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Abstract Accounting for the stochastic nature of envi-

ronmental outcomes when quantifying economic environ-

mental trade-offs with mathematical programming models

requires the use of probabilistic programming approaches

like the upper partial moment (UPM) method. Application

of the UPM model may result in overregulation and losses

in farm profit because the probabilistic constraint is satis-

fied at a higher level than the specified compliance prob-

ability, resulting in conservative responses from polluters.

The main objective of this article was to present the upper

frequency method as an alternative to enforce a proba-

bilistic constraint with a close bound to the actual com-

pliance probability. The UFM uses binary variables in a

linear programming framework to enforce the probability

bound on an empirically distributed outcome variable.

Results showed that the UPM model was very conservative

in the estimation of the upper probability bound, which

resulted in an overestimation of abatement costs and an

underestimation of the average amount of pollution above

the environmental goal. Inconsistencies also exist between

the ranking of alternatives when comparing the UPM and

UFM methods. The UFM is general enough to ensure that

the technique can be applied to any problem where the

researcher is concerned with the risk of exceeding a

specified target level.

Keywords Conservativeness � Economic-environmental

trade-offs � Environmental risk � Nitrogen losses � Safety-
first � Upper partial moment � Upper frequency method
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1 Introduction

Weersink et al. (2002) argue that optimal resource alloca-

tion is important not only because of its effects on farm

income but also because of its environmental impact. Non-

point source (NPS) pollution stemming from agricultural

practices is seen as a major cause of the remaining water-

quality problems in developed and developing countries

(Shortle et al. 1998; Rossouw and Görgens 2005; Ranga

Prabodanie et al. 2010; Li et al. 2014a, b). Consequently,

there is increased pressure on agriculture to use resources

optimally in order to reduce the negative environmental

effect caused by agricultural practices (Shortle et al. 2001).

In the absence of a market for reduced environmental

emissions, the information generated with trade-off anal-

ysis will be critical for informed policy decision making, as

it allows policy makers and the public to assess whether a

given improvement in environmental quality is worth the

sacrifice in agricultural production (Stoorvogel et al. 2004).

Generating economic-environmental trade-off curves is

a complicated endeavor and requires quantifying the inter-

relationships between sustainability indicators implied by

the underlying biophysical processes and producers’ eco-

nomic behavior (Ranga Prabodanie et al. 2010). Alterna-

tive abatement strategies and/or policy instruments are

compared on the basis of the alternative that achieves an

environmental goal with the least impact on the economic

indicator. A complicating factor is that environmental
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emissions are inherently stochastic as a result of a variety

of environmental conditions (Horan 2001; Kampas and

White 2004; Kataria et al. 2010). Consequently, pollution-

control strategies should be aimed at improving the dis-

tribution of outcomes rather than some scalar value

(McSweeny and Shortle 1990). By implication, these

control strategies will achieve environmental goals with

only a measure of certainty.

A modeling alternative to incorporate the variability of

environmental outcomes while quantifying economic-en-

vironmental trade-offs is chance-constrained programming

(CCP) (Li et al. 2014b; Kataria et al. 2010; Kampas and

White 2003). The application of CCP requires the speci-

fication of a functional form for the distribution of the

environmental variable (Qiu et al. 2001). Various

researchers have shown that the distributional assumptions

employed in CCP models have a significant impact on the

estimated trade-offs (Zhu et al. 1994; Qiu et al. 2001;

Kampas and White 2003; Kataria et al. 2010) and may not

hold for all situations as a result of the site-specific nature

of agricultural NPS pollution (Wang et al. 2016; Qiu et al.

2001). To overcome the problem, techniques like the

Environmental Target-MOTAD model (Teague et al. 1995)

were developed to estimate economic-environmental trade-

offs while making use of empirical distributions. Qiu et al.

(1998) scrutinized the use of the Environmental Target-

MOTAD model and argued that it would be difficult to

apply because the scientific basis for the selection of a

reasonable environmental risk level is weak. As an alter-

native, these researchers developed the upper partial

moment (UPM) stochastic inequality that provides a

stronger scientific basis for modeling economic-environ-

mental trade-offs because the environmental risk level is

given by the compliance probability.

A potential problem with the application of the UPM

model (Qiu et al. 2001) in enforcing a probabilistic con-

straint is the fact that the actual compliance probability is

larger than the specified compliance probability. Even

though specified compliance levels may be equal across

alternatives, the actual compliance and the optimal man-

agement responses may differ significantly between alter-

natives. These differences raise questions about the fairness

with which alternatives are compared. Some researchers

(Atwood et al. 1988; Qiu et al. 2001) have raised concerns

about the conservativeness1 of the UPM, although neither

of these researchers has investigated the severity of the

conservativeness.

The main objective of the article was to present an

alternative method to enforce a probabilistic constraint

with a probability bound close to the actual compliance

probability, which will result in a less biased comparison

between alternatives. The method is applied to demonstrate

that the UPM model is very conservative in the estimation

of the upper probability bound, which results in an over-

estimation of abatement costs and an underestimation of

the average amount of pollution above the environmental

goal.

The newly developed upper frequency method (UFM)

counts the number of states with deviations above the

environmental goal in an effort to ensure that the deviations

above the goal do not exceed the number of deviations

allowed by the model. Like the UPM, the UFM uses an

empirical distribution of the environmental outcome to

enforce the probabilistic constraint, which overcomes the

need to specify the statistical distribution of the outcome

variable. The generality of the method makes it applicable

to any situation where the risk of exceeding a specified

target level is of concern.

2 Conservativeness of the upper partial moment

Safety-first rules are concerned with the probability of a

variable falling above or below a critical or target level.

Probabilistic safety-first constraints can be imposed using

different chance-constraint bounds such as the distribution-

free Chebyshev stochastic inequality. Imposing the prob-

abilistic constraints through the use of Chebyshev’s

inequality generates strongly conservative probability

bounds (Atwood et al. 1988). Realizing the need for a

tighter probability bound Berck and Hihn (1982) intro-

duced a semi-variance inequality that is able to generate a

tighter upper probability bound compared to the Cheby-

shev. The semi-variance inequality follows Markowitz

(1970) in that the mean-semivariance is a more attractive

measure of risk than the mean–variance approach of the

Chebyshev. Atwood (1985) extended Berck and Hihn’s

(1982) semi-variance inequality with a more general lower

partial moment stochastic inequality to enforce constraints

with a smaller upper probability limit than the Chebyshev

and the semi-variance inequality. Although the probability

bound of the UPM method is tighter than the Chebyshev

inequality, the bound is still conservative (Atwood et al.

1988; Qiu et al. 2001).

The probabilistic constraint of achieving a specified

environmental goal is defined as follows using the UPM2:

Pr x� t þ ph tð Þ½ � � h tð Þ= g� tð Þ� 1=pð Þ ð1Þ1 Conservativeness relates to a difference between the specified and

actual compliance probabilities. Larger differences give rise to higher

levels of conservativeness. Reducing the level of conservativeness

implies tighter upper probability bounds. 2 See Appendix 1 for the derivation of the inequality.
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where x is the pollution variable, t is a reference pollution

level, g is the environmental goal, h tð Þ is the UPM mea-

sured as absolute deviation above t, and p ¼ 1
1�cp

� �
and cp

are the compliance probability.

Figure 1 is used to explain the application of Eq. 1 and

the origins of the overestimation of the actual compliance

probability when using the UPM to enforce the proba-

bilistic constraint. The stylized example that was devel-

oped portrays a situation where the environmental goal, g,

must be maintained at least 75% of the time. The dotted

line represents the cumulative probability distribution of x.

Enforcing the probabilistic constraint within an optimiza-

tion framework requires that a reference pollution level, t,

be determined during the optimization so that the UPM,

h tð Þ, expressed as a portion of the difference between g and

t, is equal to 1� cp. Graphically the difference between g

and t is represented by the summation of the areas labeled

from 1 to 4, which are equal in size. The shaded area

indicating h tð Þ extends beyond g. However, the area of the

shaded triangle that goes beyond g is exactly the same size

as the area of block 1 that is not shaded. Therefore, h tð Þ is
equivalent to the area of block 1. Thus,

h tð Þ
g�t

is 25%, even

though some pollution levels above g are possible. Speci-

fying a value of p ¼ 4 will ensure that the proportion is

25% because t þ ph tð Þ ¼ g. As a result, t will be achieved

with the specified cp while g will be achieved with a higher

cp, which gives rise to the overestimation of the actual

compliance probability when using the UPM inequality to

enforce probabilistic constraints.

The only known input parameters to the optimization

problem are g, cp, and, therefore, p. The distribution of

nitrate losses is conditional on the choice of production

practices that will maximize producers’ profit margin,

given that nitrate losses are no more than g, 1� cp percent

of the time. The choice of t and therefore the size of h tð Þ
are significantly affected by the endogenously determined

distribution of nitrate losses. Thus, there is no chance of

predicting the actual probability that g will be achieved,

apart from knowing the bound will be tighter than cp with

which t is satisfied.

From an environmental point of view, a tighter prob-

ability bound is beneficial. However, from a polluter’s

point of view, a tighter bound implies overregulation,

which may cause considerable loss of profits. The only

way to compare alternatives for reducing environmental

pollution correctly is to compare alternatives with meth-

ods that will generate small differences between speci-

fied- and actual cp.

The dashed line represents the distribution of nitrate

losses that will achieve g at the given cp. Such an envi-

ronmental outcome could be achieved by determining

states of nature with deviations above g and then restricting

the number of states to 25% of the number of total states of

nature. Teague et al. (1995) have demonstrated that states

with deviations above g could easily be identified using an

Environmental Target-MOTAD framework.

Several indicators could be used to determine the con-

servativeness of the UPM. The most obvious indicator is to

compare the specified compliance probability that is used

in the UPM to the actual compliance probability as an

indicator of the conservativeness of the compliance prob-

ability estimate. The UFM allows for at least two new

measures to determine the conservativeness of the UPM.

Firstly, the difference between the average pollution levels

above the environmental goal for the UPM and UFM3

could be compared for obtaining an indication of the

environmental impact. Secondly, the cost to the polluter

could be estimated by comparing the objective function

values of the UPM and UFM to determine the impact on

the polluter.

3 Data and procedures

3.1 Data simulation

Crop growth modeling provides a powerful means of

generating yield response and environmental indicators for

alternative management practices when field measurements

are lacking (Weersink et al. 2004; Samarawickrema and

Belcher 2005). Quasi-experimental data on yield response

and nitrate losses were simulated with a mechanistic,

generic crop growth model originally developed for irri-

gation scheduling (Annandale et al. 1999). The Soil Water

Balance (SWB) model was extended by Van der Laan

(2009) through the addition of nitrogen and phosphorus

simulation routines and algorithms to simulate above-0
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Fig. 1 A stylized graphical illustration of the upper partial moment

(UPM) and the upper frequency method (UFM)

3 For the UFM the average pollution levels above the environmental

goal are the a-percentile conditional value at risk used in the finance

literature.
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ground nitrogen mass, grain nitrogen mass, soil water

content and the fate of nitrogen. Van der Laan (2009)

tested and validated SWB using historical datasets col-

lected in the Netherlands, Kenya and South Africa.

The SWB model was used to simulate crop production

and an environmental indicator consisting of nitrate losses

(runoff and leaching) for the production of late monoculture

maize (planting date 15 December) under irrigation on two

soil types at Glen, South Africa. Maize production was

simulated for a sandy clay loam (SCL) and sandy clay (SC)

soil using 19 years of weather data while assuming an initial

soil nitrogen level of 33 kg. Nine levels of fertilizer could be

applied in either a single or a split application. When using

split applications two-thirds of the desired nitrogen level

were applied on the day of planting, while the remaining

third was applied seven weeks later. Only applications above

70 kg/ha were applied in a split application.

3.2 Quantifying environmental risk

Unique production conditions during a specific production

year cause nitrate loss response to increasing levels of

fertilizer application rates to be different between produc-

tion years. As a result the procedure that is adopted in this

research deviates from the norm where a single response

function is fitted using all the data points and risk is

characterized as deviations from the fitted response func-

tion. Instead, our methodology estimates a response func-

tion for each production year. Any unexplained variability

not captured by the year-specific response function is

treated as the risk of not being able to predict nitrate loss as

a function of nitrate application rates within a specific year

exactly. Using all the year-specific stochastic nitrate loss

response functions simultaneously will characterize the

risk of not knowing which year will occur, as well as the

risk of not being able to exactly predict nitrate loss in the

circumstances that the resulting year is known. The benefit

of estimating year-specific response functions is that the

procedure automatically models the heteroscedasticity of

nitrate losses embedded in the data.

Next, the procedure that was used to construct the

empirical distribution of the environmental risk indicator is

discussed in more detail. According to Richardson et al.

(2000), the first step is to determine the non-random (pre-

dictable) component using regression analysis. The fol-

lowing equation was estimated for each production year

using ordinary least squares (OLS):

Ês Nf

� �
¼ e1s þ e2sNf þ e3sN

2
f þ ssf ð2Þ

where Ês Nf

� �
represents the predicted nitrate losses in

production year s as a function of the simulated nitrogen

application rates (Nf ) (kg/ha), eis is the ith estimated

coefficient for the nitrate loss function in year s; and ssf is
the estimation error for the regression of year s given

nitrogen application rate f . In total 19 different regression

equations were estimated using the nitrate losses simulated

for nine distinct fertilizer application rates (Nf = 20, 45,

70, 95, 120, 145, 170, 195, 220). The random component

associated with nitrate loss response in each year is rep-

resented by the regression residual, which was calculated

as:

ssf ¼ Esf � Ês Nf

� �
ð3Þ

where Esf represents simulated nitrate losses in year s for

nitrogen application rate f . The empirical outcomes that

characterize the variability of nitrate losses for any given

level of nitrogen fertilizer application rate are calculated by

combining the predictable and random components as

follows:

~Esf Nð Þ ¼ Ês Nð Þ þ ssf ð4Þ

where ~Esf Nð Þ is the empirically distributed nitrate losses as

a function of nitrogen application rate. Important to note is

that ~Esf Nð Þ is a continuous function that is not restricted to

the nine levels of N used during the simulation process.

Equation (4) shows that the empirical distribution of nitrate

loss is represented by outcomes for every production year

(s) and the error associated with every simulated fertilizer

application rate (f ). Therefore, 171 (s� f ) outcomes

characterize the risk of nitrate losses.

The nitrate loss response functions estimated using Eq 2

are presented in Appendix 2. Results for the response

functions show that the nitrate losses are unique in every

production year. During production year, S12, no rela-

tionship could be identified between nitrate losses and

fertilizer use. Investigation of the data showed that no

nitrate losses were simulated for the production year in

question since no losses occurred as a result of a very dry

production year. The bulk of the estimations explain a great

deal of the variation in the simulated data with a good R2.

However, not all of the estimations show a high R2, indi-

cating that not all of the variation in nitrate losses is due to

the amount of nitrogen fertilizer applied. A detailed dis-

cussion of the estimated response functions is available in

Matthews (2014).

3.3 Gross margin estimation

In our application, modeling economic-environmental

trade-offs requires a continuous function that relates aver-

age gross margins to any nitrogen application level. The

use of continuous response functions overcomes the

problem of input diversification. Use of discrete activities

(non-continuous) for nitrogen application levels, gross
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margin and the nitrate loss levels could results in input

diversification by the solution procedure, resulting in

results that are near impossible to achieve in practice. The

procedure that was used to construct the empirical distri-

bution of nitrate losses was used to construct the variation

in gross margins as a function of fertilizer application. The

gross margin outcomes were then averaged to yield the

economic indicator. Specifically, expected gross margins

were estimated using the following equation:

GM Nð Þ ¼
X
sf

psf ~Ysf Nð ÞPY � NPN � ~Wsf Nð ÞPW

�

�Ca � CY
~Ysf Nð Þ

� ð5Þ

where GMs Nð Þ is the expected gross margin as a function

of applied nitrogen (ZAR/ha).4 ~Ysf Nð Þ is the empirical

distribution of crop yield (ton/ha) as a function of applied

nitrogen (NÞ, ~Wsf Nð Þ is the empirical distribution of water

applications (mm) as a function of applied nitrogen, N is

the amount of nitrogen fertilizer (kg/ha) applied. PY is the

price of maize (ZAR/ton), PN is the price for nitrogen

fertilizer (ZAR/kg), PW is the cost of applying irrigation

water (ZAR/mm). CA is the area-dependent cultivation cost

(ZAR/ha), CY is the yield-dependent harvesting cost

(ZAR/ton), and psf is the probability that outcome sf will

occur. psf is equal to
1

s�f
.

The empirical distributions of crop yield (~Ysf Nð Þ) and

applied irrigation water ( ~Wsf Nð Þ) were respectively calcu-

lated with Eqs 6 to 8 and Eqs 9 to 11.

Ŷs Nf

� �
¼ b1s þ b2sNf þ b3sN

2
f þ esf ð6Þ

esf ¼ Ysf � Ŷs Nf

� �
ð7Þ

~Ysf Nð Þ ¼ Ŷs Nð Þ þ esf ð8Þ

Ŵs Nf

� �
¼ x1s þ x2sNf þ x3sN

2
f þ lsf ð9Þ

lsf ¼ Wsf � Ŵs Nf

� �
ð10Þ

~Wsf Nð Þ ¼ Ŵs Nð Þ þ lsf ð11Þ

bis and xis represent the ith OLS-estimated coefficients

respectively for the yield response function and the irri-

gation water response function in the regression for year s;

while esf and lsf represent the estimation errors of the yield

response and irrigation water response functions

respectively.

Account should be taken of the fact that crop yield was

only estimated as a function of nitrogen applications and

seemingly no relationship exists between water applica-

tions and crop yield. No relationship was modeled because

the auto irrigation strategy that was used to determine the

timing and number of water applications during the data-

simulation process was set up in such a manner that water

was never limiting to crop development. Inspection of the

simulated data, however, revealed that water applications

were lower when crop yield was reduced because of nitrate

deficiencies. SWB reduces the leaf area index when nitrate

deficiencies occur and consequently crop transpiration was

reduced and resulted in less irrigation water being applied.

Thus, crop yield was modeled as a function of nitrogen

applications because water never limited crop production

while changes in water applications were modeled as a

function of nitrogen applications because an underdevel-

oped crop requires less irrigation water.

Production cost data and input prices for 2014 are from

Griekwaland-Wes Cooperation (GWK Ltd), South Africa.

Table 1 presents the crop price and the input costs used in

this paper.

3.4 Economic-environmental compliance models

Data parameters for average gross margins and empirical

distributions of nitrate losses are estimated for 220 differ-

ent fertilizer application rates,5 with the use of the proce-

dures outlined above. The generated data parameters are

incorporated into an UPM model and an UFM model to

estimate the conservativeness of the UPM. Both compli-

ance models include equations that are generic to both

compliance models and equations that are specific to the

method used to model compliance. The optimization model

was developed in GAMS (GAMS Development Corpora-

tion 2007a) and solved using the CPLEX solver (GAMS

Table 1 Crop price and input costs for maize production at Glen,

South Africa

Maize price 2400 ZAR/ton

Fertilizer (nitrogen) 15.38 ZAR/kg

Water and cost of irrigation 2.25 ZAR/

mm

Mechanization cost to apply fertilizer in a split

application

504.88 ZAR/

ha

Harvesting cost 65.39 ZAR/ha

Transport cost 69 ZAR/ton

Fixed costs (for seed, plant protection, machinery,

irrigation equipment, cost of other nutrients

applied, etc.)

8723 ZAR/ha

4 The exchange rate as on 30 September 2014: 1 ZAR = 0.08861

USD, where ZAR indicates South African Rands.

5 Due to slow convergence of the solution procedure data parameters

for gross margin and the empirical distribution of nitrate losses were

simulated using the estimated response functions. The use of 220

different fertilizer-application rates ensures a smooth approximation

of the response functions.
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Development Corporation 2007b). Next, the generic model

will be discussed followed by the specific equations nec-

essary to model compliance with the UPM model and the

UFM model.

3.4.1 Generic model

The generic model specification includes the objective

function as well as constraints to limit intensive and

extensive margin responses. The following equations are

generic to both compliance models:

Maximise TGM ¼ GM Nð Þ
� �

� HA ð12Þ

s.t.

N� 220 ð13Þ
HA� 1 ð14Þ

where TGM is the total gross margin as a function of

applied nitrogen (ZAR) and the area cultivated, HA

(measured in ha). The area cultivated can be interpreted as

the absolute area cultivated or as a fraction of the area

available for cultivation.

The decision variables are the fertilizer application rate

and the irrigated area that will maximize the total gross

margin. Fertilizer applications were limited to a maximum

of 220 kg/ha while the area planted was constrained to be

no more than one hectare.

3.4.2 Environmental compliance with the upper partial

moment (UPM)

The compliance models require additional equations to

model compliance with the user-specified environmental

goal of 28 kg of nitrate. The generic model was used to

determine baseline levels of nitrate losses for production on

all soil types and using both fertilizer application methods.

The assumption was made that policy makers would want

to reduce the probability of an average amount of nitrate

loss. Therefore, the nitrate losses for all four alternatives

were averaged to determine a homogenous nitrate loss goal

of 28 kg.

The equations that are added to the generic model to

complete the UPM model are given below:

t � ~Esf Nð Þ
� �

HA� dsf � 0 ð15Þ
X
sf

psf dsf � h tð Þ ¼ 0 ð16Þ

t þ p�h tð Þ� g ð17Þ

t is the endogenously determined reference level for the

environmental variable with dsf being the deviation of

pollution emissions above the pollution reference level t for

outcome sf and g – the environmental goal set by the

environmental regulator. h tð Þ, where h tð Þ ¼ h 1; tð Þ ¼
q 1; tð Þ, represents the endogenously determined environ-

mental risk level or the expected deviation above the ref-

erence level t. Furthermore, p� [p� ¼ 1
1�cp

� �
] is the inverse

of one minus the compliance probability with respect to g.

As mentioned earlier in this article the probabilistic

constraint of the UPM in Eq. 16 is enforced by choosing a

reference pollution level, t, so that the UPM, h tð Þ,
expressed as a portion of the difference between g and t; is

equal to the acceptable probability 1� cpð Þ of the pollution
level being greater than the goal. The deviation of pollution

emissions (dsf ) above the endogenously determined refer-

ence pollution level (t) is estimated with Eq. 15. These

deviations are multiplied by their occurrence probability to

estimate the UPM, h tð Þ, as absolute deviations from the

reference pollution level.

3.4.3 Environmental compliance with the upper frequency

method (UFM)

The UFM of enforcing probabilistic environmental

compliance is based on the premise that any compliance

probability can be expressed for the discrete case as the

frequency with which a goal may be exceeded.

Restricting the number of states in which the environ-

mental goal might be exceeded guarantees compliance.

The UFM utilizes the Environmental Target-MOTAD

model specification to identify states of nature in which

the environmental goal is exceeded and uses binary

variables to restrict the number of times the goal is

exceeded. The following equations were used to ensure

compliance:

g� ~Esf Nð Þ
� �

HA� dsf � 0 ð18Þ

�IBsf þ dsf � 0 ð19Þ
X
sf

Bsf � uf ð20Þ

where Bsf is a binary variable indicating whether the

environmental goal is exceeded by outcome sf , while uf is

the upper frequency indicating the number of times a goal

might be exceeded to enforce compliance, and l is a large

number that is used to give permission for outcome sf to

exceed the goal, given that Bsf has a value of one.

Absolute deviations (dsf ) are estimated in Eq. 18 as the

deviation in nitrate loss ( ~Esf Nð Þ) from the environmental

goal (g). Equation 18 is the same as for the UPM (Eq. 15),

with the exception that the deviations are calculated from g

and not t as in the UPM. The UFM, therefore, overcomes
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the conservativeness of the UPM in maintaining the true

environmental goal and not an endogenously determined

reference pollution level that is dependent on the distri-

bution of the environmental variable. Equation 19 uses a

binary variable to identify whether a specific outcome

exceeds the environmental goal. Every time ~Esf Nð Þ
exceeds g, Bsf takes a value of one. The Bsf s are counted to

determine the frequency with which the environmental

goal is exceeded. The probabilistic constraint is enforced

by Eq. 20, which restricts the number of times g is

exceeded to uf . The value of uf is calculated as 1� cpð Þsf ,
where sf is the total number of outcomes. The choice of uf

is an integer value that corresponds with a value closest to

the estimated discrete compliance probability without

exceeding the compliance probability. Therefore, the UFM

can also be conservative in the estimation of the trade-offs

if the number of discrete states is small. However, the UFM

will never be as conservative as the UPM.

4 Results

4.1 UPM economic-environmental trade-offs

The UPM-generated economic-environmental trade-offs of

maintaining a nitrate loss goal of 28 kg at increasing levels

of compliance for two soils (SCL and SC) and two fertil-

izer application methods (Single and Split) are shown in

the lower section of Fig. 2.

The UPM trade-off curves show that the gross margins

for the SCL soils are consistently higher when compared to

SC soil and that a single fertilizer application is preferred to

a split application when a specific soil is being considered.

Total gross margins are decreasing at an increasing rate with

increasing levels of specified compliance probability with

the exception of increases in the cp beyond 90% for the SCL

soil. The reduction in total gross margins from the lowest to

the highest specified cp is on average 48% for the SCL soil

and 63% for the SC soil, with little difference between

fertilizer-application methods for a specific soil type.

4.2 Compliance probability conservativeness

The UPM method is said to be conservative with respect to

the actual compliance that is achieved with the modeling

procedure, while probabilistic constraints are being

enforced. The compliance probability conservativeness is

evaluated by comparing the specified compliance proba-

bility with the actual probability with which the environ-

mental goal is achieved. The actual compliance probability

of the UPM model is computed ex-post to the optimization,

using the optimized distribution of the environmental

variable. The comparison between specified and actual

compliance is shown in Fig. 3. A 45� line is also shown to

indicate perfect correspondence between the specified- and

the actual compliance probabilities.

Figure 3 reflects huge discrepancies between specified-

and actual compliance probabilities. In all cases, the actual

compliance level is much higher than the specified com-

pliance level, especially at low levels of specified com-

pliance. Furthermore, the actual cp achieved on the SC soil

is higher when compared to the SCL soil for a specific level

of compliance. At the lowest level of cp, the difference is

24.6 percentage points for the SCL soil and about 28.4

percentage points for the SC soil. For increasing levels of

specified compliance, there is very little change in the

actual compliance probabilities to a point where the actual

probabilities increase to the highest level of specified

compliance. At the highest level of cp, the differences in

compliance probabilities decrease to 2.4 percentage points
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and 3.5 percentage points respectively for the SCL and SC

soils.

Users of the UPM may justify the use of the method by

arguing that the difference between the specified- and the

actual compliance levels becomes very small at high levels

of specified compliance and, therefore, the UPM can be

used if the specified cp is high. Cognizance should be taken

of the method used to enforce compliance using the UPM

method. With the UPM model, the intensive and extensive

margin responses for achieving the environmental goal are

optimized in such a way that the pollution reference level

(t) is achieved with the specified cp. The UFM estimates

non-compliance directly from the environmental goal (g),

which will result in significant changes in the intensive and

extensive margin responses and affect the total gross

margin and the resulting distribution of nitrate emissions.

Evaluating the conservativeness of the UPM in terms of cp

alone does not provide any indication of the impact of the

conservative estimates of the UPM on the economic indi-

cator or nitrate losses to the environment. The specified

compliance of the UPM model was incorporated into the

UFM by expressing the cp as the number of observations

with which the goal may be exceeded. Consequently, the

specified and actual compliance levels are the same for the

UFM model results. Thus, comparing the results of the

UPM with the UFM allows for better evaluation of the

conservativeness of the UPM because the impact on the

gross margins of the polluter and the environmental con-

sequences are considered.

4.3 Economic indicator conservativeness

The upper section of Fig. 2 shows the economic-environ-

mental trade-offs generated with the UFM model. The

specified compliance of the UPM model was incorporated

into the UFM by expressing the cp as the number of

observations with which the goal may be exceeded. Con-

sequently, the specified and actual compliance levels are

the same for the UFM model results.

The optimized gross margins of the UFM model are

much higher in comparison with those of the UPM model.

The difference in the optimized gross margins between the

two compliance models measures the impact of the con-

servativeness of the UPM on the polluters’ profitability.

From the graph, it is clear that the underestimation of gross

margin is not constant across the range of specified com-

pliance probabilities since the trade-off curves of the UFM

cross each other, which is not the case with the UPM

model. Consequently, choices between different fertilizer

application methods on a specific soil type for increasing

levels of environmental compliance with the UFM model

are not as consistent as with the UPM. However, the SCL is

still the preferred soil type. At lower levels of specified

compliance, a single fertilizer application is preferred,

while split applications are preferred at higher levels of

specified compliance. Important to note is that the gross

margins tend to converge to a gross margin of R4 342 at

the highest level of specified compliance.

Even though the differences in gross margins between

the two model specifications are reduced for all strategies

with increasing levels of compliance, the differences

remain large. The average gross margin differences

between the compliance models at the highest cp are

R1 372 and R2 737 respectively for an SCL soil type and

an SC soil type with respective fertilizer application

strategies inducing differences of R78 and R122 respec-

tively for SCL soil and SC soil. On average these differ-

ences respectively constitute a 32 and 62% underestimation

of gross margins with the UPM model for the SCL and SC

soil.
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4.4 Environmental conservativeness

The average nitrate losses above the environmental goal

are calculated for each model specification and are com-

pared to identify the impact on the environment when using

the UFM model with its close bound to the actual cp. The

model comparisons are shown in Fig. 4.

Figure 4 shows that soil-fertilizer application-method

combinations with lower profitability consistently gener-

ated the highest average nitrate losses above the goal of

28 kg when considering the UPM model. The magnitude of

the losses decreases to almost zero for all the strategies

when the specified compliance probability is increased to

94.7%. Of the two soils, the SC soil realized the higher

average nitrate losses. Fertilizer-application method does

not greatly influence the magnitude of the losses. The

results of the UFM model are not as clear cut as for the

UPM. However, the observation was made that soil-fer-

tilizer application-method combinations with lower prof-

itability generate the highest average pollution level above

the environmental goal. The magnitude of the average

nitrate losses also decreases with increasing compliance

probability. However, the average losses for the UFM do

not converge to almost zero, as is the case with the UPM

model. Instead, the average nitrate losses to the environ-

ment are about 2.5 kg for the SC soil and respectively 0.98

and 1.59 kg for a single fertilizer application and split

fertilizer application on SCL soil. Percentage wise, the

average nitrate losses above the environmental goal across

all compliance probability levels are respectively 80 and

77% more for the SCL and SC soil types in comparison to

the UPM model.

4.5 Changes in the intensive and extensive margin

To ensure compliance with the environmental goal (g),

both the UPM and UFM models change the intensive and

extensive margin. The baseline amount of fertilizer applied

(kg/ha) and the area planted (ha), together with the optimal

amount for the UPM and UFM, are given in Table 2. The

baseline amount of fertilizer applied and the area planted

reveal the producers’ production decision for the generic

optimization model. The producer is therefore not faced

with an environmental constraint and can make production

decisions for optimal gross margins without considering his

or her environmental impact.

Profit-maximizing nitrogen input levels vary by 7 and

2 kg/ha between fertilizer-application methods on SCL and

SC soil types respectively, with no need to comply with an

environmental nitrate loss goal. On average the optimal

fertilizer application rate on SCL soil is 141 kg/ha, while

the application rate on SC soil is 125 kg/ha in the absence

of environmental compliance. The UPM results show that

the nitrogen fertilizer application rates are reduced more

from the optimal level on the SCL soil when compared to

the SC soil. However, larger areas are irrigated with the

SCL soils irrespective of the fertilizer-application method

to comply with the environmental nitrate loss goal. Irri-

gation areas decrease with increasing environmental com-

pliance probabilities for all soil-crop fertilizer-application

method combinations. Interestingly, per hectare fertilizer

application rates decrease with increasing compliance

probabilities only for the SC soil, as the SCL soil fertilizer

application rates are highest at the highest compliance

probability.
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Vast differences are observed when comparing the

UPM-model- and UFM-model results. The areas irrigated

are much higher for the UFM model, which is the main

reason for the higher total gross margins optimized with the

model. Fertilizer-application rates are also higher for the

UFM model when considering the SC soil, with the

exception of the 106 kg/ha applied in a single application

at a compliance probability of 0.696. Fertilizer-application

rates on the SCL soil are higher than the UPM model at low

levels (0.795 and below) of compliance and lower at high

levels (0.848 and above) of compliance, regardless of fer-

tilizer-application method.

5 Conclusions

The main conclusion from this research is that the UPM

method of enforcing probabilistic constraints is very

conservative as is evident from the comparison with the

newly developed UFM. The UPM method underesti-

mates the actual probability with which the environ-

mental goal is achieved as indicated in the objective

function value of the model and the degree (average

pollution above the goal) by which the environmental

goal is exceeded. Even more important is the fact that

the intensive- and extensive- margin responses neces-

sary to satisfy the probabilistic constraint in the UPM

model are much different from the optimal response

optimized with the UFM model. Thus, use of the UPM

may lead to the misidentification of appropriate man-

agement practices to combat pollution. The UFM gen-

erates solutions that are close to the probability bound

and the responses seem more realistic when compared to

those from the UPM.

The UFM is easy to use and requires no assumptions

regarding the distribution of the environmental variable as

the empirical data is used. The UFM behaved well during

the optimization process and is much less conservative in

the estimation of the trade-offs due to the probability limit

that is closer to the actual probability limit displayed by

the data. Although the UFM provides a stricter probability

bound than the UPM there are some concerns regarding

the application of the UFM. The UFM ensures compliance

by ensuring that the number of deviations above the goal

does not exceed the number of deviations allowed; for this

reason, a fairly large number of observations are neces-

sary to ensure probability limits close to the actual

probability. Further research is necessary to determine the

sensitivity of the UFM to sample size and mining of

statistical outliers.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

Appendix 1

The upper partial moment (UPM) is defined as:

q a; tð Þ ¼
Z þ1

t

x� tð Þaf xð Þdx ð21Þ

where a is constant greater than zero, t is a reference

pollution level, x is the pollution variable and f xð Þdx is the
probability density function.

Assume that h a; tð Þ 	 q a; tð Þ½ �1=a [ 0 and g 	
t þ ph a; tð Þ for p� 0, by implication p ¼ g�t

h a;tð Þ and g� tð Þ
¼ ph a; tð Þ:

Using the definitions above the, integral in Eq. 21 can

then be expressed as the sum of two integrals with t�G

q a; tð Þ ¼
Z þ1

t

x� tð Þaf xð Þdx

¼
Z g

t

x� tð Þaf xð Þdx

þ
Z þ1

g

x� tð Þaf xð Þdx�
Z þ1

g

x� tð Þaf xð Þdx

ð22Þ

Which implies that:

q a; tð Þ�
Z þ1

g

g� tð Þaf xð Þdx ð23Þ

The integral
Rþ1
g

f xð Þdx is the probability that x is larger
than g. Rearranging Eq. 23 generates:

g� t½ �aPr x� g½ � � q a; tð Þ ¼ h a; tð Þ½ �a ð24Þ

Assume that g ¼ t þ ph a; tð Þ[ t then the stochastic

inequality is:

Pr x� t þ ph a; tð Þ½ � � h a; tð Þ= g� tð Þ½ �a¼ 1=pð Þa ð25Þ

If a ¼ 1, h a; tð Þ ¼ h tð Þ and q[ 0 then the linear UPM,

h tð Þ can be estimated as a set of linear constraints:

t þ qh tð Þ� g ) g� tð Þ� qh tð Þ ) h tð Þ
g� t

� 1

q
ð26Þ

which implies:

Pr x� t þ ph tð Þ½ � � h tð Þ= g� tð Þ� 1=qð Þ ð27Þ

Appendix 2

See Table 3.
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Table 3 Coefficients estimated for nitrate response function for nitrogen applications (kg/ha) in state of nature s on a SCL and SC soil with

single and split nitrogen application

SCL

Single Split

Intercept N NN R2 Intercept N NN R2

S1 109.182*** 0.025*** 3.63E-05*** 0.998 109.680*** 0.008** 4.71E-05*** 0.995

S2 42.506** -0.139 6.26E-04 0.043 35.218*** 0.007 2.06E-04 0.674

S3 2.882 -0.006 -1.21E-06 0.739 3.207*** -0.012*** 3.18E-05* 0.877

S4 3.731 0.002 -6.74E-06 0.319 3.791*** -0.001 7.14E-06 0.42

S5 10.093*** 0.013*** -4.20E-05** 0.185 10.063*** 0.017 -6.76E-05 0.198

S6 18.207*** 0.111*** -1.89E-04** 0.977 18.266*** 0.107*** -1.47E-04 0.979

S7 10.027*** -0.018*** 5.31E-05** 0.883 9.664*** -0.007 1.07E-05 0.634

S8 50.572*** 0.22*** 2.25E-04*** 0.999 46.363*** 0.389*** -1.41E-04 0.999

S9 18.287*** -0.033** 1.16E-04** 0.692 18.306*** -0.033*** 1.11E-04** 0.725

S10 9.588*** -0.042** 1.42E-04* 0.595 9.602*** -0.039* 1.24E-04 0.596

S11 40.109*** -0.019 2.27E-04* 0.851 40.907*** -0.031 1.77E-04 0.463

S12 0.000 0.000 0.00E?00 0.000 0.000 0.000 0.00E?00 0.000

S13 3.669*** -0.004*** 1.14E-05*** 0.873 3.670*** -0.003*** 1.02E-05*** 0.904

S14 28.348*** 0.026*** 8.31E-05*** 1.000 28.490*** 0.022*** 4.52E-05*** 1.000

S15 8.616*** -0.032* 8.44E-05 0.667 7.720*** 0.006 -8.15E-05 0.605

S16 35.490*** 0.036 1.12E-04 0.898 37.571*** -0.005 1.41E-04 0.482

S17 20.267*** 0.027 -5.01E-05 0.328 19.710*** 0.022 -2.25E-05 0.338

S18 35.198*** 0.114*** -4.57E-05 0.983 36.533*** 0.055 1.71E-04 0.973

S19 8.727*** -0.010** 3.25E-05* 0.618 8.727*** -0.010** 3.25E-05* 0.618

SC

Single Split

Intercept N NN R2 Intercept N NN R2

S1 34.390*** 0.156 -4.20E-04 0.493 34.289*** 0.122 -2.24E-04 0.48

S2 65.939*** -0.228 9.15E-04 0.346 69.795*** -0.255 7.90E-04 0.491

S3 1.115** 0.013 -8.32E-05** 0.821 1.498*** 0.000*** 6.56E-08 0.99

S4 4.222*** -0.010*** 1.91E-05*** 0.992 4.145*** -0.006*** 5.62E-06 0.971

S5 6.262*** 0.026*** -1.09E-04*** 0.732 6.406*** 0.015* -4.35E-05 0.658

S6 21.324*** 0.021 -2.13E-04 0.822 21.711*** -0.003** 5.74E-06 0.869

S7 7.194*** 0.082** -2.75E-04* 0.593 7.149*** 0.084** -2.88E-04* 0.596

S8 170.531*** 0.102*** 3.17E-04*** 0.997 169.803*** 0.143*** 2.16E-04** 0.997

S9 9.150*** -0.029 7.18E-05 0.609 8.840*** -0.010 -1.97E-05 0.636

S10 0.610 0.004 2.81E-08 0.175 2.081*** -0.034** 1.50E-04** 0.641

S11 72.166*** -0.027 1.89E-05 0.368 71.015*** -0.061 2.62E-04 0.083

S12 0.000 0.000 0.00E?00 0.000 0.000 0.000 0.00E?00 0.000

S13 2.028*** 0.005** -2.90E-05** 0.812 2.063*** 0.002 -7.50E-06 0.427

S14 54.637*** -0.157*** 4.80E-04*** 0.967 54.119*** -0.115*** 2.86E-04*** 0.979

S15 5.375*** -0.041*** 1.08E-04** 0.927 4.855*** -0.013 -1.65E-05 0.886

S16 50.027*** -0.125 4.92E-04 0.219 43.048*** 0.093 -5.63E-04 0.529

S17 13.995*** -0.070*** 2.23E-04** 0.793 14.321*** -0.065*** 1.93E-04*** 0.909

S18 58.010*** -0.269*** 8.70E-04** 0.779 56.694*** -0.159 3.35E-04 0.65

S19 0.039 0.006** -2.01E-05* 0.584 0.037 0.006** -1.98E-05*** 0.595

*** Significant at a 1% level; ** significant at a 5% level; * significant at a 10% level
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