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Abstract Traditional accuracy assessment of satellite-

derived maps relies on a confusion matrix and its associ-

ated indices built by comparing ground truth observations

and classification outputs at specific locations. These

indices may be applied at the map-level or at the class

level. However, the spatial variation of the accuracy is not

captured by those statistics. Pixel-level thematic uncer-

tainty measures derived from class membership probability

vectors can provide such spatially explicit information. In

this paper, a new information-based criterion—the equiv-

alent reference probability—is introduced to provide a

synoptic thematic uncertainty measure that has the

advantage of taking the maximum probability value into

account while committing for the full set of probabilities.

The fundamental theoretical properties of this indicator

was first highlighted and its use was afterwards demon-

strated on a real case study in Belgium. Results showed

that the proposed approach positively correlates with the

quality of the classification and is more sensitive than the

classical maximum probability criterion. As this informa-

tion-based criterion can be used for providing spatially

explicit maps of thematic uncertainty quality, it provides

substantial additional information regarding classification

quality compared to conventional quality measures.

Accordingly, it proved to be useful both for end-users and

map producers as a way to better understand the nature of

the errors and to subsequently improve the map quality.

Keywords Information theory � Classification �
Thematic uncertainty � Confidence � Remote sensing

1 Introduction

In the framework of classification, the most frequent way

of assessing the performance of a classifier is to compare

the labels of the classification with independent ground

truth observations (Stehman 1997). Accuracy measures

have been designed to report accuracy both at the map

level and at the class level [see (Story and Congalton

1986) for examples] and are typically assumed to apply

uniformly over the region of interest. Yet several studies

have also demonstrated that errors vary spatially (Liu

et al. 2004; Foody 2005; Comber et al. 2012; Renier et al.

2015; Liu et al. 2015; Waldner et al. 2015b; Feng et al.

2015).

As global accuracy statistics cannot model this spatial

variation adequately, statistics describing the map quality

at a more local level are thus necessary. Foody (2005)

applied local accuracy assessment by constraining geo-

graphically the data used for accuracy assessment and

showed that local accuracy assessment provides a more

complete understanding of the quality of land cover maps

derived from remote sensing. Nonetheless, to obtain sub-

regional accuracy estimates using conventional design-

based accuracy assessment, validation data must ensure a

sufficient sample size within the region of interest for

precise estimates. Unfortunately, sufficient sub-regional

data are rarely available to support this (Strahler et al.

2006). Cripps et al. (2013) presented a Bayesian method

for quantifying the uncertainty that results from potential

misclassification in remotely sensed land cover maps.

Discrete remote sensing classification neglects intrinsically

& François Waldner

patrick.bogaert@uclouvain.be

1 Earth and Life Institute—Environment, Université catholique
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the fuzzy character of the land surface and, as a conse-

quence, leads to the inclusion of uncertainty in class

assignments (Van der Wel et al. 1998). Lunetta et al.

(1991) give an overview of the sources of errors and

uncertainties in remote sensing classification. Accordingly,

several studies are addressing quality issues by propagating

uncertainties in spatial datasets (Pontius 2000; Atkinson

and Foody 2002; Crosetto and Tarantola 2001; Liu et al.

2004), while others found that addressing classification

uncertainty improved subseququent model calibra-

tion (Cockx et al. 2014).

In remote sensing, measures like the posterior proba-

bility of membership to the allocated class are often used as

an indicator of uncertainty on a per-case basis (Foody et al.

1992). Probably the simplest approach for visualizing the

uncertainties underlying a remote sensing classification is

by the way of a gray-scale map depicting the maximum

probability (MP) max ðpÞ of a probabilistic output vector

p ¼ ðp1; :::; pkÞ (Van der Wel et al. 1998) where k is the

number of classes. The direct use of the MP from other

probabilistic classifiers is a common practice; see for

instance Mitchell et al. (2013), Dronova et al. (2011)

and Polikar (2006). For non-probabilistic classifiers, soft

outputs might also be used as a proxy to class membership

probability. In the random forest framework it is defined as

the number of trees in the ensemble voting for the final

class (Loosvelt et al. 2012a). In support vector machine

classifications it is based on the distances of the samples to

the optimal separating hyperplane in the feature

space (Giacco et al. 2010), while for the multi-layer per-

ceptron it is based on the activation levels (Brown et al.

2009). If these measures are not posterior probabilities per

se, they can be regarded as such.

Another criterion was proposed by Mitchell et al.

(2008) to approximate the likelihood. It relies on Euclidean

distance of each pixel from its closest class, and then

account for differing class variability by standardizing by

the variance of the respective class, i.e.,

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X ri � �mi

si

� �2
s

ð1Þ

where ri is the pixel value in the ith band, �mi is the class

average in the ith band, and si is the standard deviation of

the class in the ith band. The ratio d1=d2 between the

distance to the closest/assigned class centroid d1 and the

distance to the second closest class centroid d2 along with

the magnitude of these distances (for each pixel) provide

additional information about the reliability of class label

assignment.

Gonçalves et al. (2009) investigated how the incorpo-

ration of uncertainty associated with the classification of

surface elements into the classification of landscape units

affects the accuracy. The uncertainty criterion they selected

is given by (Eastman, 2006)

U ¼ 1�maxðpÞ �
P

ðpiÞ=k
1� 1=k

ð2Þ

with values for U lying in [0,1] and only depending on the

maximum probability and the total number of classes. The

numerator of the second term expresses the difference

between the MP assigned to a class and the probability that

would be associated with the classes if a maximum dis-

persion for all classes occurred, that is, if a probability of 1/

k was assigned to all k classes. The denominator corre-

sponds to the extreme opposite case, where the MP is 1

(and thus a total commitment to a single class occurs). The

ratio of these two quantities expresses the degree of com-

mitment to a specific class relative to the largest possible

commitment.

As the previously mentioned approaches neglect the

whole probability distribution, another popular approach

relies on the entropy (i.e., Shannon’s measure of informa-

tion), with

HðpÞ ¼ �
X

k

i¼1

pi ln pi ð3Þ

Brown et al. (2009) assessed the thematic error on a per-

pixel basis based on the entropy of the outputs of a clas-

sifier in order to estimate thematic uncertainty. Loosvelt

et al. (2012a) used entropy to compare the performance of

different features for crop classification. McIver et al.

(2001) demonstrated that classification errors tend to have

low classification confidence while correctly classified

pixels tend to have higher confidence. Class membership

vectors and Shannon entropy were also combined with

parallel coordinate plots to highlight the distribution of

probability values of different land cover types for each

pixel, and also reflect the status of pixels with different

degrees of uncertainty (Ge et al. 2009). Loosvelt et al.

(2012b) used the empirical shape of the distribution of two

uncertainty indicators to assess the prediction strength of a

classification model. The two indicators were the uncer-

tainty defined as U ¼ 1�maxðpÞ and the entropy HðpÞ,
both being computed at the pixel-level. They concluded

that, although entropy is a more representative evaluation

of uncertainty than 1�maxðpÞ as it includes the entire

probability vector in its calculation, the uncertainty mea-

sure based on maxðpÞ can be considered as an equivalent

alternative to entropy since the uncertainty assessment

performed on both measures was similar. As Shannon’s

entropy assumes values in the interval ½0; ln k�, Maselli

et al. (1994) proposed a measure of the relative probability

entropy (RPH) with
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RPH ¼ �
Pk

i¼1 pi ln pi

ln k
ð4Þ

Similarly, Dehghan and Ghassemian (2006) defined the

Normalized Uncertainty Criterion (NUC) based on the

entropy and compared it to three criteria in order to eval-

uate classification performance: (i) the mean relative error

(MRE), (ii) the root mean squared error (RMSE) of the

average squared difference between two desired and actual

membership vectors (Zhang and Sun 2002), and (iii) the

linear correlation coefficient (LCC), with

NUC ¼ 1� ln k � HðpÞ
ln k

ð5Þ

They concluded that the MRE, RMSE and LCC criteria

have been defined based on actual and desired outputs of

classifier. Therefore, these criteria are dependent on the

error of the results and sensitive to error variations.

Waldner et al. (2015a) showed that correctly classified

pixels tend to display a lower uncertainty NUC than mis-

classified pixels.

Studies such as those by Giacco et al. (2010) and Löw

et al. (2013), (2015b) relied on the a-quadratic entropy

HaðpÞ. This measure is based on the concept of the mul-

tiplicative class introduced by Pal and Bezdek (1994), with

HaðpÞ ¼
1

k � ð2�2aÞ �
X

pai ð1� piÞa ð6Þ

where a is an exponent which determines the behavior of

the uncertainty measure. Indeed, if a is close to zero, the

measure is not very sensitive to small changes in the

components pi, while for a close to one, the uncertainty is

higher for pi close to 0.5. The advantage of this measure is

that it summarizes all the information contained in p and

commits the probabilities of the other classes in the

uncertainty evaluation. It has been suggested that it has a

higher sensitivity compared to Shannon’s entropy (Löw

et al. 2013). Yet, its definition depends on a with values

that are often set arbitrarily. Löw et al. (2013) proposed a

normalized version of the a-quadratic entropy, the relative

a-quadratic entropy that simply consists in dividing HaðpÞ
by the maximum possible HaðpÞ, that is when the proba-

bilities are evenly distributed in all categories with pi ¼
1=k for all i.

Van der Wel et al. (1998) used an uncertainty measure

that builds on the notion of weighted uncertainty as pro-

posed by Glasziou and Hilden (1989), namely the quadratic

score (QS), with

QS ¼
X

pi � ð1� piÞ ð7Þ

that exhibits the same behavior with respect to its minimum

and maximum values as does the entropy measure. The

entropy and the quadratic score differ, however, with

respect to their slopes.

Despite alternative approaches to characterize pixel-

level thematic uncertainty with more elaborated criteria,

the most popular way of assessing the performance of a

classifier remains the rate of correctly classified items (or

variations around this theme). Although the shortcomings

of this simple approach have been clearly emphasized by

many authors, it also remains true that most of the alternate

way of assessing the accuracy that are proposed are based

on ad hoc methods or indicators that lack strong epistemic

grounds. As a direct consequence, this leads to a multi-

plication of these indicators, leaving the user without clear

final guidelines.

It is true that a classifier which selects the category i�

that maximizes pi� over all possible other choices, i.e.

pi� ¼ max ðpÞ, is consistent with the maximum likelihood

principle and nothing is intrinsically wrong either about

considering pi� itself as uncertainty criterion. However,

when it comes to comparing soft classification outputs, this

leads to major difficulties. The limitation of the most

probable category as an indicator of quality assessment is

better illustrated with a very simple example, as given in

Table 1 for k ¼ 4 categories. When it comes to selecting at

best the category ci, the same choice c1 would be made for

all cases. However, when it comes to compare soft clas-

sification outputs, difficulties directly arise. Though cases

from (a) to (d) share the same category c1 as the most

probable one, they widely differ with respect to probabil-

ities p2, p3 and p4. While (a) is concentrating the remaining

probability 1� p1 ¼ 0:3 over a single category c2 and (b)

is distributing them evenly over these three categories, the

corresponding p1 is the same and does not allow to make a

clear preference between these two cases. The same remark

applies when comparing (c) with (d). A comparison

between (a) and (c) would lead to the conclusion that (c) is

more favourable, i.e. p1 is higher while the remaining

probability 1� p1 is distributed over the same single cat-

egory c2. However, there is a major issue when it comes to

comparing (a) with (d) and (b) with (c), as all probabilities

are now different. Clearly, the difficulty of comparing these

Table 1 Illustrative examples when k ¼ 4 for the values of p1 and the

way probabilities are distributed over the remaining categories

p1 p2 p3 p4 max ðpÞ

(a) 0.7 0.3 0 0 0.7

(b) 0.7 0.1 0.1 0.1 0.7

(c) 0.8 0.2 0 0 0.8

(d) 0.8 0.1 0.1 0 0.8

Each line corresponds to a distinct probability vector
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various cases is precisely coming from the necessity of

accounting for the whole probability vector p based on a

sound theoretical approach, so that meaningful compar-

isons can be made and clear conclusions can be reached

afterwards. This is of course impossible when relying only

on max ðpÞ.
Instead of discussing at length the benefits and limita-

tions of all possible alternate approaches that have been

advocated so far, we present in the present paper a way of

assessing pixel-level thematic uncertainty by starting from

scratch using information theory. To that aim, we will

begin from the most elementary concept of information

theory, i.e., the definition of information itself. It will be

shown how an expected difference of information can

account for the full set of probabilities, while remaining at

the same time perfectly consistent with p�i when used as a

simple assessment indicator or as a criterion for selecting

the best category. The similarities and discrepancies with

entropy-based criteria will also be emphasized. Following a

rigorous statistical reasoning, one indicator is proposed: the

equivalent relative probability derived from the informa-

tion difference. Their use and usefulness is demonstrated

with synthetic examples as well as with a real land cover

classification case study.

2 The notion of difference of information

Let us consider a set of k non overlapping categories

fc1; . . .; ckg with associated probabilities p ¼ ðp1; . . .; pkÞ
such that

P

i pi ¼ 1. Let us consider that an arbitrary cat-

egory ci is observed. The information IðpiÞ which is gained

by observing the occurrence of ci is then given by

IðpiÞ ¼ � ln pi � 0 ð8Þ

i.e. the gain of information is equal to 0 when ci is the sure

event (i.e. when pi ¼ 1) and goes to infinity when pi ¼ 0.

The information can be understood as measuring the sur-

prise of seeing the outcome ci, as the occurrence of a highly

improbable event is very surprising, while the occurrence

of a sure event does not cause any surprise (see Fig. 1).

Let us consider the information for a reference category

ci� (where i� 2 f1; . . .; kg) as the information to which the

information for the other categories must be compared. Let

us now define Dðijji�Þ as this difference of information,

with

Dðijji�Þ ¼ IðpiÞ � Iðpi� Þ ¼ ln
pi�

pi

� �

8i 6¼ i� ð9Þ

Clearly, if i� is chosen as the most probable category so

that pi� ¼ max ðpÞ, then it comes directly that

Dðijji�Þ� 0 8i 6¼ i� ð10Þ

though choosing the most probable category as the refer-

ence category is not a mandatory choice for the forth-

coming developments (e.g., the reference category can be

the ‘‘true’’ category for the classification and its probability

is not necessarily the highest one if the classification per-

forms poorly).

As there are k � 1 differences Dðijji�Þ to be accounted

for when comparing each category ci with the reference

category ci� , one can summarize this set of differences by

using their corresponding expected value. The expected

difference of information when observing a category dif-

ferent from ci� is then given by

E½Dðijji�Þ� ¼
X

ini�

pi

1� pi�
Dðijji�Þ ð11Þ

where summation is done over all categories except ci� and

where the values pi=ð1� pi� Þ are the probabilities of

observing the corresponding ci’s given the fact that i 6¼ i�.
Using Eq. (9) and because

P

ini� pi=ð1� pi� Þ ¼ 1, it comes

directly that

E½Dðijji�Þ� ¼
X

ini�

pi

1� pi�
ln

pi�

pi

� �

¼ ln pi� �
1

1� pi�

X

ini�
pi ln pi

ð12Þ

2.1 The expected difference of information

and its relationship with entropy

Before moving on with the interpretation of E½Dðijji�Þ�
itself, it is worth noting that E½Dðijji�Þ� should not be

confused with the expected gain of information per se, that

corresponds to the traditional definition of entropy HðpÞ,
with

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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5

Fig. 1 Information IðpiÞ ¼ � ln pi as a function of pi
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HðpÞ ¼ E½IðpÞ� ¼
X

k

i¼1

piIðpiÞ ¼ �
X

k

i¼1

pi ln pi � 0 ð13Þ

Indeed, Eq. (13) is not associated with any specification for

a reference category ci� , to the opposite of Eq. (12) where

this choice is made explicit. Comparing Eqs. (12) and (13),

it is however clear that these two quantities are directly

related, as elementary algebraic manipulations from

Eqs. (12) and (13) lead to the result

HðpÞ ¼ � ln pi� þ ð1� pi� ÞE½Dðijji�Þ� ð14Þ

Clearly, HðpÞ is a single value associated with a given

probability vector p considered as a whole, while the val-

ues for E½Dðijji�Þ� are directly dependent both on p and on

the choice that one makes for the reference category ci� ,

with its associated probability pi� .

It is also worth emphasizing that even if E½Dðijji�Þ� is
measuring an expected difference of information, there is

no direct connection with a classical measure of expected

difference of information as given by the Kullback–Leibler

(KL) divergence (Kullback and Leibler 1951) nor with

cross-entropy measures (Stehlı́k and Sivasundaram 2012).

Indeed, while KL divergence and cross-entropies aim at

comparing two distinct probability vectors, say p and q, in

our case the comparison is always made with respect to a

given reference category pi� belonging to a single proba-

bility vector p.

2.2 Fundamental properties

Resuming again from the interpretation of the probabilities

as information, one can see that E½Dðijji�Þ� is measuring the

average (difference of) surprise of observing any category

ci instead of the reference category ci� . If the issue is to

select the reference category at best among a set of cate-

gories as represented by a probability vector p, it is thus

consistent to select ci� such that E½Dðijji�Þ� is maximized.

When the problem at hand is to compare classifications as

represented by two probability vectors pj and pj0 with

corresponding reference categories ci�
j
and ci�

j0
, it is thus

consistent to directly compare their corresponding expec-

ted difference of information E½Dðijjji�j Þ� and E½Dðij0 jji�j0 Þ�
and to favor the classification which exhibits a higher

expected difference of information.

We thus postulate that E½Dðijji�Þ� is a sound and natural

way of assessing the quality associated with a probability

vector p and the choice of a given ci� as reference category.

In order to show this, the most important properties of

E½Dðijji�Þ� will first be given. The corresponding proofs of

the theorems are grouped in the appendices for the sake of

conciseness. For the non-specialist reader, the proofs can

thus be skipped without compromising the global

understanding of the text. For each result, a special atten-

tion is also devoted to its interpretation and to the way it

relates to specific and important cases. Furthermore, the

use of E½Dðijji�Þ� will be illustrated using simple but

carefully selected synthetic examples

Theorem 1 Given any probability vector p ¼ ðp1; . . .; pkÞ
with

P

i pi ¼ 1 and two possible reference categories i�

and i��, with i� 6¼ i��. If pi� [ pi�� , then E½Dðijji�Þ�[
E½Dðijji��Þ�.

This result states that, for any probability vector

p ¼ ðp1; . . .; pkÞ, the values for the expected difference of

information are sorted in the same order than the proba-

bilities. A direct consequence is that the category with MP

is also the reference category that maximizes the expected

difference of information. For a given vector p, selecting

the most probable category as the reference category

according to the maximum likelihood principle is thus

equivalent to selecting ci� that maximizes E½Dðijji�Þ�. In
order to illustrate this property, Table 2 is presenting an

arbitrary probability vector p when k ¼ 4, along with the

four possible choices for the reference category ci� and

their associated E½Dðijji�Þ� values. Clearly, maximizing

either pi� or E½Dðijji�Þ� will lead to the selection of the same

category c3, with a same ordering of values for the other

possible choices.

Theorem 2 If pi � pi� 8i 6¼ i�, then E½Dðijji�Þ� � 0 with

equality if and only if pi ¼ pi� ¼ 1
k0 for all k

0 � k categories

with associated non null probabilities.

In other words, as long as the reference category is the

most probable one, the expected difference of information

is non-negative. In this case, the lowest possible value is

equal to 0 and will only occur if there is a tie among all

categories with non null probabilities, i.e. when there is an

ambiguity when it comes to selecting at best a reference

category among the set of k0 candidate categories, con-

sidering that all k � k0 � 0 categories with null probabilities

are out of the competition. In order to illustrate these

results, one can remark first from Table 2 that E½Dðijji�Þ�
values can be negative (for our example this occurs for the

two least probable categories), while the maximum value

Table 2 Synthetic example for

a probability vector

p ¼ ð0:1; 0:2; 0:4; 0:3Þ, with c3
as the most probable category,

that also maximizes the value

for E½Dðijji�Þ�

i� pi� E½Dðijji�Þ�

1 0.1 -1.1364

2 0.2 -0.4120

3 0.4 0.6059

4 0.3 0.1084

One can see that the values for

E½Dðijji�Þ� are sorted in the

same order than the pi� ’s
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for E½Dðijji�Þ� is positive and occurs when c3 is chosen as

the reference category, i.e. when satisfying the condition

p3 [ pi 8i 6¼ 3. Additionally, let us consider Table 3 where

three different probability vectors sharing the same MP

p1 ¼ 0:5 are considered, where it can be seen that

E½Dðijji�Þ� � 0 according to the theorem. The case

E½Dðijji�Þ� ¼ 0 occurs when there is a tie with two cate-

gories sharing the same MP. It is worth noting too that this

is not restricted to the case where the tie is only about two

categories. Indeed, considering the probability vector p ¼
ð1
3
; 1
3
; 1
3
; 0Þ would lead again to E½Dðijji�Þ� ¼ 0 by choosing

any reference category among fc1; c2; c3g.

Theorem 3 Given a reference category i� with proba-

bility pi� . The minimum possible value for E½Dðijji�Þ� is
thus given by

Lðpi� Þ¼: min
pnpi�

E½Dðijji�Þ� ¼ ln pi� � lnð1� pi� Þ ð15Þ

and it occurs if and only if there is a single non null pi ¼
1� pi� with i 6¼ i�.

For a given pi� , the lower bound is thus reached when

the complementary probability 1� pi� is concentrated over

a single category (so all other categories have null proba-

bilities). Considering E½Dðijji�Þ� as an accuracy assessment,

this thus corresponds to the least favourable case. One can

also remark that this lower bound corresponds to the

expected difference of information when k ¼ 2. Indeed,

from Eq. (12) with k ¼ 2, it comes that

E½Dðijji�Þ� ¼ ln pi� �
1

1� pi�
ð1� pi�Þ lnð1� pi�Þ

¼ ln pi� � lnð1� pi�Þ ð16Þ

This last result is also illustrated in Table 3(a) by consid-

ering c1 as the reference category, where the lower bound

is then precisely equal to ln 1
2
� lnð1� 1

2
Þ ¼ 0. However,

Eq. (15) applies in a more general way even if the chosen

reference category is not the most probable one (though the

situation where the most probable category corresponds to

the reference category is of particular interest, of course).

Looking again at Eq. (15), it is worth noting that Lðpi� Þ is
monotonically increasing with pi� , as seen from Fig. 2.

Moreover, the value for Lðpi� Þ does not depend on the

number k of categories. When combined with the results

for the upper bound as given below, these remarks will

prove to be useful for practical purposes.

Theorem 4 Given a set of k categories and a reference

category i� with probability pi� . The upper bound for

E½Dðijji�Þ� is then given by

Uðpi� ; kÞ¼
:
max
pnpi�

E½Dðijji�Þ� ¼ ln pi� � ln
� 1� pi�

k � 1

�

ð17Þ

and it occurs if and only if pi ¼
1� pi�

k � 1
8i 6¼ i�.

For a given pi� , the highest possible value for the

expected difference of information occurs when all other

categories are equiprobable. This is an indirect conse-

quence of the fact that equiprobable non-reference cate-

gories are maximizing the entropy over these categories. In

order to illustrate the relationship between the values for

E½Dðijji�Þ� and the way probabilities are distributed over

the remaining categories, let us consider Table 4 with three

different probability vectors p ¼ ðp1; p2; p3; p4Þ sharing the

same maximum probability value p1 ¼ 0:7 for category c1.

Clearly, when choosing c1 as the reference category, the

lowest possible value E½Dðijji�Þ� is reached for case (a)

where the complementary probability 1� p1 ¼ 0:3 is

concentrated over a single category, as previously stated by

Eq. (15). It is worth noting too that this minimum value is

higher than 0, as all non-null probabilities are not equal, to

the opposite of Table 3(a). On the other side, the maximum

possible value is reached for case (c) where 1� p1 ¼ 0:3 is

distributed evenly over the three remaining categories.

Table 3 Synthetic example for three probability vectors p sharing the

same MP value occurring for category c1

p1 p2 p3 p4 E½Dðijji�Þ�

(a) 0.5 0.5 0 0 0

(b) 0.5 0.3 0.1 0.1 0.9503

(c) 0.5 0.2 0.2 0.1 1.0549

When selecting c1 as the reference category (i.e. as the most probable

one), the lowest possible value E½Dðijji�Þ� ¼ 0 is reached when there

is a tie between c1 and c2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−6

−4

−2

0

2

4

6

Fig. 2 Lower bound for E½Dðijji�Þ� as a function of the probability pi�

of the reference category ci�
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From Eq. (17), one can also see that the upper bound

does depend both on pi� and k, where Uðpi� ; kÞ is mono-

tonically increasing both with pi� and k. Combining the

formulas for the lower and upper bounds as given by

Eqs. (15) and (17) on the same graph leads directly to

Fig. 3. For the special case k ¼ 2, one can see from

Eqs. (15) and (17) that the lower and upper bounds are

identical. This is a direct consequence of the fact that pi�

completely defines the distribution, as the only possible

probability value for the single other category is 1� pi� , of

course. One can also remark from Eqs. (15) and (17) that

the difference between these bounds does not depend on

pi� . Indeed,

Uðpi� ; kÞ � Lðpi� Þ ¼ lnðk � 1Þ ð18Þ

and this can also be seen from Fig. 3 where all curves are

parallel to each other.

The way the upper bound is changing with k can be

illustrated with a simple example given in Table 5. Let us

consider various probability vectors p sharing the same

maximum probability p1 ¼ 1
2
but where the complementary

probability 1� p1 ¼ 1
2

is evenly distributed over an

increasing number k � 1 of remaining categories. Using the

same reference category c1, the upper bound is accordingly

increasing with k.

2.3 Categories with null probabilities

Though this might not appear as an obvious result from the

previous developments, it is worth remarking that the only

categories that are playing an effective role in Eq. (12) are

those that are associated with a non-null probability of

occurrence, as all categories with null probabilities pi’s will

be filtered out. Indeed, from the result limpi!0 pi ln pi ¼ 0,

the only categories that are accounted for in E½Dðijji�Þ� are
those for which pi 6¼ 0. However, though E½Dðijji�Þ� does
not depend on these null probabilities, this is not the case

for the upper bound Uðpi� ; kÞ as given by Eq. (17), where it

is the total number of categories that need to be accounted

for. In order to illustrate this subtlety, let us consider

Table 6 where two probability vectors have been given,

with k ¼ 3 categories for the first one and k ¼ 4 for the

second one. Both vectors are identical with respect to the

three first categories and share the same value

E½Dðijji�Þ� ¼ 1:0986, along with the same lower bound

Lðpi� Þ ¼ 0:455. However, they do not share the same upper

bound. Clearly, the case k ¼ 4 is far from the upper bound

that would be reached if the complementary probability

1� p1 ¼ 0:4 would be evenly spread over the remaining

categories p2, p3 and p4. Considering E½Dðijji�Þ� as a

measure of quality, the case where k ¼ 3 is thus much

more favourable (it reaches the upper bound) than the case

where k ¼ 4.

This also emphasizes that, as soon as one wants to

compare classifiers over a distinct number of categories,

the value for E½Dðijji�Þ� cannot be interpreted as is without

referencing it to the way E½Dðijji�Þ� is located with respect

to the corresponding upper bound (the lower bound

remaining the same as it does not depend on k). It will be

shown a little bit further that a way of accounting for this

Table 4 Synthetic example for three probability vectors p sharing the

MP value occurring for category c1

p1 p2 p3 p4 E½Dðijji�Þ�

(a) 0.7 0.3 0 0 0.8473

(b) 0.7 0.2 0.1 0 1.4838

(c) 0.7 0.1 0.1 0.1 1.9459

When selecting c1 as the reference category (i.e. as the most probable

one), the highest possible value for E½Dðijji�Þ� is reached when all

other categories are equiprobable
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Fig. 3 Lower bound (thick line) and upper bounds (thin lines) for

E½Dðijji�Þ� as a function of the probability pi� for the reference

category and the number k of categories (when k ¼ 2, the upper and

lower bounds are identical and equal to E½Dðijji�Þ�). Vertical lines
specify the value of pi� ¼ 1

k
for which the upper bound is equal to 0

Table 5 Synthetic example for three probability vectors p sharing a

same MP value occurring for category c1 and remaining probabilities

that are evenly distributed over an increasing number of categories k

k p1 p2 p3 p4 E½Dðijji�Þ�

2 1
2

1
2

– – 0

3 1
2

1
4

1
4

– 0.6931

4 1
2

1
6

1
6

1
6

1.0986
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relative location of E½Dðijji�Þ� is through the use of an

‘‘upper bound equivalent probability’’.

2.4 Negative values for E½Dðijji�Þ�

As seen from the curves in Fig. 3, the lower and upper

bounds for E½Dðijji�Þ� are monotonically increasing func-

tions of pi� and they can also be negative. From Eq. (17),

negative values for E½Dðijji�Þ� will necessarily occur as

soon as the corresponding upper bound Uðpi� ; kÞ is lower or
equal to 0. From Eq. (17), it comes that

Uðpi� ; kÞ ¼ 0 () pi� ¼
1� pi�

k � 1
() pi� ¼

1

k
ð19Þ

as also seen from Fig. 3. If the reference category ci�

exhibit a probability pi�\ 1
k
, then there is obviously at least

another probability for a category ci such that pi [ 1
k
.

Stated in other words, negative values for E½Dðijji�Þ� will
automatically arise when the chosen reference category ci�

is not the most probable one (though the opposite is not

true : a negative value for E½Dðijji�Þ� does not necessarily
imply that the chosen reference category is not the most

probable one).

2.5 Equivalent reference probability

As is, the value for E½Dðijji�Þ� can be used for comparing

different classifiers as long as they share the same number

k of categories. Its values are necessarily lying in the

interval ½Lðpi� ; kÞ;Uðpi� ; kÞ�, so that for any probability

vectors p and a chosen reference category ci� one can see

how the corresponding value E½Dðijji�Þ� is close or far from
these lower and upper bounds. However, for people used to

deal with probabilities, the interpretation of the E½Dðijji�Þ�
values are made more difficult due to the fact that both

Lðpi� Þ and Uðpi� ; kÞ are unbounded. Indeed, both from

Eqs. (15) and (17) along with Fig. 3, it is clear that

limpi�!0 Lðpi� Þ ¼ limpi�!0 Uðpi� ; kÞ ¼ �1
limpi�!1 Lðpi� Þ ¼ limpi�!1 Uðpi� ; kÞ ¼ þ1

ð20Þ

so that E½Dðijji�Þ� is taking its value over the real line from

�1 to þ1. In order to circumvent this problem and to

ease the interpretation of E½Dðijji�Þ�, its value can be

converted in an ‘‘upper bound equivalent probability’’.

Indeed, for an arbitrary probability vector p with a chosen

reference category ci� with associated probability pi� , let us

look in Eq. (17) for a corresponding value of probability p�

so that E½Dðijji�Þ� would match the upper bound, i.e.

E½Dðijji�Þ� ¼ ln p� � ln
� 1� p�

k � 1

�

ð21Þ

Solving now for p�, i.e., the equivalent reference proba-

bility, with respect to E½Dðijji�Þ� and k leads to the result

p� ¼ expðE½Dðijji�Þ�Þ
expðE½Dðijji�Þ�Þ þ k � 1

ð22Þ

where p� has the meaning of an ‘‘upper bound equivalent

probability’’ that one can associate with any value for

E½Dðijji�Þ�. As p� is a probability, its values are now

restricted to the [0, 1] interval. From the monotonic prop-

erty of Uðp�; kÞ� as a function of p�, it is also clear that

p� � pi� , i.e. this equivalent probability is always lower or

equal to the reference probability pi� , with equality if and

only if E½Dðijji�Þ� is precisely corresponding to the upper

bound.

In order to illustrate this, let us consider Table 7 where

c1 is chosen as the reference category for the probability

vector in (a). Solving for p� using Eq. (22) leads to the

result p� ¼ 0:5. Accordingly, the probability vector in (b)

where p1 ¼ p� ¼ 0:5 can be viewed as an equivalent case,

in the sense that it has the same E½Dðijji�Þ� value but this

value now corresponds to the upper bound when c1 is

chosen as the reference category (note however that any

permutation of the probabilities in (b) would lead to the

same result as long as the same probability value is used for

the reference category, of course, so that p� is not intended
to be associated with any specific category). Focusing now

on the graphic representation of this equivalence between

E½Dðijji�Þ� and p� as given in Fig. 4, it can be seen that

looking for the value of p� is done by moving horizontally

leftwards from the point ðpi� ;E½Dðijji�Þ�Þ up to the curve

corresponding to the upper bound Uðp�; kÞ�, making also

clear that the result p� � pi� necessarily holds true. Clearly

too, the closer E½Dðijji�Þ�Þ is from the upper bound

Uðpi� ; kÞ�, the closer p� will be from pi� .

Table 6 Synthetic example for two probability vectors p sharing the

same MP value occurring for category c1

k p1 p2 p3 p4 Lðpi� Þ E½Dðijji�Þ� Uðpi� Þ

3 0.6 0.2 0.2 – 0.4055 1.0986 1.0986

4 0.6 0.2 0.2 0 0.4055 1.0986 1.5041

When selecting c1 as the reference category, the case where k ¼ 3 is

maximizing E½Dðijji�Þ� while the case where k ¼ 4 does not reach the

corresponding upper bound

Table 7 Synthetic example for two probability vectors p sharing the

same E½Dðijji�Þ� value but where the last vector corresponds to the

upper bound when k ¼ 4

p1 p2 p3 p4 E½Dðijji�Þ� Uðpi� Þ

(a) 0.6 0.2 0.2 0 1.0986 1.5041

(b) 0.5 0.16 0.16 0.16 1.0986 1.0986
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3 Synthetic examples

In order to illustrate now the use of E½Dðijji�Þ� as an

uncertainty, let us use an augmented version of Table 1, as

given by Table 8. Without loss of generality, let us con-

sider k ¼ 4 and a reference category c1 chosen here as the

most probable one. Clearly, cases (a) and (b) are respec-

tively the lower and upper bounds for E½Dðijji�Þ� when

pi� ¼ 0:7. As a consequence, any intermediate case sharing

the same pi� value will have a value E½Dðijji�Þ� 2
½0:85; 1:95� as, e.g., for case (c). Comparing now case (a)

with case (d) and case (c) with case (e) for which the

probabilities are distributed with the same logic over c2, c3
and c4, it can be seen that increasing pi� will lead to an

increase for E½Dðijji�Þ�, as expected. However, higher pi�’s
do not necessarily correspond automatically to higher

E½Dðijji�Þ�’s. Indeed, comparing directly cases (b) and (d)

which are respectively the most favorable case when pi� ¼
0:7 and the least favorable one when pi� ¼ 0:8, E½Dðijji�Þ�
is still favouring case (b) over case (d), as the even dis-

tribution of the probabilities over categories c2, c3 and c4 in

(b) does compensate the higher probability for c1 in (d).

Using E½Dðijji�Þ� as a sorting criterion from the most

favourable to the least favourable case, the ordering is now

(e), (b), (c), (d), (a). Clearly, E½Dðijji�Þ� allows us to

directly compare here the various case using a single cri-

terion that simultaneously accounts for the effect of the

reference category probability and the way other proba-

bilities are distributed over the remaining categories.

4 Evaluation using remote sensing data

Satellite images were downloaded over a 30 9 30 km2 area

in Belgium centered on 50.60	N, 4.68	E from which land/

crop cover maps were derived by a random forest classifier.

It should be emphasized here that the purpose was not to

achieve the highest level of accuracy but rather to

demonstrate (1) how the equivalent reference probability

(ERP) as defined by Eq. 22 can complement traditional

accuracy assessments and (2) how ERP criterion compares

with the MP criterion.

4.1 Study area and data

The study site is located in central agricultural loamy

region of Belgium. The typical field size ranges from 3 to

15 ha and the dominant crop types are winter wheat, winter

barley, potatoes, sugar beet, and corn. Winter crops are

generally sown in October and harvested in August at the

latest whereas summer crops are sown in April and har-

vested from September onward. Other dominant land

covers include pastures, forests, artificial lands and water

bodies. The landscape topography is flatlands and hills.

The climatic zone is temperate with annual rainfall of

about 780 mm that are relatively well distributed over the

year, therefore irrigation is not frequent.

Two cloud-free SPOT-4 images and one cloud-free

Landsat-8 image were at hand: the SPOT-4 imagery was

acquired during the spring season (2014-04-02 and

2014-05-27) while the Landsat imagery was acquired at the

end of the summer season (2014-09-30) (Fig. 5). There-

fore, the Landsat-8 image is critical to discriminate

between summer crops such as corn, potato and sugar beet.

Both the SPOT-4 and the Landsat-8 data were calibrated,

orthorectified and corrected for the atmosphere (Hagolle

et al. 2008, 2015). The Landsat-8 image was resampled to

SPOT-4’s resolution and only the first seven spectral bands

were kept.

The targeted legend includes eleven classes: six crop

types [winter barley (WB), winter wheat (WW), sugar beet

(SB), potato (Po), corn (C) and other crops (OC)], pasture
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Fig. 4 Upper bound equivalent probability p� ¼ 0:5 for E½Dðijji�Þ� ¼
1:0986 when pi� ¼ 0:6 and k ¼ 4. The lower curve is the lower bound

Lðpi� Þ while the upper curve is the upper bound Uðpi� ; kÞ when k ¼ 4

Table 8 Illustrative examples when k ¼ 4 for the values of pi� and

E½Dðijji�Þ�, where (a) and (b) are the lower and upper bounds when

pi� ¼ 0:7, while (d) is the lower bound when pi� ¼ 0:8 (the value for

the upper bound is equal to 2.48)

p1 p2 p3 p4 pi� E½Dðijji�Þ�

(a) 0.7 0.3 0 0 0.7 0.85

(b) 0.7 0.1 0.1 0.1 0.7 1.95

(c) 0.7 0.15 0.15 0 0.7 1.54

(d) 0.8 0.2 0 0 0.8 1.39

(e) 0.8 0.1 0.1 0 0.8 2.08
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(Pa), forest (F), artificial areas (A) and water bodies

(W) [see Radoux et al. (2016) for a separability analysis of

the main land cover classes in the area]. One thousand

calibration samples were randomly extracted from a data

set combining the land parcel identification system and the

land cover map of Wallonia. Similarly, 2000 samples

independent from the training data were randomly selected

to constitute the validation dataset.

4.2 Evaluation methodology

Based on the training data set, a random forest classifier was

trained and applied on the three collected images (Fig. 6a).

Random forest is an ensemble learning method for classi-

fication that operates by constructing a multitude of decision

trees and outputting the class that is the mode of the decision

of all the trees. Random forest have been widely used to

derive land cover maps from remotely sensed data (Gisla-

son et al. 2006; Rodriguez-Galiano et al. 2012; Waldner

et al. 2015c; Löw et al. 2015a). Rodriguez-Galiano et al.

(2012) demonstrated that random forest does not overfit and

offers several advantages such as (1) the low number of

user-defined hyper-parameters, (2) the estimation of the

importance of variables (bands) for the general classifica-

tion of the land-cover categories and for the classification of

each category by means of the Gini Index, and (3) its

robustness to noise and training data set size reduction. The

reference samples were then used to derive accuracy mea-

sures corresponding to the classification and the thematic

uncertainty was assessed by means of the ERP (Fig. 6c, f, j)

and the MP (Fig. 6d, g, j). Pixel-level equivalent reference

probability were also computed to assess the thematic

uncertainty of the classifications using Eq. 22.

4.2.1 Qualitative analysis and spatial patterns

Pixel-level thematic uncertainty measures are useful to

underline patterns of uncertainty in the map. As seen from

Fig. 6, classes seem to be associated with similar uncer-

tainty level which allows users to recognize class-specific

spatial patterns. Linear class transitions (mixed pixels) such

as field boundaries and roads are especially well identifi-

able. The ERP images are more contrasted than MP images

(darker areas) as ERP can be seen as a penalized version of

MP as a function of the membership probability vector

distribution. This is especially visible comparing forest

uncertainty in Fig. 6c, d. To better highlight patterns in the

spatial distribution of the uncertainty, the average equiva-

lent reference probability was computed for each class and

for different distances to the class boundary (Fig. 7). Two

main conclusions can be drawn. First, edge pixels are

classified with a higher uncertainty (low ERP) which is

explained easily as a result of mixing the spectral signature

at class transition. This effect tends to vanish after 40 m

(two pixels), except for the other crop class which gather

marginal crops that may have diverse spectral signatures.

Second, the average thematic uncertainty depends of the

class considered. The high uncertainty of the water body

class may be explained by the small size of the water

features in the landscape.

4.2.2 Quantitative analysis and relationship to class-level

accuracy measures

To quantitatively evaluate the proposed indicator, thematic

uncertainty measures and classification errors were com-

pared. The results from this comparison were then used to

establish if thematic uncertainty is positively correlated

with classification accuracy and can therefore indicate

classification quality. Results demonstrate that the pro-

posed approach successfully predicts the quality of the

classification and is more sensitive than MP.

As a first way of assessing the ability of ERP to relate

with classification accuracy, frequency distributions were

plotted for correctly and incorrectly classified samples,

respectively, regardless of their class (Fig. 8). The shape of

these distributions was then analyzed to evaluate if ERP is

a reliable spatial measure to predict errors in the land cover

map. The underlying assumption is that high ERP values

are associated with correctly classified samples. Similarly,

wrongly classified samples should in principle be charac-

terized by low ERP, that is when the classifier algorithm

had substantial doubt about the final class decision. If high

ERP values indicate correct classification, and low ERP

incorrect classification, then ERP successfully indicates the

spatial distribution of misclassification (or correct classifi-

cation) in the map. It can be seen that the two distributions

Fig. 5 False color infrared image of the SPOT-4 acquisition of the

2014-04-02. Forests appear in dark red, winter crops in light red,

summer crops in green and built up areas in dark blue
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respect this hypothesis: correctly classified samples are

associated with high ERP (high confidence) and

conversely.

In a second test aiming at the utility of the class confi-

dence estimated by ERP, we compared class-specific

accuracies derived from the confusion matrix with mean

predicted classification confidences (Fig. 9). Results show

that for all classes the mean class confidence seems to

slightly underestimate the proportion of well classified

except for the Water body class. Nonetheless, the mean

classification confidence for each class remains in general

closely correlated with the accuracy (Pearson-R = 0.8).

Therefore, these results suggest that the mean confidence

provides a reliable indicator of the proportion of correctly

classified pixels.

A final important consideration for the information-

based criterion presented in this paper is its sensitivity to

accuracy compared to the MP approach. A closer inspec-

tion of the differences between the uncertainty assessed

with the MP and the equivalent reference probability fur-

ther supports the validity of the newly introduced measure.

In areas of high disagreement between the two indicators,

i.e., when MP is substantially larger than ERP, ERP better

captures variations in accuracy (Fig. 10). On the contrary,

the maximum probability appears mostly insensitive to

variations in accuracy once a certain accuracy threshold is

reached (
 0.7). This enhanced sensitivity results from the

fact that ERP commits for the whole class membership

vector. ERP is a thematic uncertainty criterion that is more

sensitive than MP and its sensitivity allows a better rep-

resentation of the class accuracy.

5 Discussion and conclusions

This paper presents a new criterion to derive thematic

uncertainty measures from pixel-level class membership

outputs as provided by classifiers. This indicator—the

equivalent reference probability—is built on the concept of

information as defined in information theory. Its derivation

from the expected difference of information has been

Fig. 6 Land cover classification of the study area (a) and zooms on three areas of interest (b, e, h), including their associated ERP (c, f, i) and
MP (d, g, j) spatial distributions
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Fig. 7 Average equivalent reference probability by class as a
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demonstrated. Theorems and simple synthetic examples

illustrated how it can account for the full set of probabili-

ties, while remaining at the same time perfectly consistent

with the MP both when used as a simple assessment

indicator or as a criterion for selecting the best category.

Additionally, the ERP does not rely on any tuning proce-

dure, and it can be derived from any classifier that provides

soft outputs, either probabilistic or based on probability

membership proxies—number of trees, distance to the

separating plane, activation level, etc.

The fundamental theoretical properties of the expected

difference of information leading to the definition of the

ERP were first demonstrated. In particular, it has been

shown that the expected difference of information (i) is

bounded, (ii) is consistent with the initial order of the input

probability vector, and that (iii) as long as the reference

category is the most probable one, the expected difference

of information is non-negative. To ease the interpretation

and comparison of the information-based criterion, we

introduce the notion of equivalent reference probability,

that bounds the expected difference of information between

zero and one. Using synthetic examples, it has been shown

how this index allows us to directly compare various cases

of probability membership outputs using single values that

simultaneously accounts for the effect of the reference

category probability and for the way the other probabilities

are distributed over the remaining categories. The useful-

ness and complementary information brought by the cri-

terion was successfully highlighted in both synthetic and

real data sets. Based on a case study, it has been shown that

they provide a way of obtaining per-pixel classification

confidences that are strongly correlated with classification

accuracy (Pearson-R = 0.8).

The ERP criterion has been shown to be more sensitive

than maximum probability criterion. For a given MP, the

ERP varies as a function of the distribution of the

remaining class membership probability vector which

permits a finer characterization of the uncertainty. This
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exacerbated sensitivity highlighted in the real case study

makes the ERP the fittest indicator for classification com-

parisons and benchmarking activities.

Reliable pixel-level thematic uncertainty indicators are

critical because they provide a means of producing clas-

sification confidence that convey considerably more

information about classification quality than traditional

accuracy assessment measures. As classifying large areas

repeatedly over time with high spatial resolution images is

becoming more and more frequent, the local/regional rel-

evance of simple global confusion matrices and their

derived measures are continuously reduced.

This type of approach is interesting for providing a

deeper and spatially explicit understanding of the quality

of land cover maps as derived from remote sensing.

Additionally, the indicator is also useful to visualize the

uncertainty, to ease the monitoring of ecological condi-

tions (Dronova et al. 2011) and to further improve the

classification accuracy (Foody 2008; Gonçalves et al.

2009), e.g., by combining different classifier outputs (Liu

et al. 2004) and fusing classifier decisions (Löw et al.

2015a). Such criterion could also inform about sampling

strategies for selecting reliable pixels in the framework of

vegetation monitoring, area estimates or subsequent

classifications. Further research will focus on the link

between uncertainty, class proportion and purity as well

as on the way to integrate these information-based criteria

within the classifiers themselves for optimal class

selection.
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Appendix 1: Proof of the first theorem

Let us consider that pi� [ pi�� and let us write both

E½Dðijji�Þ� and E½Dðijji��Þ� by restricting the sum notation

over the subset of identical categories, so that

E½Dðijji�Þ� ¼ ln pi� �
P

infi�;i��g pi ln pi

1� pi�
� pi�� ln pi��

1� pi�

E½Dðijji��Þ� ¼ ln pi�� �
P

infi�;i��g pi ln pi

1� pi��
� pi� ln pi�

1� pi��

ð23Þ

After rearranging terms, the difference is thus given by

E½Dðijji�Þ� � E½Dðijji��Þ� ¼ Aþ B ð24Þ

where

A ¼
� 1

1� pi�
� 1

1� pi��

��

�
X

infi�;i��g
pi ln pi

�

¼ pi� � pi��

ð1� pi� Þð1� pi�� Þ
�

�
X

infi�;i��g
pi ln pi

�

[ 0

ð25Þ

because all factors are positive, and

B ¼ ðln pi� Þ
�

1þ pi�

1� pi��

�

� ðln pi�� Þ
�

1þ pi��

1� pi�

�

ð26Þ

and so we need to prove that B[ 0. After reducing to the

same denominator and simplifying,

B[ 0 () ln pi�

ln pi��
[

1� ðpi�� Þ2

1� ðpi� Þ2

() ln pi� ð1� ðpi� Þ2Þ[ ln pi�� ð1� ðpi�� Þ2Þ
ð27Þ

subject to the conditions pi� [ pi�� . As the function

ðln pÞð1� p2Þ is monotonically increasing over [0, 1], this

is always true and so B[ 0, as requested. h

Appendix 2: Proof of the second theorem

From Eq. (12), it is clear that the second term is the

expectation of the various ln pi’s when i 6¼ i�. For the sake
of conciseness, let us define

Epnpi� ½ln p�¼
: 1

1� pi�

X

ini�
pi ln pi ð28Þ

where all possibly null probabilities are filtered out from

the computation of Epnpi� ½lnp� because limpi!0 pi ln pi ¼ 0.

From the properties of an expectation, it comes too that

min
pnpi�

ðln pÞ�Epnpi� ½ln p� � max
pnpi�

ðlnpÞ ð29Þ

If pi � pi� 8i 6¼ i�, it thus comes that

Epnpi� ½ln p� � max
pnpi�

ðln pÞ� ln pi� ð30Þ

leading to E½Dðijji�Þ� � 0, as stated. Clearly, this also shows

that, from Eqs. (12) and (30),
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E½Dðijji�Þ� ¼ 0 () Epnpi� ½lnp� ¼ ln pi�

()
Epnpi� ½ln p� ¼ maxpnpi� ðln pÞ

ln pi� ¼ maxpnpi� ðln pÞ

(

ð31Þ

Let us now consider the following possibilities for pi�

subject to the condition pi � pi� 8i 6¼ i� :

i. if pi� [ 1
2
, then pi\pi� 8i 6¼ i� and it thus comes that

maxpnpi� ðln pÞ\ ln pi� , i.e. E½Dðijji�Þ�[ 0 ;

ii. if pi� ¼ 1
2
, then ln pi� ¼ maxpnpi� ðln pÞ implies that

one and only one pi (with i 6¼ i�Þ is equal to 1
2
and

thus, when k[ 2, all other pi’s must be null ;

iii. if pi�\ 1
2
, then ln pi� ¼ maxpnpi� ðlnpÞ () pi� ¼

maxpnpi� ðpÞ is impossible for k ¼ 2, as for k ¼ 2

we have under this condition

X

k

i¼1

pi ¼ pi� þmax
pnpi�

ðpÞ ¼ 2pi�\1 ð32Þ

while
Pk

i¼1 pi ¼ 1 by definition. For k[ 2, there are

at least two pi’s [ 0 (with i 6¼ i�) with the highest one
equal to maxpnpi� ðpÞ. On the other side, Epnpi� ½ln p�
reaches its upper bound maxpnpi� ðln pÞ when all non

null ln pi’s, are equal to maxpnpi� ðpÞ. It thus comes

that, for all non null probabilities, pi ¼ pi� ¼ 1
k0 where

k0 � k is the number of categories with non null

probabilities so that
Pk

i¼1 pi ¼ 1, as required.

This completes the proof, as the second case is consistent

with the third one, i.e. k0 ¼ 2 and so pi ¼ pi� ¼ 1
2
. h

Appendix 3: Proof of the third theorem

In order to prove this, let us remember that

1

1� pi�

X

ini�
pi ¼ 1 ð33Þ

so that using this property,

lnð1� pi� Þ ¼ lnð1� pi� Þ
1

1� pi�

X

ini�
pi

¼
X

ini�

pi

1� pi�
lnð1� pi� Þ

ð34Þ

From Eqs. (12) and (34), one can thus write

E½Dðijji�Þ� ¼ E½Dðijji�Þ� þ lnð1� pi� Þ � lnð1� pi� Þ

¼ ln
� pi�

1� pi�

�

�
X

ini�

pi

1� pi�
ln
� pi

1� pi�

�

¼ ln
� pi�

1� pi�

�

þ Hðpnpi� Þ ð35Þ

where pi� is given and where Hðpnpi� Þ � 0 is the entropy of

the subset of pi’s when i 6¼ i�. From the properties of the

entropy, the minimum of Hðpnpi� Þ ¼ 0 is reached if and

only if there is a single pi=ð1� pi� Þ ¼ 1 (i.e. the other

probabilities are null) and, accordingly under this

condition,

E½Dðijji�Þ� ¼ ln
� pi�

1� pi�

�

¼ ln pi� � lnð1� pi� Þ ð36Þ

is the minimum possible value, as stated. h

Appendix 4: Proof of the fourth theorem

Starting again from Eq. (35), the entropy Hðpnpi� Þ reaches
its maximum possible value if and only if all probabilities

are equal over the k � 1 categories, i.e.

pi

1� pi�
¼ 1

k � 1
8i 6¼ i� ð37Þ

and so it comes that

Hðpnpi� Þ ¼ lnðk � 1Þ ð38Þ

so that the maximum possible value for E½Dðijji�Þ� is

E½Dðijji�Þ� ¼ ln
� pi�

1� pi�

�

þ Hðpnpi� Þ

¼ ln
� pi�

1� pi�

�

þ lnðk � 1Þ

¼ ln pi� � ln
� 1� pi�

k � 1

�

ð39Þ

as stated by the theorem. h
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