
EDITORIAL

Advances in spatial functional statistics

Jorge Mateu1 • Elvira Romano2

Published online: 16 November 2016

� Springer-Verlag Berlin Heidelberg 2016

Abstract This is the editorial letter for the special issue

dedicated to Spatial Functional Statistics, motivated by the

joint VII International Workshop on Spatio-temporal

Modelling (METMAVII) and the 2014 meeting of the

research group for Statistical Applications to Environ-

mental Problems (GRASPA14), which took place in Turin

(Italy) from 10 to 12 September 2014. This special issue

summarises and discusses peer-reviewed contributions

related to the analysis of functional data showing complex

characteristics such as spatial dependence structures. The

selection of papers comprises both new methodological

proposals and a wide range of applications. In particular,

we cover a wide range of statistical aspects, comprising

prediction of functional data with spatial dependence,

optimal sampling designs using functional covariates, non-

parametric clustering methods for dependent functional

data, and depth measures for spatially dependent functional

data.

Keywords Depth functions � Functional data � Functional
regression � Spatial dependence � Spatial-depth functional

covariates � Spatial functional data

1 Introduction

In the last decade, the increasing progress of modern

technologies allows to handle large complex and high-di-

mensional spatio-temporal data. Such data is often based

on dense sampling schemes of observations over space,

time, and over other continuum measures. Accompanying

this growth of (high quality, informative and big) data,

there has been a rising scientific interest in new statistical

methods able to handle and analyse such open problems.

Although classical multivariate statistical techniques can

still be applied to this kind of data, they do not capture the

additional information coming from the underlying gener-

ating process that underpins the data. Spatial functional

statistics is a recent research area combining together the

well-developed branches of functional statistics and spatial

statistics, showing ability to analyse such complex, multi-

variate data. It has been developed in the framework of the

Functional Data Analysis (FDA) paradigm [Ramsay and

Silverman (2005); Ferraty and Vieu (2006)] by taking into

account the spatial structure of the data. FDA includes

methods and theory for data coming in form of functions,

and spatial functional statistics extend this approach to deal

with samples of functions recorded at different locations of

a region (the so-called spatially correlated functional data),

or functions observed over a discrete set of time points

(temporally correlated functional data).

In contrast to other methods used to analyse spatio-

temporal data, spatio-functional techniques enlarge spatial

techniques making no parametric assumptions about time

effects. As happens with FDA, spatial functional statistics

can also be seen as a different way of thinking, where the

basic unit of information is the entire observed function

rather than a string of numbers with the additional condi-

tion related to the spatial component. In particular, the

& Jorge Mateu

mateu@uji.es

Elvira Romano

elvira.romano@unina2.it

1 Department of Mathematics, University Jaume I,

12071 Castellón, Spain

2 Department of Mathematics and Physics, Second University

of Napoli, Caserta, Italy

123

Stoch Environ Res Risk Assess (2017) 31:1–6

DOI 10.1007/s00477-016-1346-z

http://crossmark.crossref.org/dialog/?doi=10.1007/s00477-016-1346-z&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00477-016-1346-z&amp;domain=pdf


emerging characteristics about the developed methods are

mainly related to the several spatial data structures (geo-

statistical data, point patterns and areal data) that can be

combined with functional data. Thus, as it happens in

univariate or multivariate spatial data analysis, methods

developed in spatial functional statistics can be largely

classified into two main categories: geostatistical func-

tional methods, and purely spatial functional methods.

Geostatistical functional methods aim to describe the

spatial correlation of functional phenomena and provide

adaptations of regression techniques to account for this

spatial dependence. One of the main scopes is the spatial

prediction of curves when a sample of spatially correlated

curves is collected at a set of locations of a region. In the

other category of purely spatial functional methods, we find

techniques dealing with point pattern data associated with

functional marks, and with functional areal data (groups of

functional data with a spatial reference). The objectives

(among others) are to study the spatial distribution of

curves, testing hypothesis about the observed pattern,

detection and modelling of such spatial dependence, and

identification of spatial clustering among the curves.

Good and focused motivated examples of spatial

indexing problems come from many areas of environ-

mental fields including climate studies. Environmental

indicators through widely accessible electronic devices are

noise-free, and can be seen to have spatial functional

characteristics. In these cases the information consists of a

set of curves associated to different geographical locations

on a spatial domain.

A substantial and interesting illustration about the

underlying philosophy of spatial functional statistics can be

found in Delicado et al. (2010a) and Ruiz-Medina (2012).

These papers provide an overview of spatial functional

statistical methods, starting with the simple notion of a

spatial functional observation and its diversification into

the different types of spatial functional data structures

according to the domain where the observation belongs to.

However, searching in the literature, it is clear that

amongst the several categories of spatial functional meth-

ods, functional geostatistics has been much more devel-

oped considering both new methodological approaches and

analysis of a wide range of case studies covering a wealth

of varied fields of applications. Indeed, a partial aim in

writing this special issue is to encourage the development

of further methods in all the branches according to the

spatial functional perspective. The focus is not only on case

studies, which is per se an interesting and very pragmatic

angle of new developments, but also on methodological

contributions. In fact, the area of spatially dependent

functional structures has several specific and difficult

aspects that make it a research topic in its own right. The

articles selected here move beyond the current state-of-the-

art in various ways, from spatial prediction methods to

clustering, going along the way through depth measures for

spatially dependent functional data.

In the following section we provide a sketch of the

current state-of-the-art of spatial functional statistics by

describing the general areas of research, including the new

selected proposals which are considered into their biblio-

graphical context through some short discussion on the

current literature.

2 An overview of the selected approaches
and applications

This special issue comprises six papers considering com-

putational and analytical techniques to deal with functional

data with spatial dependence. The issue collects works

from experts in this area coming from Sweden, Spain,

Colombia, United States, and Italy.

In particular, there are four papers dealing with spatial

prediction. Briefly, Aguilera-Morillo et al. (2016) deal with

prediction for spatial functional variables whose observa-

tions are a set of spatially correlated sample curves

obtained as realisations of a spatio-temporal stochastic

process. Bernardi et al. (2016) propose a method of

regression with partial differential regularisations for spa-

tially dependent curves. Then, Bohorquez et al. (2016)

show how to perform optimal spatial prediction of a

functional variable at unsampled locations. Finally, Espejo

et al. (2016) propose a dynamic spatial-depth functional

regression model, where the functional response and the

covariates are indexed in time, and take their values in the

space of square integrable functions over the spatial-depth

domain.

Two more papers complete the special issue.

Abramowicz et al. (2016) propose a functional non-para-

metric clustering method which simultaneously clusters

and aligns spatially dependent curves. Balzanella et al.

(2016) address the problem of getting order statistics for

georeferenced functional data by means of depth functions

for spatially dependent functional data.

Note that prediction methods in spatial functional

statistics have been developed from different points of

view as adapted extensions of more classical prediction

methods. Kriging techniques and spatial regression meth-

ods have been adapted to the case of spatially correlated

curves. Kriging Chiles and Delfiner (1999) is a well-known

prediction method in classical geostatistics. It allows to

predict values of a (scalar) random field based on sampled

surrounding data points, weighted according to a spatial

covariance function. The assumption under which it is

developed (if the process is considered stationary or non-

stationary) drives different types of kriging techniques,
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such as ordinary kriging (OK), universal kriging (UK),

indicator kriging, cokriging and others. There has been a

number of adaptations of kriging approaches for spatially

correlated functional data. After the pioneering work of

Goulard and Voltz (1993), the papers of Delicado et al.

(2010b) and Nerini et al. (2010) have been crucial. Both

propose ordinary kriging approaches allowing to predict a

curve at an unsampled site under the assumption of sta-

tionarity. They are based on the functional linear point-

wise model adapted to the case of spatially correlated

curves. The idea behind this procedure consists of a direct

adaptation of the more classical prediction problem in

geostatistics to curves, after a particular smoothing process

has been applied. The prediction problem is then solved by

estimating a linear model of coregionalisation to capture

the spatial dependence among the fitted coefficients. The

main methodological difference among these two approa-

ches is that Nerini et al. (2010) use the condition of

orthonormal basis functions, whereas orthogonality is not a

required condition in Delicado et al. (2010b). A somehow

different definition of an ordinary kriging predictor for

functional data can be found in Delicado et al. (2011), and

in its implementation in R in Giraldo et al. (2012b).

We note that quite often geostatistical methods assume

that the spatial functional process considered is stationary,

that is, the mean function is constant (no trend), the vari-

ance function is constant, and the covariance function

depends on the distance between the locations. However, in

many applied cases, the assumption of a constant mean

function is clearly not realistic. To address this problem,

there have been a number of contributions dealing with this

situation (see Caballero et al. 2013; Menafoglio et al.

2013; Ignaccolo et al. 2014; Reyes et al. 2015). In all these

cases, the stationarity assumption is relaxed. Caballero

et al. (2013) propose a new predictor by extending the

classical universal kriging predictor for univariate data to

the context of functional data. Menafoglio et al. (2013)

establish a kriging theory for random fields in any sepa-

rable Hilbert space, allowing for the analysis of a broad

range of object data, such as curves, surfaces or images.

Reyes et al. (2015) generalise the classical residual kriging

method used in univariate geostatistics proposing a three

step procedure. Finally, by considering more complex

forms of non-stationarity when the mean function depends

on exogenous variables (either scalar or functional), the

work of Ignaccolo et al. (2014) develops the so-called

kriging with external drift or regression kriging in a func-

tional data setting.

With a focus on estimation procedures, spatio-temporal

modeling and non-parametric spatial regression models for

functional data have also been proposed. In the former

cases, covariance functions for data evolving in space and

time are directly modelled by some kind of spatial-

functional model. Some of these alternative methods

working with spatio-temporal models for spatial-functional

data have been proposed by Yamanishi and Tanaka (2003)

and Bel et al. (2010). Bel et al. (2010) use a functional

linear model to model the relationship between the genetic

diversity in European beech forests and curves of temper-

ature and precipitation reconstructed from the past. In

addition, in order to take into account the spatial depen-

dence they estimate the covariance matrix of the residuals

in a spatial framework. In contrast, a regression model

where both response and predictors are functional data, and

the relation among the variables may change over the space

is proposed by Yamanishi and Tanaka (2003). In a similar

way, a non-parametric kernel regression with scalar

response and functional predictors, as observations of a

continuous spatial process, is proposed by Dabo-Niang and

Yao (2007). With the main aim to answer an important

space physics question regarding global changes in the

ionosphere, Gromenko (2013) proposes a new functional

regression approach that handles unevenly spaced, partially

observed curves.

In connection with this substantial amount of research,

four new methods proposed in this special issue deal with

the problem of prediction for spatially correlated functional

data.

Aguilera-Morillo et al. (2016) provide a spatial regres-

sion method based on a penalised estimation criterion with

the aim to predict a random variable continuously in time

and space. In particular a three-dimensional P-spline pen-

alty at the least squares fitting criterion is proposed in order

to take handle the spatial component of the data. Their

method is compared to the classical ordinary kriging, and

its performance is illustrated with simulated data. An

application on the Canadian temperature data set, intro-

duced by Ramsay and Silverman (2005), is also analysed.

This data set has been many times object of study using

functional techniques for spatial data (see good examples

in Giraldo et al. (2012a, b), and Delicado et al. (2010a, b).

Bernardi et al. (2016) propose a regression method with

partial regularisation with the aim of accounting specifi-

cally for the geometry of the domain of interest. The focus

is in this case to deal with complex time and space struc-

tures by considering two roughness penalties that account

separately for the regularity of the field in space and in

time. The proposed method has advantages with respect to

classical spatial data analysis techniques, since as the

authors show, it is able to efficiently deal with data dis-

tributed irregularly over shaped domains, with complex

boundaries, strong concavities and interior holes. What is

evident is that combining the spatial and time texturing

allows to take advantage with respect to kriging methods

for complex spatial functional data structures. The pro-

posed method is compared via simulation studies to other
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spatio-temporal techniques, and it is applied to the analysis

of the annual production of waste in the towns of Venice

province.

These two previous papers propose regression methods

that focus on different ways to account for the spatial

dependence in the functional data, and to predict a func-

tional observation at a non-observed spatial location. The

most relevant difference consists in the way they include

the spatial component into the model, and as a consequence

the entire estimation process. In the former case, both

components are included in a spatial regression model and

a combination of an estimation method of spatial smooth-

ing with a P-spline penalty provides a method to predict

spatially correlated functional data. In the latter case, based

on the idea of regression with differential regularisations,

the model merges functional and numerical techniques to

deal with the spatial functional covariates.

Espejo et al. (2016) propose a dynamic spatial-depth

functional regression model, where the functional response

and the covariates are indexed in time, and take their values

in the space of square integrable functions over the con-

sidered spatial-depth domain. The authors offer a new

perspective to exploit the spatial depth ocean temperature

field. It is one important challenge in the environmental

field that has been analysed by Ruiz-Medina and Espejo

(2012, 2013) focusing on the problem of spatial functional

extrapolation of ocean surface temperature profiles and

surface temperature anomalies.

The problem of prediction of a functional variable has to

be considered also in the case where there is cross-vari-

ability with other functional variables. To analyse the

spatial cross-dependencies with other functional variables

is complicated due to the infinite dimensionality of the

data. The key difficulty is in specifying and estimating the

function responsible for the relationship between distinct

variables, that is the cross-covariance function.

To overcome this drawback, Bohorquez et al. (2016)

propose a functional cokriging method based on the rep-

resentation of each function in terms of its empirical

functional principal components. The basic idea the authors

develop is a generalisation of their previous paper in the

univariate case. They thus show how the functional cok-

riging only depends on the auto-covariance and cross-co-

variance of the associated scores vectors, which are scalar

random fields. In addition, they propose an approach to find

optimal sampling designs that ensure the quality of the

spatial functional predictions in presence of covariates.

The idea used in the procedure proposed by Bohorquez

et al. (2016) has the advantage that it uses the functional

principal component representation of each random field.

Thus, the functional cokriging method does not require

multivariate functional principal component analysis. Among

the contents of the paper, there is a part devoted to clarify the

characteristics of a coregionalisation model for functional

data, where they carefully show the solution they give to the

problem they have to ensure that the covariance matrix is

positive definite. Several important ideas are emphasised in

the paper, among these the possibility to extend functional

geostatistics under Gaussianity or goodness-of-fit tests for a

joint Gaussian distribution in Hilbert spaces.

All these proposed prediction methods have been proven

to provide statistical tools for many applied problems

related to environmental, weather, and climate studies.

Another interesting topic of research in these fields is the

use of clustering methods to describe local spatial functional

characteristics of the observed phenomena. The state-of-the-

art about clustering has not been so straightforward devel-

oped as much as the prediction problem. To the best of our

knowledge there are just few approaches which consider the

inclusion of the spatial correlation within clustering meth-

ods. Examples of spatial functional clustering are provided

in Romano et al. (2010, 2016) and Secchi et al. (2012).

These use iterative algorithms to partition geographically

referenced data. In particular, a first approach Romano et al.

(2010) proposes to classify curves by minimising the spatial

variability in each cluster and proposes, as prototype of a

cluster, a kriging prediction at an unsampled location. Thus,

the optimised objective function performs not only the

prediction of the representative curve of each cluster, but it

also estimates its location. The approach of Romano et al.

(2016) consists of solving an important issue of environ-

mental fields: the description of clusters in terms of spatial

dispersion. The method is an extension of the dynamic

clustering algorithm to a set of spatially dispersed functions.

A further alternative to these methods has been proposed in

Secchi et al. (2012), with a bagging strategy in which the nal

partitioning of the data is obtained by bagging together weak

analysis performed on reduced datasets.

Other contributions provided two types of hierarchical

clustering methods. A first one is a generalisation of a

hierarchical approach for spatial data to functional data via

weighting the dissimilarity matrix by a measure of a spatial

functional covariance [see Giraldo et al. (2012a)]. Perfor-

mances of this method have been shown in Romano et al.

(2015). A second one allows to solve the practical problem

of identifying groups of stations along a river network which

are spatially coherent, calculates the spatial covariance

function between functions from sites along a river network,

and applies the measure as a weight within the functional

hierarchical clustering step [Haggarty et al. (2015)].

Finally, a non-parametric model-based method with a

spatially correlated error structure to classify service

accessibility patterns for the financial services industry has

been proposed by Jiang and Serban (2012).

For completeness of this special issue, two more key

topics are developed. Abramowicz et al. (2016) propose a
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novel method, the Bagging Voronoi K-medoid Alignment

algorithm (BVKMA), that jointly handles clustering,

misalignment, and spatial dependence of functional data. As

claimed by the authors, this method is the first proposal in

the literature that jointly deals with these three sources of

variability. Moreover, it allows many different families of

warping functions to address the problem of misalignment.

And, additionally, introducing the concept of depth

function for establishing the centrality? of an observation

among a set of functions, and to provide a natural center-

outward ordering of the sampled curves is also a hot topic.

Depth definitions are mainly obtained as the generalisation of

the classical depth concept, and these definitions can come

from integrals of univariate depth, from the graphical rep-

resentation of the functions, or from depth-based projections

for functions. A good reference is Lopez-Pintado and Romo

(2011), where it is shown that most of the proposed depth

functions have degenerate behaviour in infinite dimensional

spaces. Only one of these, named the modified version of the

Half Region Depth (HRD), does not suffer from such

behaviour, and it is simple and computationally fast.

In spatial functional statistics this topic has been

addressed by Balzanella and Romano (2015), where the

spatial dependence among the curves is introduced in the

definition of the band depth. The spatial covariance func-

tion plays the role of a weighting scheme among the geo-

statistical functional data. Indeed, the considered spatial

covariance function measures the spatial dependence of all

the curves in the space, but does not consider each single

contribution that a curve provides to the whole spatial

variability. Moreover, it suffers from a degenerate beha-

viour for some standard probability models in functional

spaces.

The contribution of Balzanella et al. (2016) overcomes

these problems. It is a generalisation of the graphical

approach based on the modified version of the HRD pro-

posed by Lopez-Pintado and Romo (2011) consisting of

defining spatial dispersion functions computed for each site

of the observed functional data. By introducing the concept

of spatial dispersion function as a transformation of the

functional data, this proposal has the following advantages:

(a) it furnishes a criterion for ranking simultaneously the

spatial and the functional component of the data; (b) it

allows to define a distribution of the spatial dispersion

functions characterised by robust location estimates, such

as the median spatial dispersion and the quartile functions.

3 Final conclusions

In this introductory paper to the present special issue we

have discussed some new techniques for spatially depen-

dent functional data, opening new areas for future research.

We hope that these contributions will further enhance the

current interest in statistical methods in the spatial func-

tional framework.
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