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Abstract The presence of serial correlation in hydro-

meteorological time series often makes the detection of

deterministic gradual or abrupt changes with tests such as

Mann–Kendall (MK) and Pettitt problematic. In this study

we investigate the adverse impact of serial correlation on

change point analyses performed by the Pettitt test. Build-

ing on methods developed for the MK test, different pre-

whitening procedures devised to remove the serial

correlation are examined, and the effects of the sample size

and strength of serial dependence on their performance are

tested by Monte Carlo experiments involving the first-order

autoregressive [AR(1)] process, fractional Gaussian noise

(fGn), and fractionally integrated autoregressive [ARFI-

MA(1,d,0)] model. Results show that (1) the serial corre-

lation affects the Pettitt test more than tests for slowly

varying monotonic trends such as the MK test both for

short-range and long-range persistence; (2) the most effi-

cient prewhitening procedure based on AR(1) involves the

simultaneous estimation of step change and lag-1 autocor-

relation q, and bias correction of q estimates; (3) as

expected, the effectiveness of the prewhitening procedure

strongly depends upon the model selected to remove the

serial correlation; (4) prewhitening procedures allow for a

better control of the type I error resulting in rejection rates

reasonably close to the nominal values. As ancillary results,

(5) we show the ineffectiveness of the original formulation

of the so-called trend-free prewhitening (TFPW) method

and provide analytical results supporting a corrected ver-

sion called TFPWcu; and (6) we propose an improved two-

stage bias correction of q estimates for AR(1) signals.

Keywords Pettitt test � Change point analysis �
Prewhitening � Autoregressive process � Fractional

Gaussian noise � Hurst parameter

1 Introduction

Climate fluctuations and human activities can cause statistical

shifts in long-term means of hydro-meteorological variables.

Recognition and attribution of these changes is fundamental

for infrastructure design, water management strategies, and

risk mitigation policies. In this respect, appropriate statistical

diagnostics and change detection methods can help under-

stand the nature of historic fluctuations in hydrological time

series [e.g., Rougé et al. (2013); Guerreiro et al. (2014) and

references therein]. Among many available statistical testing

procedures devised for assessing the significance of a change

[e.g., Kundzewicz and Robson (2004)], the Pettitt test (Pettitt

1979) is one of the widely used rank-based nonparametric

tests to check the presence and timing of abrupt changes in the

mean or median of hydro-meteorological variables such as

rainfall, runoff, and temperature [e.g., Villarini et al. (2009,

2011); Ferguson and Villarini (2012); Rougé et al. (2013);

Tramblay et al. (2013); Guerreiro et al. (2014); Sagarika et al.

(2014) among others].

According to Pettitt (1979), given a set of independent

random variables X1;X2; . . .;XTf g, the sequence is said to

have a change point at s if Xt for t ¼ 1; . . .; s have a

common distribution F1ðxÞ and Xt for t ¼ sþ 1; . . .; T have

a common distribution F2ðxÞ, and F1ðxÞ 6¼ F2ðxÞ. Thus, the

test tackles the problem of testing the null hypothesis of
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‘‘no change’’, H0 : s ¼ T , against the alternative of ‘‘change’’,

H1 : 1� s\T . The test is based on the statistic

KT ¼ max
1� t\T

jUt;T j; ð1Þ

where

Ut;T ¼
Xt

i¼1

XT

j¼iþ1

sgnðXi � XjÞ; ð2Þ

where sgnðxÞ ¼ 1 if x[ 0, 0 if x ¼ 0, and �1 if x\0. The

statistic Ut;T is equivalent to a Mann–Whitney statistic for

testing that two samples x1; . . .; xtð Þ and xtþ1; . . .; xTð Þ come

from the same population. This correspondence highlights

that the actual alternative of both tests (Mann–Whitney U

test and Pettitt test) is that one distribution stochastically

dominates the other, meaning that F1ðxÞ\F2ðxÞ for every

value of x or vice versa. Thus, even though this hypothesis

is commonly restricted to a shift in the location parameter

l, F1ðxÞ ¼ F2ðxþ lÞ, these tests are sensitive to all pos-

sible conditions resulting in a stochastic ordering. It should

be noted that the equivalence mentioned above implies a

formal relationship between the Pettitt test and the MK test

(Rougé et al. 2013), which is one of the widely used

nonparametric approaches for testing slowly varying

monotonic trends in hydro-meteorological time series.

Different aspects of such tests (Pettitt and MK) have been

widely studied in the literature. However, the MK test has

always received much more attention than the Pettitt test despite

their common theoretical background and the potential interest

of regime shift detection in hydrological and climate studies

compared with monotonic trends. For example, the power of the

MK test under different conditions (i.e., sample size, magnitude

of deterministic trend, type of the parent distribution) was stu-

died by extensive Monte Carlo simulations about one decade

ago (Yue et al. 2002a; Önöz and Bayazit 2003; Yue and Pilon

2004), whereas, to the best of our knowledge, an analogous

study was performed only recently for the Pettitt test (Xie et al.

2014; Mallakpour and Villarini 2015).

The same holds for the effect of serial correlation (also

referred to as autocorrelation or serial dependence) on the

outcome of Pettitt and MK tests. It is well known that a basic

assumption for a correct application of tests such as Pettitt and

MK is that the data should be randomly ordered (i.e. obser-

vations should be serially independent), which is a condition

seldom fulfilled by real-world hydro-meteorological data

(e.g., Hamed 2009). The effect of the autocorrelation on tests

devised for independent data is a general increase of the re-

jection rate of the null hypothesis (‘‘no change’’) of the sta-

tistical test, even if no change is present in the data. This over-

rejection (compared with the nominal rejection rate) is due to

the information redundancy which makes the effective sample

size smaller than the observed size, thus implying that the

effective variance of the test statistics to be used in the testing

procedure under serial dependence is larger than that provided

by standard results obtained under the hypothesis of inde-

pendence (e.g., Bayley and Hammersley 1946; Koutsoyiannis

and Montanari 2007). This phenomenon is known as variance

inflation. In this respect, there is an extensive literature on the

study of the effect of serial correlation on the MK test (see

Sect. 2), whereas, to the best of our knowledge, only Busuioc

and von Storch (1996) and Rybski and Neumann (2011) (see

Sect. 3) tackled the problem for the Pettitt test.

In this study we provide a comprehensive investigation of

the effects of serial dependence on the Pettitt test, and propose

a set of so-called prewhitening methods (see Sect. 3) in order to

make the test procedure suitable for serially correlated data.

Such methods involve different autocorrelation structures, and

take into account the mutual influence of serial correlation and

structural abrupt changes. The capability of controlling the

type I error and the sensitivity to model misspecification are

tested by extensive Monte Carlo simulations. Since the pro-

posed prewhitening procedures are derived from techniques

developed for the MK test, an overview of these methods is

given in Sect. 2. Prewhitening approaches for Pettitt are

therefore presented in Sect. 3, whilst simulation results are

discussed in Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 Some aspects of MK analysis of gradual changes

under serial correlation

In order to deal with the problem of variance inflation, two

approaches have been suggested: the explicit calculation of

the inflated variance (e.g., Hamed and Rao 1998; Kout-

soyiannis 2003; Yue and Wang 2004c; Hamed 2008b,

2009) and prewhitening procedures (e.g., Katz 1988;

Kulkarni and von Storch 1995; von Storch 1999; Yue et al.

2002b; Yue and Wang 2002; Bayazit and Önöz 2007;

Hamed 2009). In more detail, Hamed and Rao (1998)

showed that the mean and variance of MK S statistics are

(for meta-Gaussian serial dependence structure)

E½S� ¼ 0

Var½S� ¼
XT�1

i¼1

XT

j¼iþ1

XT�1

k¼1

XT

l¼kþ1

2

p
arcsin

ql�j � ql�i � qk�j þ qk�iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 � 2qj�iÞð2 � 2ql�kÞ

q

0
B@

1
CA

8
>>><

>>>:
; ð3Þ
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where the symbol qj�i denote the value of the empirical

autocorrelation function at lag ðl� jÞ (Hamed and Rao

1998) or the theoretical autocorrelation function corre-

sponding to a selected model which is deemed to correctly

represent the serial correlation structure of the process.

Referring to Hamed (2009) for a list of candidates and a

comparison, possible options are models such as AR(p),

autoregressive moving average ARMA(p; q), fGn(H), or

fractionally integrated ARMA [ARFIMA(p; d; q)], where

p, q, d, and H denote the AR order, the MA order, the

fractional order of differencing, and the Hurst parameter,

respectively. As an alternative to using the inflated vari-

ance in Eq. 3 or analogous variance inflation factors

(Matalas and Sankarasubramanian 2003), one can apply

prewhitening procedures, which consist of the removal of

the autocorrelation structure by fitting one of the models

mentioned above and thus performing the statistical test on

the (approximately) uncorrelated residuals (e.g., Katz

1988; Kulkarni and von Storch 1995; von Storch 1999).

Both procedures (inflated variance correction and

prewhitening) require the estimation of the autocorrelation

terms at different lags (for nonparametric approaches or

ARMA models), d (for ARFIMA models), or H (for fGn).

However, the presence of deterministic (gradual or abrupt)

changes tends to strengthen the autocorrelation among

data, resulting in biased estimates of the models’ pa-

rameters, and eventually in overestimating the terms of the

autocorrelation function. Using such inflated correlation

values in computing the variance in Eq. 3 results in an

over-inflation of the variance of the test statistic S, thus

making the test too liberal (i.e., the rejection rate of the null

hypothesis is smaller than expected). Analogously, the ef-

fect of inflated correlation on prewhitening is a removal of

a portion of the trend (Yue and Wang 2002), thus in-

creasing the chances of not rejecting the null hypothesis

when the original MK test is applied to model residuals.

The interaction between deterministic trends and autocor-

relation structure prompted a rather heated debate about the

suitability of the prewhitening procedure and its effect on

the test significance level and power (e.g., Bayazit and

Önöz 2004; Yue and Wang 2004a, b; Zhang and Zwiers

2004; Hamed 2008a; Bayazit and Önöz 2008).

In this respect, focusing on prewhitening by AR(1)

correlation structure, the preliminary removal of the

apparent deterministic trend (e.g., Hamed and Rao 1998;

Yue et al. 2002b; Yue and Wang 2004c) was shown to

reduce the inflation of the lag-1 autocorrelation q used in

prewhitening, thus avoiding the problem of overcorrection

(also known as over-whitening). However, Hamed (2009)

highlighted that the removal of the apparent trend leads to

an underestimation of q, resulting in an insufficient re-

moval of the autocorrelation, and thus in the persistence of

the original problem of over-rejection. He concluded that

no prewhitening, prewhitening without trend removal, or

prewhitening with trend removal all exhibit a poor per-

formance owing to the presence of the autocorrelation, the

overestimation and underestimation of q, respectively. To

overcome such problems, Hamed (2009) suggested a pro-

cedure allowing for the simultaneous estimation of q and

the slope b of a possible deterministic linear trend. This

approach was shown to balance between under- and over-

correction improving the effectiveness of prewhitening and

also correcting the bias in the q estimates.

Since the Hamed’s method will be adapted for the Pettitt

test, it is worth recalling basic equations and highlighting

its relationship with the prewhitening procedures proposed

by Zhang et al. (2000) and Yue et al. (2002b). As the

AR(1) model and linear trends are the most used options in

studies concerning trend analyses, Hamed (2009) assumed

the following model:

yt ¼ qyt�1 þ aþ bt þ et; ð4Þ

where yt and yt�1 are observed records at time t and t � 1,

q is the lag-1 autocorrelation coefficient, a is the intercept

of the linear trend, b is the trend slope, and et indicates

uncorrelated residuals. The corresponding prewhitened

time series are written as

yt � qyt�1 ¼ aþ bt þ et: ð5Þ

Zhang et al. (2000) and Yue et al. (2002b) suggested

considering a process as the superposition of an AR(1)

process Xt and a linear trend with slope b0

yt ¼ q0xt þ a0 þ b0t
xt ¼ q0xt�1 þ e0t

�
; ð6Þ

which yields prewhitened time series (Cochrane and Orcutt

1949; Wang and Swail 2001)

yt � q0yt�1 ¼ ð1 � q0Þa0 þ q0b0 þ ð1 � q0Þb0t þ e0t: ð7Þ

From Eqs. 5 and 7, it follows

q ¼ q0

a ¼ ð1 � q0Þa0 þ q0b0

b ¼ ð1 � q0Þb0

et ¼ e0t

8
>>><

>>>:
()

q0 ¼ q

a0 ¼ ð1 � qÞa� qb

ð1 � qÞ2

b0 ¼ b
1 � q

e0t ¼ et

8
>>>>>>><

>>>>>>>:

:

ð8Þ

Equation 8 helps highlight some aspects that should be

accounted for in prewhitening procedures. Under the as-

sumption that the data come from the superposition of an

AR(1) signal and a linear trend b0t, Hamed’s method tests

the equivalent trend (Hamed 2009, p. 148) with effective

Stoch Environ Res Risk Assess (2016) 30:763–777 765

123



slope ð1 � q0Þb0 corresponding to prewhitened observa-

tions yt � qyt�1. In order to obtain a prewhitened time

series with the same trend slope b0 of the observed se-

quences, Wang and Swail (2001) suggested dividing the

prewhitened values by ð1 � q0Þ, obtaining

yt � q0yt�1

1 � q0
¼ a0 þ q0b0

1 � q0
þ b0t þ e0t

1 � q0

¼ a00 þ b0t þ e00t

; ð9Þ

Equation 9 shows that re-inflating the slope of the pre-

whitened values from ð1 � q0Þb0 to b0 implies also the

inflation of the variance of the white noise residuals from

e0t to e0t=ð1 � q0Þ. In other words, prewhitening involves

the reduction of the slope to be tested (the variance of the

residuals being unchanged) or the increase of the variance

of the residuals (being the slope unchanged). The latter

approach is coherent with the variance inflation proce-

dures applied to the original signal (Hamed and Rao

1998; Yue and Wang 2004c; Hamed 2008b). In this re-

spect, it is worth highlighting that the TFPW method

introduced by Yue et al. (2002b) does not consider the

inflation of the variance of e0t. The steps involved in im-

plementing the TFPW approach are summarized as (Yue

et al. 2002b; Khaliq et al. 2009): (1) for a given time

series of interest ytf g, linear trend slope is estimated us-

ing the rank-based Sen’s method (Sen 1968); (2) the

linear trend is removed from the time series and the lag-1

autocorrelation coefficient q0 is estimated; (3) if q0 is non-

significant at the chosen significance level then the trend

identification test is applied to the original time series;

and otherwise (4) the trend identification test is applied to

the detrended prewhitened series recombined with the

estimated slope of trend from step 1.

As TFPW implies trend removal, residuals prewhiten-

ing, and trend reintroduction, it follows that the MK test is

applied to the variable

e0t þ b0t ¼ xt � q0xt�1 þ b0t

¼ yt � b0t � q0 yt�1 � b0ðt � 1Þð Þ þ b0t

¼ yt � q0yt�1 þ q0b0ðt � 1Þ
¼ yt � q0xt�1

; ð10Þ

where we omitted the intercept a0 for the sake of simplicity

and without loss of generality. Equation 10 clearly shows

that the time series tested by MK in the TFPW procedure is

not prewhitened at all. Indeed the rationale of TFPW is to

make the residuals xt around the trend serially independent,

whereas MK and Pettitt tests require that the series of data

yt have to be serially independent or made independent by

yt � qyt�1 (under the hypothesis of AR(1) dependence

structure). To make TFPW consistent with Wang-Swail’s

and Hamed’s methods, e0t in Eq. 10 should be replaced with

the inflated value e0t=ð1 � q0Þ, thus making the tested time

series similar to that in Eq. 9 (the main difference being the

efficiency of the procedure used to estimate the model

parameters). As this option is actually implemented in R

(R Development Core Team 2014) in the package zyp

(Bronaugh and Werner 2013) based on empirical analyses,

our discussion provides the theoretical proof that such an

option is actually required to control the type I error.

Monte Carlo simulations confirm the above statements.

We simulated 1000 time series from an AR(1) model with

q ranging between 0 and 0.9 by 0.1 steps with no trend to

check the actual rejection rate of the MK test (conducted at

the 5% significance level) using different methods to ac-

count for serial correlation. Figure 1a, b show the actual

rejection rate obtained applying MK to AR(1) time series

and sequences prewhitened without accounting for possible

trends, i.e. taking the differences yt � q̂�yt�1, where q̂� is

the estimate of q corrected for the bias of the ordinary least

square estimator according to the two-stage procedure de-

scribed in the Appendix. Such results are well-known, and

the effectiveness of prewhitening in reproducing the

nominal rejection rate (5%) under correct model specifi-

cation is expected (see e.g., Kulkarni and von Storch 1995),

among others]. However, Fig. 1a, b can be used to assess

the performance of the other prewhitening methods. In-

deed, Fig. 1c shows the complete ineffectiveness of TFPW,

thus quantifying the consequences of using Eq. 10. Figure

1d, e highlight that the inflation of the variance of the trend

residuals xt allows the correction of the over-rejection

problem (the method is denoted as TFPWcu, where ‘‘c’’

indicates ‘‘corrected’’ and ‘‘u’’ denotes the the ‘‘unbiased’’

estimation of q). This makes the performance of TFPW

similar to that of Wang-Swail’s method (referred to as

WSu in Fig. 1e), which is based on an iterative estimation

procedure of the model parameters (see Wang and Swail

2001, for further details). Finally, Hamed’s method (re-

ferred to as simultaneous unbiased prewhitening (SUPW)

in Fig. 1f) performs slightly better than TFPWcu and

similarly to WSu, as the estimation method of the model

parameters is specifically devised for an AR(1) with linear

trend, and provide an efficient treatment and removal of the

bias affecting the parameter estimates. Thus, in spite of the

presence of the linear trend in the model structure,

TFPWcu, SWu, and SUPW yield a rejection rate similar to

that of the pure prewhitening shown in Fig. 1b (except for

high values of q). These results are used in the next section

to set up prewhitening procedures for the Pettitt test.

3 Prewhitening methods for the Pettitt test

As mentioned above, unlike the MK test, the Pettitt test has

received less attention in the literature. Dealing with the

impact of serial correlation, Busuioc and von Storch (1996)
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showed the adverse effect of the autocorrelation (namely,

AR(1) correlation structure) and the presence of possible

gradual (linear) trends on the rejection rate. Busuioc and von

Storch (1996) recommend prewhitening before performing

the test, and highlight the detrimental effects of the presence

of linear trends. Indeed, the preliminary removal of a linear

trend corrects for the over-rejection of the Pettitt test if only a

linear trend is present. However, when both linear trend and

one or more abrupt changes are present, spurious trends can

results from the presence of abrupt changes, and trend re-

moval reduces the power of the test making it sometimes

useless. Thus they ‘‘recommend using the Pettitt test as a

mere exploratory tool and calculating Pettitt’s statistic and

dealing with change points as unproven hypotheses, which

plausibility should be supported by physical arguments’’.

Similarly, Rybski and Neumann (2011) discussed the over-

rejection introduced by a long-range power-law decaying

correlation structure, thus confirming the results of Busuioc

and von Storch (1996) and suggesting the modification of the

expression of the distribution ofKT under the null hypothesis

accounting for short-range and long-range correlation.

However, they do not discuss such procedures. Dealing with

a sequential regime shift detection method (Rodionov 2004),

which is different to the Pettitt test but is similarly affected by

serial correlation, Rodionov (2006) investigated the effect of

prewhitening, highlighting the importance of performing a

bias correction of the ordinary least squares (OLS) or max-

imum likelihood estimates of q.

Based on these remarks and the results reported in the

previous section concerning the MK test, in this study, we

investigate the effect of the autocorrelation on the rejection

rate of the Pettitt test and the effectiveness of prewhitening,

bearing in mind the concealing effects of the interaction

between serial correlation and ‘‘true’’ abrupt changes, and

the bias affecting the parameters’ estimates.

3.1 TFPWcu adapted for the Pettitt test

Based on results in Sect. 1, under the hypothesis of AR(1)

serial dependence, we do not consider the WSu method as

Lag−1 autocorrelation ρ [−]

R
ej

ec
tio

n 
ra

te
 [−

]

0.0

0.2

0.4

0.6

0.8

1.0

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Size = 20
Size = 40
Size = 60
Size = 80
Size = 100
Size = 150
Size = 200
Size = 250

(a) Original MK

Lag−1 autocorrelation ρ [−]

R
ej

ec
tio

n 
ra

te
 [−

]

0.0

0.2

0.4

0.6

0.8

1.0

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

(b) AR(1)−PW MK

Lag−1 autocorrelation ρ [−]

R
ej

ec
tio

n 
ra

te
 [−

]

0.0

0.2

0.4

0.6

0.8

1.0

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

(c) AR(1)−TFPW MK

Lag−1 autocorrelation ρ [−]

R
ej

ec
tio

n 
ra

te
 [−

]

0.0

0.2

0.4

0.6

0.8

1.0

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

(d) AR(1)−TFPWcu MK

Lag−1 autocorrelation ρ [−]

R
ej

ec
tio

n 
ra

te
 [−

]

0.0

0.2

0.4

0.6

0.8

1.0

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

(e) AR(1)−WSu MK

Lag−1 autocorrelation ρ [−]
R

ej
ec

tio
n 

ra
te

 [−
]

0.0

0.2

0.4

0.6

0.8

1.0

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

(f) AR(1)−SUPW MK

Fig. 1 Rejection rate of MK test applied to samples drawn from

AR(1) for different values of lag-1 autocorrelation q, several sample

sizes, and 5% nominal significance level. Several variants of MK test

are considered: a original MK test without prewhitening; b MK with

AR(1) prewhitening; c MK with original TFPW; d MK with modified

TFPW involving corrected linear trend slope and unbiased q
(TFPWcu); e MK with Wang-Swail’s prewhitening and unbiased q
(WSu); f MK with Hamed’s simultaneous unbiased prewhitening

(SUPW)
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its rationale is similar to TFPWcu but involves an iterative

estimation procedure that does not provide significant im-

provements and can be avoided. TFPWcu was adapted for

the Pettitt test replacing the linear trend by a step change.

Thus, model in Eq. 6 becomes

yt ¼ q0xt þ D0 � 1 t[ sf g
xt ¼ q0xt�1 þ e0t

�
; ð11Þ

where 1 �f g is the indicator function. The testing procedure

is as follows:

Step 1: The Pettitt test is applied to the original data.

If the value of the test statistic KT is not

significant, it can be concluded that there is no

evidence to reject the null hypothesis (‘‘no

change’’).

Step 2: If KT is significant, the position s of the

possible change point is used to split the time

series in two sub-series (before and after s),

the difference of the medians or means, l̂b

and l̂a, of the two sub-series is computed as

D̂0 ¼ l̂b � l̂a and used to remove the step

change as follows:

xt ¼ yt � D̂0 � 1 t[ sf g: ð12Þ

Step 3: The value of the lag-1 autocorrelation q of xt
is estimated by the OLS estimator and

corrected for bias using the two-stage bias

correction described in the Appendix; then the

AR(1) structure is removed by

e0t ¼ xt � q̂�xt�1; ð13Þ

where q̂� is the bias corrected estimate of q
and e0t should be an uncorrelated series.

Step 4: The step change and the residuals e0t are

combined by

D̂0 � 1 t[ sf g þ
e0t

1 � q̂�
; ð14Þ

and the Pettitt test is applied to these pre-

whitened series to assess the significance of

the abrupt change.

As mentioned in the previous section, dividing the step

change residuals e0t by ð1 � q̂�Þ allows the appropriate

prewhitening of the series to be tested preserving the ori-

ginal step change D0.

3.2 Hamed’s methods adapted for the Pettitt test

3.2.1 AR(1) prewhitening

As mentioned in Sect. 1, it is well known that the OLS

estimator of the correlation coefficient is negatively biased

(see e.g., Wallis and O’Connell 1972; Lenton and Schaake

1973; Mudelsee 2001; Koutsoyiannis 2003, and references

therein). In the case of linear trend and AR(1) correlation

structure, Hamed (2009) proposed the simultaneous esti-

mation of the model parameters in Eq. 4 by the OLS

method as follows:

½q̂ â b̂�> ¼ ðz>zÞ�1z>y; ð15Þ

where z is a ðT � 1Þ � 3 design matrix containing obser-

vations from y1 to yT�1 in the first column, a vector of

ðT � 1Þ ones in the second column, and a sequence of

integers from 2 to T in the third column; y is the vector of

observation from y2 to yT . The simultaneous estimation

allows for the correction of the bias in q related to the

estimation of nuisance parameters, i.e. the coefficients of

the linear (or polynomial) mean function. In particular, for

both OLS and maximum likelihood estimators, and a linear

trend, Kang et al. (2003) and van Giersbergen (2005)

showed that E½q̂� q� ¼ �ð2 þ 4qÞ=T , yielding the bias-

corrected value

q̂� ¼ � T q̂þ 2

T � 4
: ð16Þ

Using the simultaneous estimation for the Pettitt test and an

abrupt change instead of a linear trend is possible because

the framework refers to models that are linear in the co-

efficients, and the bias correction in Eq. 16 is independent

of the values of the explanatory variables. Indeed, the se-

quence 2; . . .; T used by Hamed (2009) can be replaced by

a sequence of dates or a standardized series 2=T ; . . .; 1 (van

Giersbergen 2005). Thus, our proposal is to replace the

sequence 2; . . .; T with an auxiliary variable described by

the indicator function 1 t[ sf g, which is zero for t� s and 1

for t[ s, obtaining the model

yt ¼ qyt�1 þ aþ D � 1 t[ sf g þ et: ð17Þ

This way, the b parameter in Eqs. 4 and 15 represents the

magnitude D of a step change instead of the slope of a

linear trend. Similarly to the case of b and b0 in Sect. 2,

D ¼ ð1 � qÞD0 is the effective magnitude of the step

change. Thus, the testing procedure consists of applying

the original Pettitt test to the prewhitened signal

yt � q̂�yt�1 ¼ âþ D̂ � 1 t[ sf g þ et: ð18Þ

3.2.2 Prewhitening with models different from AR(1)

In spite of the widespread use of AR(1) as a prewhitening

model, it is well known that the success of prewhitening

depends on the correctness of the model selected to de-

scribe the autocorrelation structure (Kulkarni and von

Storch 1995). Other models should therefore be considered
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if the AR(1) does not provide a satisfactory prewhitening.

In this respect, Hamed (2009) showed the effect of model

misspecification on the variance inflation factor. For such

alternative (and generally more complex) models, the si-

multaneous estimation of the model parameters and gra-

dual or abrupt changes might be no feasible or impractical.

Thus, in these cases, we apply a more classical approach

which can be summarized by a procedure similar to that

suggested by Hamed (2008b) for fGn and linear trends, and

adapted for abrupt changes as follows

Step 1: The Pettitt test is applied to the original data. If the

value of the test statistic KT is not significant, it

can be concluded that there is no evidence to

reject the null hypothesis (‘‘no change’’).

Step 2: If KT is significant, the abrupt change is

removed as for Step 2 of the TFPWcu

approach (Sect. 3.1), and the parameters of

the selected model are calculated on this

detrended time series.

Step 3: The original data are prewhitened by the

model calibrated in the previous step and the

Pettitt test is applied. If the value of the test

statistic KT is not significant, it can be

concluded that there is no evidence to reject

the null hypothesis (‘‘no change’’), otherwise

the null hypothesis can be rejected at a given

significance level.

The selection of the model used in Step 2 should be based

on a preliminary exploratory analysis in order to identify a

set of suitable candidates. For fGn, which is parameterized

by the Hurst parameter H, Hamed (2008b) suggested to

tests the significance of H estimated in Step 2 and proceed

to the subsequent step only if H is signicantly different

from 0.5 (corresponding to white noise). Such a procedure

introduces a conditional prewhitening (CPW), whereas

prewhitening regardless of the statistical significance of the

model parameters is called unconditional (UPW). For MK

and linear trends, Kulkarni and von Storch (1995) found

that UPW outperforms CPW, and suggested the use of the

former method, which is also the approach adopted by

Hamed (2009). In this study, we compare both approaches,

which are denoted as model-UPW and model-CPW, where

model refers to the model used to prewhiten (e.g., AR(1)).

4 Monte Carlo results

To test the effectiveness of the procedures described in

Sect. 3, we used a set of models accounting for both short-

range and long-range serial correlation, namely, AR(1),

fGn, and ARFIMA(1,d,0). The analyses are based on

Monte Carlo simulations of samples from AR(1) with q
ranging from 0 to 0.9 by 0.1, fGn with Hurst parameter

ranging from 0.5 to 0.95 by 0.05, and ARFIMA(1,d,0) with

ten combinations of the parameters q and d (detailed be-

low), and sample size T 2 20; 40; 60; 80; 100; 150;f
200; 250g. For each configuration, 1000 time series were

simulated.

Figure 2 shows results corresponding to AR(1) signals.

The rejection rate of the original Pettitt test (without

prewhitening) quickly increases as q increases, and is

larger than that of MK test shown in Fig. 1, thus indicating

the greater sensitivity of Pettitt to the influence of the serial

correlation. TFPWcu and SUPW provide a rejection rate

much closer to the nominal value (5%), with SUPW

slightly outperforming TFPWcu. However, both methods

are less effective for Pettitt than for MK, further confirming

the sensitivity to the effects of serial correlation, especially

for q values higher than 0.7.

Figure 2 also shows the effect of model misspecification.

In particular, fGn-based methods do no provide a sufficient

prewhitening (which is known as under-whitening) for

small sample sizes owing to the difficulty of reliably esti-

mating the Hurst parameter in these cases (e.g., Tyralis and

Koutsoyiannis 2011). On the other hand, fGn-CPW and

fGn-UPW yield over-whitening, and so under-rejection, as

the sample size increases and the removed fGn depedence

structure is stronger than the actual AR(1).

ARFIMA(1,d,0)-CPW and ARFIMA(1,d,0)-UPW provide

results similar to fGn-UPW and fGn-CPW for small sample

sizes, whereas their short-range correlation component

prevents over-whitening for larger sample sizes. Finally,

there is no significant difference between conditional and

unconditional prewhitening. A map of the rejection rate as

a function of q and sample size T is also provided for the

‘‘best’’ performing method to highlight the dependence of

the rejection rates on the pairs ðq; TÞ.
Figure 3 shows results concerning the application of the

Pettitt test to fGn time series. As expected, AR(1)-based

methods (i.e. TFPWcu and SUPW) yield over-rejection

owing to the under-whitening of long-range correlated

signals. fGn-CPW and fGn-UPW perform better than the

other methods; however, both fGn-CPW and fGn-UPW

under-whiten the signals even though the model is cor-

rectly specified. We argue that this result might be ascribed

to two factors: (1) the difficulty of reliably estimating H for

such small sample sizes, and (2) the intrinsic nature of fGn

time series, which are characterized by persistent fluc-

tuations that can easily (but erroneously) be recognized as

structural change points. In this context, ARFIMA(1,d,0)-

CPW and ARFIMA(1,d,0)-UPW perform slightly better

than TFPWcu and SUPW, but the under-whitening related

to the short-range component seems to dominate the

Stoch Environ Res Risk Assess (2016) 30:763–777 769

123



outcome of the test, thus yielding rejection rates greater

than those of fGn-CPW and fGn-UPW.

For time series simulated from ARFIMA(1,d,0) models,

results in Fig. 4 depend on the strength of the long-range

and short-range components. However, TFPWcu and

SUPW generally yield rejection rates closer to the nominal

values than those provided by ARFIMA(1,d,0)-CPW and

ARFIMA(1,d,0)-UPW under correct model specification.

Also fGn-CPW and fGn-UPW often outperform ARFIMA-

based prewhitening for some combinations of q, d, and T .

We argue that these results are partly related to the small

sample sizes (T � 250) that prevent the reliable recognition
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(b) AR(1)−TFPWcu Pettitt
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(c) AR(1)−SUPW Pettitt
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(h) AR(1)−SUPW rejection rate
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(d) fGn−CPW Pettitt
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(e) fGn−UPW Pettitt
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(f) ARFIMA(1,d,0)−CPW Pettitt
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(g) ARFIMA(1,d,0)−UPW Pettitt
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Fig. 2 Rejection rate of the Pettitt test applied to samples drawn from

AR(1) for different values of lag-1 autocorrelation q, several sample

sizes, and 5% nominal significance level. Several variants of the

Pettitt test are considered: a original Pettitt test without prewhitening;

b TFPWcu adapted for Pettitt; c Pettitt with unconditional prewhiten-

ing, and simultaneous estimation of q and equivalent step change

magnitude (SUPW); d fGn-based conditional prewhitening (fGn-

CPW); e fGn-based unconditional prewhitening (fGn-UPW); f
ARFIMA(1,d,0)-based conditional prewhitening (ARFIMA(1,d,0)-

CPW); g ARFIMA(1,d,0)-based unconditional prewhitening

(ARFIMA(1,d,0)-UPW); h map of rejection rates as a function of q
and sample size T for the ‘‘best’’ performing method
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of the long-range component, whereas the short-range

component dominates the signal behavior, thus explaining

the good performance of the AR(1)-based methods.

Finally, we explored a complementary aspect concerning

the location of the change point. Theoretical arguments

(Hawkins 1977) and extensive Monte Carlo experiments

reported in the literature (Gurevich 2009; Gurevich and Raz

2010; Xie et al. 2014) showed that the Pettitt test can detect

change points located in the middle of a time series more

easily than those at other positions. However, this property

can also be a drawback as it causes a tendency to erroneously

detect changes in the middle of the series when no changes

exist. Figure 5 confirms this behavior for some of the signals

and prewhitening procedures discussed above.
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(c) AR(1)−SUPW Pettitt
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(h) fGn−UPW rejection rate
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(d) fGn−CPW Pettitt
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(e) fGn−UPW Pettitt
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(f) ARFIMA(1,d,0)−CPW Pettitt
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(g) ARFIMA(1,d,0)−UPW Pettitt
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Fig. 3 As Fig. 2, but for sequences drawn from fGn for different values of Hurst parameter H (H ¼ 0:5 denotes white noise)

Stoch Environ Res Risk Assess (2016) 30:763–777 771

123



5 Conclusions

In this study we have investigated the performance of a

range of prewhitening techniques that were developed for

the MK test (for gradual monotonic changes) and are

suitable to be adapted to the Pettitt test (for abrupt chan-

ges). We paid attention to some critical aspects such as the

bias affecting the model parameters (especially the auto-

correlation terms) owing to the interaction between

deterministic (gradual or abrupt) changes and serial cor-

relation. The analysis was supported by extensive Monte

Carlo simulations devised to check the performance of the

selected procedures in terms of rejection rate under the null

hypothesis in order to assess their capability to control the

type I error. Results can be summarized as follows:

1. A preliminary analysis of prewhitening techniques

developed for MK showed that the well-known TFPW
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(c) AR(1)−SUPW Pettitt
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(h) AR(1)−SUPW rejection rate
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(d) fGn−CPW Pettitt
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(e) fGn−UPW Pettitt
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(g) ARFIMA(1,d,0)−UPW Pettitt
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Fig. 4 As Fig. 2, but for sequences simulated by ARFIMA(1,d,0) for different combinations of the pairs of parameters (q; d) reported in the

bottom left corner
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method as introduced by Yue et al. (2002b) can

provide an effective prewhitening of the series only

if the trend residuals are multiplied by a magnification

factor equal to 1=ð1 � qÞ. As this correction was

introduced for instance in software such as zyp

(Bronaugh and Werner 2013) based only on empirical

results, we provide a theoretical justification showing

that it is not an option but a must to guarantee the

actual prewhitening of the series and the fulfillment of

the basic hypotheses required for a correct application

of the MK test.

2. Focusing on AR(1) signals and Pettitt test, we found

that the simultaneous estimation of the model pa-

rameters (q and D) provides the best results, thus

confirming the suitability of this method not only for

the MK test but also for the Pettitt test. On the other

hand, model misspecification yields systematic over-

or under-whitening, and thus under- and over-rejec-

tion, respectively. In this respect, it should be noted

that we considered a range of sample sizes corre-

sponding with hydro-meteorological series at annual or

seasonal time scales, which often makes the estimation

of the parameters of long-range dependence compo-

nents difficult.

3. As far as fGn signals are concerned, the long-range

dependence further increases the actual rejection rate

confirming the difficulty of distinguishing between

deterministic change points and long-range persistence
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Fig. 5 Distribution of the relative location (percentage of the time

series length) of the detected change points (at 5 % significance level)

for different signals and testing procedures (see main text and

captions of Figs. 2, 3, 4). Location of detected changes is expected to

be uniformly distributed along the time series when real change points

are not present. Bias toward the centre of the time series confirms

previous results reported in the literature
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(see e.g., Beran et al. 2013, pp.700–701, and refer-

ences therein). However, also in this case, prewhiten-

ing provides significant reduction of the over-rejection,

even though the correction is not as effective as in the

case of AR(1). For fGn, model misspecification yields

only under-whitening as the alternative models exhibit

autocorrelation structures weaker than fGn.

4. When short-range and long-range serial dependence

structures are mixed via ARFIMA(1,d,0), the perfor-

mance of the Pettitt test depends on the combination of

the model parameters. However, the overall result is

that AR(1)-based prewhitening generally yields better

results than the correct model specification. Indeed, the

small sample size prevents the reliable estimation of

the model parameters, especially of the long-range

component, which is not easy to recognize in short

time series. This partly explains the performance of

AR(1)-based methods for ARFIMA(1,d,0) time series.

To summarize, prewhitening procedures do not show sig-

nificant negative effects on the type I error when the data

are not correlated, whereas they always provide rejection

rates closer to the nominal when serial dependence is

present, the performance depending on model specifica-

tion, sample size, and correlation structure and strength.

Since the true process underlying real-world observations

is unknown and the sample size is usually small (we refer

to time series at annual or seasonal time scale commonly

analyzed in the literature), AR(1)-based prewhitening is

surely useful to obtain more realistic rejection rates in

presence of serial correlation. fGn-based prewhitening

could lead to under-rejection when long-range dependence

is not present, whereas the use of more complex models

could be speculative owing to the small sample sizes.

Therefore, we suggest the use of AR(1)-based methods

together with fGn-based technique in order to compare the

results. Of course, results should be complemented with the

assessment of the values of q and H and their significance.

For a correct application of the above testing procedures, it

should also be mentioned that the serial correlation in the

data causes a loss of power that reduces the ability to detect

real trends/changes and is independent of the prewhitening

procedures. If the power is of major concern, it could be

restored by increasing the significance level of the test,

providing that the correct significance of the test is known

(Hamed 2009).
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Fig. 6 Bias correction factors for the lag-1 autocorrelation estimates

of AR(1) time series. Top panels show the patterns described by

different bias correction formulae, whereas the bottom panels show

the performance of the two-stage bias correction algorithm (see the

Appendix for further details)
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Finally, it should be mentioned for the sake of com-

pleteness that the methods described in this study represent

simple approaches (adapted for the Pettitt test) similar to

those commonly applied in MK trend analyses of hydro-

meteorological data. However, there is quite an extensive

literature concerning other tests, especially the so-called

CUSUM test, and providing asymptotic results in terms of

inflation factors to be used in presence of short-range and

long-range serial correlation (see e.g. Basseville and

Nikiforov 1993; Beran et al. 2013 (Chap. 7.9), and refer-

ences therein for an overview].
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Appendix: Technical details

We report some technical details useful for the practical

implementation of the methods described in the main text.

Under the hypothesis that a time series ytf g is a realization

of a AR(1) process, denoting the estimators of the mean

and standard deviation of Y as l̂ and r̂, respectively, the

OLS estimator of the lag-1 autocorrelation

q̂ ¼

1

ðT � 1Þ
XT�1

t¼1

ðYt � l̂ÞðYtþl � l̂Þ

1

T

XT

t¼1

ðYt � l̂Þ2

; where l̂ ¼ 1

T

XT

t¼1

Yt;

ð19Þ

is affected by two types of bias: the bias related to the

correlation between the deviations of the sample covari-

ance and variance from the population covariance and

variance, and the bias arising when the mean is not known

and has to be estimated from the data. This second bias is

always negative and is present even if the autocorrelation is

zero (Orcutt 1948). For the case of unknown mean, which

is the most common in real-world analyses, Marriott and

Pope (1954) found that

E q̂½ � ¼ � 1

T
þ 1 � 3

T

� �
q; ð20Þ

which provides an approximately unbiased estimate of q as

q� ¼ q̂þ 1

T

� �
T

T � 3

� �
: ð21Þ

The performance of this correction was tested by simulat-

ing 10000 samples with size T equal to 20 and 100 and q
ranging from 0 to 0.99 by 0.01 increments, and then

computing the average value of q̂ for each value of q.

Figure 6 shows that the Marriott-Pope’s correction factor

performs satisfactory up to q 	 0:85, where discrepancies

arise owing to the order of the series expansions used by

Marriott and Pope (1954) to obtain Eq. 20.

Even though Marriott and Pope (1954) stated that

‘‘the two sources of bias may reinforce each other, or

may act in opposite directions; they are not independent

and cannot be investigated separately’’, we found that

actually distinguishing the two effects is possible, at least

empirically. To show this aspect we applied a two-stage

bias correction involving the correction formula proposed

by Koutsoyiannis (2003) for the autocorrelation of the

fGn process (also known as Hurst–Kolmogorov process)

q�K ¼ q̂ 1 � 1

T 0

� �
þ 1

T 0 ; ð22Þ

where T 0 is the effective sample size for an AR(1) process

(Koutsoyiannis and Montanari 2007, Eq. 7)

T 0 ¼ T
ð1 � qÞ2

ð1 � q2Þ � 2qð1 � qTÞ=T : ð23Þ

The obtained values q�K were therefore further corrected

using a combination of the White’s and Mudelsee’s cor-

rection formulae devised to correct the bias under the hy-

pothesis of AR(1) process with known (zero) mean

(Mudelsee 2001)

E½q̂� ’ E½q̂�W ¼ 1 � 2

T
þ 4

T2
� 2

T3

� �
qþ 2

T2
q3 þ 2

T2
q5 for q\ 0:88

E½q̂� ’ E½q̂�M ¼ q� 2q
ðT � 1Þ þ

2

ðT � 1Þ2

ðq� q2T�1Þ
ð1 � q2Þ for q 
 0:88

8
>><

>>:
: ð24Þ

Stoch Environ Res Risk Assess (2016) 30:763–777 775

123



Figure 6 shows that the residual bias, after Koutsoyiannis’

correction, follows closely the curve described by Eq. 24,

and the further correction by this equation provides an

approximately complete bias removal, thus indicating that

Eq. 22 mainly accounts for the bias associated to the

estimation of the unknown mean. As the two-stage bias

correction (described by Eqs. 22, 23, and 24) performs

better than the Marriott-Pope’s formula, it is used in Step 2

of TFPWcu and SWu methods involving AR(1)

prewhitening. It should be noted that such equations can be

combined in a unique function representing the total bias

correction and solved (numerically) for q in order to obtain

a bias corrected estimate q̂�.
As far as the fGn-based procedures are concerned,

prewhitening is performed using the Cholesky decompo-

sition method described by Hamed (2009), whereas, fol-

lowing Hamed (2008b), the Hurst parameter H is computed

by the maximum likelihood estimator (McLeod and Hipel

1978; McLeod et al. 2007) applied to the normal quantile

transformed values U�1ðFnðyÞÞ, where U�1 denotes the

inverse of the standard Gaussian cumulative distribution

function and FnðyÞ ¼ 1=ðT þ 1Þ
P

1 yt � yf g is the Weibull

version of the empirical cumulative distribution function.

The maximum likelihood estimator of H has the advantage

to be very accurate (Tyralis and Koutsoyiannis 2011) and

not to rely on graphical diagnostic plots unlike other esti-

mators (see e.g., Serinaldi 2010).

ARFIMA(1,d,0) prewhitening relies on the computation

of model residuals, which are calculated recursively by

Eq. 5.7 and 5.9 reported in Shumway and Stoffer (2011)

and adapted to account for the AR(1) component.
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