers are social animals that live in

groups, and rarely leave their homes, meaning that the
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presence of TB is more clustered (Christakos et al. 2016).

The research suggests that an efficient way to vaccinate

badgers might be to follow the spatial pattern of TB

infections. This targeted approach would save labour and

costs to control the spread of the disease.
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