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Abstract The simultaneous occurrence of extreme events,

such as simultaneous storms and floods at different locations,

has a serious impact on risk assessment and mitigation

strategies. The joint occurrence of extreme events can be

measured by the so-called upper tail dependence (UTD)

coefficient kU. In this study, we reconsider the properties of
the most popular kU estimators and show that their strong

bias and uncertainty make most of the empirical results

reported in the hydrological literature questionable. In order

to overcome the limits of kU analysis, we test several alter-

native tools such as a pool of formal statistical tests devised

for recognizing upper tail independence and graphical

diagnostics based on binary correlation and binary entropy.

The reliability of all the methods is preliminarily checked by

Monte Carlo experiments. Statistical tests and graphical

diagnostics are therefore applied to three different rainfall

data sets that allow us to explore the properties of the spatial

dependence structure of rainfall extremes over a wide range

of spatio-temporal scales ranging from 30 min and 1 km to

30 days and �3000 km. Results highlight that (1) classical

estimators provide non zero tail dependence even for cases

where it should be zero; (2) formal tests and binary corre-

lation highlight that the pairwise spatial dependence struc-

ture can be weaker than Gaussian, thus excluding UTD

calculated in a pairwise manner; (3) the binary entropy

computed on triples of locations shows that the pairwise

UTD is not enough to explain the spatial dependence struc-

ture of extreme rainfall, whose complexity becomes evident

only after resorting to higher order correlationmeasures. The

results concerning the bias and uncertainty of kU estimators

are fully general and suggest avoiding their use especially for

the short time series usually available in hydrology.

Keywords Upper tail dependence � Extreme events �
Binary correlation � Binary entropy � Rainfall � Peak over
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1 Introduction

The fast growth of multivariate frequency analysis (thanks

partly to the introduction of apparently more manageable

statistical tools such as copulas) has led to an extensive

application ofmultivariatemodels to a variety of hydrological

analyses going from the the study of the relationships between

the characteristics of objects such as drought events and hy-

drographs (e.g., Serinaldi et al. 2009; Volpi and Fiori 2012) to

the study of the occurrence of extreme events at multiple sites

(e.g., Ghizzoni et al. 2010) to spatial interpolation and simu-

lation problems (e.g., Bárdossy 2006; Bárdossy and Li 2008;

Bárdossy andPegram2013). This intense activity resulted in a

large body of literature that was almost unavoidably focused

on showing the potential application rather than on the actual

nature of the variables at hand, the possible shortcomings of

the methods used, and the reliability of multivariate methods

applied to the usually very short hydrological time series.

In this context, Serinaldi and Kilsby (2013) and Serinaldi

(2013) attempted to re-focus the attention on some basic

concepts such as a careful examination of the nature of the
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A. Bárdossy

Institute of Hydraulic Engineering, University of Stuttgart,

Pfaffenwaldring 61, 70569 Stuttgart, Germany

123

Stoch Environ Res Risk Assess (2015) 29:1211–1233

DOI 10.1007/s00477-014-0946-8



relationships between some hydrological variables and on the

uncertainty and reliability of multivariate inference per-

formed on typically short time series. The aimwas to transfer

concepts well-known in univariate analyses to the multivar-

iate framework, where they seems to be overlooked or forgot

(see also Serinaldi 2014).

This study attempts to further extend this inquiry

focusing on the UTD coefficient kU, which is another

concept related to copula theory whose estimation is

nowadays a standard step in multivariate frequency anal-

yses reported in hydrological literature. kU is an index that

quantifies the limit probability that a variable X1 exceeds a

given t quantile x1 given that another variable X2 exceeds

its t quantile x2 as t ! 1�: More formally, given the con-

ditional probability P½FX1
ðx1Þ[ tjFX2

ðx2Þ[ t� and intro-

ducing the copula formalism FX1X2
ðx1; x2Þ ¼ CðFX1

ðx1Þ;
FX2

ðx2ÞÞ ¼ Cðu1; u2Þ, where FXi
, i ¼ 1; 2, denotes the

univariate marginal distribution of the generic variable xi
and Ui :¼ FXi

, kU is defined as (e.g., Frahm et al. 2005)

kU :¼ lim
t!1�

P½FX1
ðx1Þ[tjFX2

ðx2Þ[t�¼ lim
t!1�

1�2tþCðt;tÞ
1� t

:

ð1Þ

Since kU gives a measure of the tendency of observing

simultaneous extreme events exceeding a given quantile

threshold, its evaluation is potentially of great interest to

better understand if and how extreme events cluster toge-

ther and to choose a suitable multivariate model. The use of

kU in hydrological analyses can be dated back to the works

of Poulin et al. (2007) and Serinaldi (2008) concerning

bivariate frequency analyses of the annual maximum flows

and the corresponding flow hydrograph volumes, and the

pairwise analysis of rainfall data at multiple locations,

respectively. As for the introduction of copulas in hydrol-

ogy, the theoretical apparatus used in those works was

essentially borrowed from econometric literature, namely,

Schmidt (2003), Frahm et al. (2005) and Schmidt and

Stadtmüller (2006). These works provide quite extensive

simulation studies devised to assess the reliability of a set

of parametric and nonparametric kU estimators as well as

several conclusive warnings about their use in practical

analyses. Poulin et al. (2007) made an ad hoc Monte Carlo

experiment to choose the most appropriate estimator for a

specific case study, retaining the Coles–Heffernan–Tawn

kCHTU estimator (Coles et al. 1999) and Capéraà–Fougères–

Genest kCFGU estimator (Capéraà et al. 1997). Poulin et al.

(2007) also stressed the caveats previously reported by

Schmidt (2003) and Frahm et al. (2005). Serinaldi (2008)

exploited the relationship between kU and Kendall corre-

lation coefficient sK to build a diagnostic plot useful for the

model selection. In order to understand the reliability of

that graphical tool, Serinaldi (2008) made a limited

simulation experiment that confirmed the bias of kCFGU and

the uncertainty characterizing the Schmidt–Stadtmüller kSSU
estimator (Schmidt and Stadtmüller 2006) (see Fig. 1 in

Serinaldi 2008). However, Serinaldi (2008) did not perform

an extensive assessment and reported only partially the

caveats stated by Schmidt (2003) and Frahm et al. (2005).

Unfortunately, the subsequent hydrological literature relied

on the first papers dealing with kU in the same field, pro-

gressively overlooking the original theoretical works. This

habit led to a rather blind use of the kCFGU and other kU
estimators whose application is justified by sentences such

as ‘‘The [kCFGU ] estimator is based on the assumption that

the empirical copula can be approximated by an extreme

value copula. It also works well when this hypothesis is not

fulfilled, except in the case that the real UTD is null’’

(Requena et al. 2013) or ‘‘Though the estimator assumes

that the underlying copula can be approximated by an

extreme-value copula, studies have shown that the esti-

mator performs well even if the copula does not belong to

extreme value classes (Frahm et al. 2005)’’ (Villarini et al.

2008; Serinaldi et al. 2009; Janga Reddy and Singh 2014).

Serinaldi and Kilsby (2014a) showed how rainfall fields

simulated by meta-Gaussian spatial dependence structure

exhibit kU estimates comparable with those of the observed

rainfall fields, thus suggesting caution about the recom-

mendation of AghaKouchak et al. (2013) of using kU
estimates to assist in planning and policy making as well as

validating numerical models.

In order to shed light on such a matter, we recall that the

recommendations provided by Schmidt (2003), Schmidt

and Stadtmüller (2006), Poulin et al. (2007), and Frahm

et al. (2005) are based on simulation experiments in which

a unique value of the overall correlation is used, namely

sK ¼ 1=3 in Schmidt (2003) and Frahm et al. (2005),

Pearson correlation qP ¼ 0:25 in Schmidt and Stadtmüller

(2006) and sK ¼ 0:51 in Poulin et al. (2007). Based on

these simulation settings, these studies conclude that:

(1) Among the nonparametric kU estimators, the kCFGU

estimator does well, although Frahm et al. (2005)

advised caution regarding the sometimes low vari-

ance relative to bias. Further, kCFGU shows a weak

performance in the case of tail independence.

(2) Among the nonparametric kU estimators, kCFGU shows

the best performance, whereas for (semi-)parametric

estimations a specific copula (such as the t-copula) is

recommended.

(3) The nonparametric estimators are too sensitive in

case of small sample sizes. Thus, under these

circumstances, a parametric kU estimation might be

favorable in order to increase the stability of the

estimation although the model error could be large.
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Tests for tail dependence are absolutely mandatory

for every kU estimation because (1) samples exist

which seem to be tail dependent but they are

realizations of a tail independent distribution (such

as a finite mixture of multivariate Gaussian distri-

butions) and vice versa; (2) the use of misspecified

parametric marginals instead of empirical margins

may lead to wrong interpretations of the dependence

structure; (3) the kU estimators can be insensitive to

upper tail independence, thus indicating upper tail

dependence even if no exists.

Starting from the above remarks and the need for further

investigation stressed by AghaKouchak et al. (2010), in

this study we investigate the actual magnitude of bias

and uncertainty of two kU estimators highlighting the

strong dependence of the estimates on the overall cor-

relation. Therefore, following the last point of the above

list, we consider five different formal tests devised for

checking the hypothesis of upper tail independence,

assessing their reliability by extensive Monte Carlo

experiments. We also introduce two further diagnostics

based on pairwise binary correlation and binary entropy

on triples (Bárdossy and Pegram 2009). Finally, we apply

all the diagnostics on three rainfall data sets that allow us

to obtain a comprehensive picture of the joint behavior of

rainfall extremes over a wide range of spatial and tem-

poral scales.

The paper is organized as follows. Tests and diagnostics

are introduced in Sect. 2 along with simulations from theo-

retical models. The data sets are presented in Sect. 3, whereas

empirical results are reported in Sect. 4. Discussion and

conclusions are summarized in Sects. 5 and 6, respectively.

2 Upper tail diagnostics

2.1 kU estimators

In hydrological studies, four different estimators have been

commonly considered (Poulin et al. 2007; Villarini et al.

2008; Serinaldi et al. 2009; AghaKouchak et al. 2010,

2013; Janga Reddy and Singh 2014, among others): kSSU
(Schmidt and Stadtmüller 2006), the ‘‘secant-based’’ esti-

mator kSECU (Joe et al. 1992), kCFGU (Capéraà et al. 1997;

Frahm et al. 2005), and kCHTU (Coles et al. 1999; Frahm

et al. 2005). As was summarized by Villarini et al. (2008),

the first method is unbiased but can show high variance; the

second estimator can be interpreted as the slope of the

secant along the copula diagonal [close to the point (1, 1)],

and therefore it can misspecify the value of kU when data

are not accumulated along the diagonal; the third one

assumes that the empirical copula function approximates

an extreme value (EV) copula but the estimator could be

biased and show very low variance; while the fourth one is

the nonparametric counterpart of the v estimator proposed

by Coles et al. (1999). In this study, we focus on kSSU
because it does not require any distributional assumption

and is unbiased (for truly tail dependent models) and on

kCFGU because of its popularity related to its closed form

formula. In more detail, kCFGU is defined as

kCFGU ¼ 2� 2
1

N

XN

i¼1

log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log

1

u1;i

� �
log

1

u2;i

� �s

log
1

maxðu1;i; u2;iÞ
� �2

 !

0
BBBBB@

1
CCCCCA

2
666664

3
777775
;

ð2Þ

where N is the sample size and u1;i :¼ FX1
ðx1;iÞ and

u2;i :¼ FX2
ðx2;iÞ, for i ¼ 1; :::;N, whereas kSSU is

kSSU ¼ N

j
�CN

j
N
;
j
N

� �
� 1

j

XN

i¼1

11 R1;i [N�j;R2;i [N�jf g; ð3Þ

where �CN denotes the empirical survival copula (Nelsen

2006, pp. 32–34), 11 �f g is the indicator function, R1;i and

R2;i denote the ranks of x1;i and x2;i, for i ¼ 1; . . .;N, and j
a threshold rank to be chosen by using for instance the

heuristic plateau-finding algorithm described by Schmidt

(2003) (see also Frahm et al. 2005).

As far as kCFGU is concerned, Frahm et al. (2005)

showed that the underlying hypothesis of EV copula is not

so stringent and that the estimator also performs quite

well when the assumption is not fully matched. However

they also highlighted that the estimator can be strongly

biased when data are not tail dependent. Moreover, as for

every asymptotic property, a reliable estimation of kU
from a finite (and usually small) sample can be prob-

lematic (if not almost impossible). Since the claim of the

good performance of kCFGU even for non-EV copulas is

sometimes used to justify its use, we performed a simu-

lation study to better understand the actual magnitude of

its bias and uncertainty for the whole range of positive

correlation values ð0; 1Þ. We used four copulas (Gauss,

Student with four degrees of freedom, Gumbel, and

Frank). Gauss and Frank copulas exhibit zero tail depen-

dence, whereas Gumbel and Student show positive UTD.

For each model we have simulated 1,000 bivariate sam-

ples with size 1,000 and 20 different values of sK 2 ð0; 1Þ:
For each sample we have computed the value of kCFGU and

kSSU . Since a visual assessment can be more effective than

tables usually reported for this type of simulation studies,

we have summarized the results by the kU � sK plane
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(Serinaldi 2008) shown in Fig. 1. The diagrams clearly

show that kCFGU always returns estimates close to the

theoretical curve corresponding to Gumbel copula (the

same curve holds for other EV copulas, such as Galam-

bos, Hüsler–Reiss, and Tawn copulas) independently of

the true underlying model. Moreover, considering the very

small variance of kCFGU ; it is easy to conclude that there is

a quasi one-to-one relationship between sK and kU esti-

mates which is very close to the theoretical relationship

that characterizes EV copulas, thus making the estimator

almost uninformative: indeed, if the copula is EV we can

use the theoretical relationship sK � kU (see e.g., Serinaldi

2008), whereas if the copula is not EV, kCFGU gives esti-

mates close to the theoretical curve in any case.

Unfortunately, kSSU does not improve the situation very

much. This estimator exhibits a slightly larger variability,

but a persistent bias for Student, Gauss, and Frank copulas.

In particular, kSSU correctly returns zero values for Gauss

and Frank copulas only for sK \ 0:15 and \0.4, respec-

tively. Thus, also this estimator provides unreliable results

for moderate and high values of the overall correlation,

whose value dominates the potential values attainable for

kU. It should be noted that the sample size 1,000 was

chosen to be much larger than the sample size usually

available in hydrology (i.e. 50–100) to show that relevant

uncertainty also characterizes relatively large samples.

Figure 2 shows that a small sample size further increases

both bias and uncertainty, thus making the estimates

uninformative. These results explain the behavior reported

in Fig. 15 of Serinaldi (2008) and confirm the need for a

thorough re-assessment of those analyses (which is done in

the next sections) as well as all the studies whose conclu-

sions are based on these estimators.

2.2 Formal statistical tests for upper tail independence

In order to overcome the shortcomings of the kU estima-

tors, we need alternative tools. Following one of the rec-

ommendations of Frahm et al. (2005), we consider some

formal statistical tests introduced by Falk and Michel

(2006) and Zhang (2008). We briefly summarize the

rationale of these methods referring to the original works

for all details.

The tests proposed by Falk and Michel (2006) are based

on the following findings. Let ðX1;X2Þ a random vector

with values in ð�1; 0�2; whose joint distribution function

Gðx1; x2Þ coincides with a max-stable or EV distribution

with reverse exponential marginals Gðx; 0Þ ¼ Gð0; xÞ ¼
expðxÞ; x� 0; where G has the form:

Gðx1; x2Þ ¼ expðx1 þ x2ÞD
x1

x1 þ x2

� �� �
; x1; x2 � 0;

ð4Þ

in which D : ½0; 1� ! ½1=2; 1� is the so-called Pickands

dependence function (see Pickands III 1981; Falk and Reiss
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Fig. 1 kU � sK diagrams for four copula families (Gauss, Student

with four degrees of freedom, Gumbel, and Frank). Points denote the

average values over 1,000 simulated samples of size 1,000. Crosses

denote the 95 % Monte Carlo confidence intervals of kU and sK

estimates. Lines indicate theoretical relationships corresponding to

Gauss, Frank, Student with four degrees of freedom, Student with six

degrees of freedom, EV copulas, and Archimedean copulas ‘‘#12’’

and ‘‘#14’’ as listed by Nelsen (2006, pp. 116–119)
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2005 and references therein). Falk and Michel (2006)

found that the conditional distribution of X1 þ X2; given

X1 þ X2 [ c has an asymptotic distribution function FðtÞ ¼
t2; t 2 ½0; 1�; as c ! 0� if and only if X1 and X2 are tail

independent, i.e. DðzÞ ¼ 1; z 2 ½0; 1�: If D is not constant

and equal to 1, then the asymptotic distribution is the

standard uniform distribution FðtÞ ¼ t; t 2 ½0; 1�. This

property is used to define tests for tail independence

derived from the Neyman–Pearson lemma as well as

standard goodness-of-fit tests such as Fisher, Kolmogorov–

Smirnov and v2. It should be noted that the arbitrary

marginals can be transformed into reverse exponential by

simple (parametric or semi-parametric) quantile transfor-

mations y ¼ logðFXðxÞÞ; where FX can be the known dis-

tribution of X or a parametric distribution fitted on the

observed values xi, or the empirical distribution function of

xi (see e.g. Zhang 2008 for a description of the different

options).

For a given sample ðx1;1; x2;1Þ; :::; ðx1;N ; x2;NÞ of ðX1;X2Þ
(with reverse exponential marginals), choose c\0 and

select the observations x1;i þ x2;i such that x1;i þ x2;i [ c

and denote them as C1; :::; CKðNÞ: Falk and Michel (2006)

showed that V i ¼ Ci=c are independent and identically

distributed with distribution Fc; if c is large enough, and

they are independent of KðNÞ; which in turn is binomial

distributed BðN; qÞ with q ¼ 1� ð1� cÞ expðcÞ: Therefore
we have to test the null hypothesis Fc ¼ t2 (which holds for

tail independence) against the alternative Fc ¼ t (which

holds for tail dependence). Under the above assumptions

the optimal test is based on the log-likelihood ratio:

TðV1; :::;VmÞ :¼ log
Ym

i¼1

1

2V i

 !
m ¼ KðNÞ[ 0: ð5Þ

If m is large enough, for the central limit theorem, the p-

values of the optimal test derived from the Neyman–

Pearson lemma is

pNP � U
2
Pm

1¼1 logðV iÞ þ m

m1=2

� �
; ð6Þ

where U denotes the standard Gauss cumulative distribu-

tion function.

The other tests proposed by Falk and Michel (2006) rely

again on Ci/c through the variables

U i :¼ FcðCi=cÞ ¼
1� ð1� CiÞ expðCiÞ
1� ð1� cÞ expðcÞ ; i ¼ 1; . . .;m:

ð7Þ

Under the null hypothesis, U i are independent and uni-

formly distributed on ð0; 1Þ: Thus, we simply need to test

this hypothesis applying some goodness-of-fit tests in a

standard way. Falk and Michel (2006) suggested Fisher,

Kolmogorov–Smirnov and v2 tests. These tests are avail-

able in R (R Core Team 2013) by the POT package

(Ribatet 2006). Falk and Michel (2006) showed that the

Neyman–Pearson test has the smallest type II error rate,

followed by Kolmogorov–Smirnov and v2, whereas Fisher
exhibits a poor performance. On the other hand, Neyman–

Pearson does not control the type I error if the value of the

threshold c is too far from 0, whereas the other tests control

the type I error rate for any c.
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Fig. 2 As for Fig. 1 but for samples of size 75

Stoch Environ Res Risk Assess (2015) 29:1211–1233 1215

123



N−P
Fis
K−S
Chi
Z(0.95)
Z(0.975)

Gauss

0.0

0.2

0.4

0.6

0.8

1.0
Student (df = 4) Gumbel Frank

τ K
=

0.
2

0.0

0.2

0.4

0.6

0.8

1.0

τ K
=

0.
3

0.0

0.2

0.4

0.6

0.8

1.0

τ K
=

0.
5

0.0

0.2

0.4

0.6

0.8

1.0

τ K
=

0.
75

0.0

0.2

0.4

0.6

0.8

1.0

τ K
=

0.
85

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

τ K
=

0.
95

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability of nonexceedance [−]

P
−

va
lu

es
 [−

]

Fig. 3 Distributions of the p-values resulting from 1,000 testing

exercises performed on bivariate samples of size 1,000 drawn from

four models accounting for the full range of possible positive

dependence (as measured by sK). Five formal tests for upper tail

independence are considered: Neyman–Pearson (‘‘N–P’’), Fisher

(‘‘Fis’’), Kolmogorov–Smirnov (‘‘K–S’’), v2 (‘‘Chi’’), and Zhang

with p = 0.95 and p = 0.975 and (‘‘Z(0.95)’’ and ‘‘Z(0.975)’’). Note

that for Gauss copula and the smallest values of sK, four tests (N–P,
Fis, K–S, and Chi) provide no outcomes as the data over the threshold

c are not enough to compute test statistics. See text for further details

about settings and interpretation
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The test for upper tail independence proposed by Zhang

(2008) is based on the so-called tail quotient correlation

defined as

where l is a positive threshold, w1;i and w2;i are exceedance

values over the threshold l of positive random variables X1

and X2. Zhang (2008) assumed that X1 and X2 are identi-

cally distributed with unit Fréchet distribution function

FXðxÞ ¼ expð1=xÞ, x[ 0. When the variables do not fulfill

this condition, they can be easily transformed as for the

other tests (see Zhang 2008 for a detailed discussion). In

this study, we use the transformation y ¼ � logðF̂XðxÞÞ,
where F̂X ¼ 1

Nþ1

PN
i¼1 11 X\xf g. Zhang (2008) showed that

under the hypothesis that X1 and X2 are tail independent,

for N ! 1, qQ is asymptotically gamma distributed

CðNqQ; 2; 1� e�1=lÞ.
In order to check the finite-sample behavior of the tests

described above, we have performed a Monte Carlo

experiment applying the same settings used to study the

properties of the kU estimators. Building on the results of

Falk and Michel (2006), the threshold c was set equal to -

0.1, whereas the Zhang test was performed using two p

quantile threshold values l ¼ xp, p ¼ 0:95; 0:975f g: Sim-

ilarly to kU analysis, we explored the impact of the overall

correlation (measured by sK) on the UTD recognition.

Results are shown in Fig. 3 by probability plots. The dia-

gram must be interpreted as follows: under the assumption

that the null hypothesis is true (i.e., tail independence) the

p-values resulting from the 1,000 experiments are expected

to be uniformly distributed on (0,1) and then be aligned

along the 1:1 line; if the alternative is true (i.e., tail

dependence), and a test is performed at the 5 % signifi-

cance level, we expect to observe that 95 % of p-values are

smaller than 0.05; results in the middle provide information

about the actual power of the tests.

Focusing on the Gauss copula (with known theoretical

tail independence), we expect p-values aligned along the

1:1 line. Similar to kU, results depend on the strength of the

overall correlation. As sK increases the rejection rate

increases. For the Gauss copula, Neyman–Pearson and

Zhang tests give the highest (incorrect) rejection rate for

high sK values, whereas Kolmogorov–Smirnov and v2 tests
exhibit a rejection rate around 0.5 even for high correlation

values. Results for Fisher test confirm the poor perfor-

mance already recognized by Falk and Michel (2006).

Since this test cannot discriminate between tail dependent

and tail independent models irrespective of the correlation

value, it is not further discussed in the following. To make

a fairer comparison, it is worth focusing on the patterns

corresponding with a specific correlation value. For

sK = 0.5, Kolmogorov–Smirnov and v2 tests show the

patterns closest to 1:1 line (and a rejection rate close to

5 %), whereas Neyman–Pearson tends to over-rejection.

The performance of Zhang test depends on the choice of

the threshold l (as expected), the performance improving

as the threshold increases. Note that the p-values of Zhang

test are computed up to 0.4 as we observed that the

asymptotic C distribution gives a good approximation only

in the upper tail. However, this is not a true shortcoming as

we are interested in the smallest p-values.

For the Frank copula, we expect in principle results

similar to Gauss. However, the shape of the upper tail of

the Frank copula is rather different from that of Gauss,

showing a wider spread. This explains why almost all tests

give good results for sK = 0.5.

As far as Student is concerned, we used four degrees of

freedom because this value returns copulas with strong

UTD close to EV copulas (see theoretical curves in Fig. 1).

The second column of plots in Fig. 3 show that Neyman–

Pearson and Zhang with l = x0.95 return the best results

(among the competitors) with a rejection rate close to 60 %

for sK = 0.5. As sK increases, their performance improves

reaching values close to the expected 95 % (assuming that

we perform the test at the 5 % significance level). For

Student copula, Kolmogorov–Smirnov and v2 tests show

quite a low rejection rate.

Moving to the true EV Gumbel copula, all tests perform

very well for sK = 0.5. Of course, the performance dete-

riorates as sK decreases and the dependence structure

approaches the product copula (overall independence).

However, the difference between the EV Gumbel copula

and Student is remarkable, thus indicating that the con-

sidered tests are sensitive not only to UTD by itself but also

to the nature of the overall structure of dependence and the

shape of the joint upper tail. In this respect, it is worth

noting that the tests proposed by Falk and Michel (2006)

were tested only on EV models with sK 2 0:33; 0:5f g or

qQ :¼ maxi�Nðlþ w2;iÞ=ðlþ w1;iÞ þmaxi�Nðlþ w1;iÞ=ðlþ w2;iÞ � 2

maxi�Nðlþ w2;iÞ=ðlþ w1;iÞ �maxi�Nðlþ w1;iÞ=ðlþ w2;iÞ � 1
; ð8Þ
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complete independence. Our results show that these are

ideal conditions for these tests, whereas for non-EV and tail

independent models we obtain intermediate results when

the overall correlation is not null and void. Since the true

structure of dependence is commonly unknown in real-

world problems, the above results are fundamental to avoid

misleading conclusions, confusing for instance strong

dependence of upper quantiles resulting from mid-high

overall correlation with true UTD.

Finally, we performed simulation experiments also for

smaller sample sizes (results not shown). In these cases the

performance of all tests rapidly worsens and often no

results are returned because the data are not enough to

apply a suitably high threshold. It is worth further stressing

that both kU and the formal tests above attempt to measure/

recognize asymptotic properties and rely on limiting dis-

tributions/properties which hold for N ! 1. Therefore,

trying to use such tools on small samples such as less than

100 annual maxima without additional information (e.g.,

Serinaldi et al. 2009; Janga Reddy and Singh 2014) is

essentially a speculation exercise such as inferring the EV

nature of the underlying dependence structure.
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Fig. 4 qt1 � qt2 diagrams for four copula families. Points denote the

average values over 1,000 simulated samples of size 1,000. Crosses

denote the 95 % Monte Carlo confidence intervals of qt estimates.

Each point (between 0 and 1) of the theoretical curves and each point

correspond with different values of sK 2 ð0; 1Þ according to a

monotonic increasing relationship (i.e. qt ¼ 0 for sK ¼ 0 and qt ¼
1 for sK ¼ 1)
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2.3 Pairwise binary correlation and binary entropy

on triples

After studying the finite sample properties of diagnostics

devised for asymptotic pairwise UTD, we introduce some

diagnostics that focus on the upper tail but do not resort to

limiting properties. The aim is to use indices based on the

available data rather than asymptotic results, easy to

compute and apply, and allowing for effective visualization

of high-dimensional data sets. In this respect, as a first

option, we consider the pairwise correlation of binary

vectors q, where the binary vectors describe the occurrence

of u quantile threshold exceedances. Thus, q is defined as

qðx1;x2Þ

¼ P X1[x1\X2[x2½ ��P X1[x1½ �P X2[x2½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P X1[x1½ �ð1�P X1[x1½ �ÞP X2[x2½ �ð1�P X2[x2½ �Þ

p

¼ Cðu1;u2Þ�u1u2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1ð1�u1Þu2ð1�u2Þ

p : ð9Þ

For u1¼u2¼ t, we have

qt :¼ qðt; tÞ ¼ Cðt; tÞ � t2

tð1� tÞ : ð10Þ

By choosing a suitable set of t values, we can build

diagrams of qt1 versus qt2. In this study, we use t1 2

Reference
Competitors
Simulated

0.0

0.2

0.4

0.6

0.8

1.0

ρ 0
.9

5

Gauss

0.0

0.2

0.4

0.6

0.8

1.0

ρ 0
.9

9

0.0

0.2

0.4

0.6

0.8

1.0

ρ 0
.9

95

0.0

0.2

0.4

0.6

0.8

1.0

ρ 0
.9

99

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ρ0.9

Student (df = 4)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ρ0.9

Gumbel

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ρ0.9

Frank

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ρ0.9

Fig. 5 As for Fig. 4 but for samples of size 75
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0:95; 0:99; 0:995; 0:999f g and t2 ¼ 0:9 for the sake of

illustration, being however possible to draw qt1 � qt2
diagrams for whatever pair of values ðt1; t2Þ: The reli-

ability of these diagrams is tested via the same simulation

experiments used for checking the performance of kU and

formal tests for upper tail independence. Results are

reported in Fig. 4, where each point (between 0 and 1) of

the theoretical curves and each point indicating the

average values of qt1 and qt2 over 1,000 simulated sam-

ples correspond with different values of sK 2 ð0; 1Þ
according to a monotonic increasing relationship (i.e.

qt ¼ 0 for sK ¼ 0 and qt ¼ 1 for sK ¼ 1). Compared with

kU estimators, qt is almost unbiased, a small bias

emerging for very high quantile thresholds (especially for

Student and Gumbel models). However, in these cases,

the 95 % confidence intervals cover the whole range of

possible values (0, 1), thus making very difficult to dis-

criminate between different competitors. The only

exception is the Frank copula, whose upper tail has a

shape markadely different from the other models, which

on the contrary behave similarly, especially when the

analysis relies on finite samples. For the sake of com-

pleteness, Fig. 5 shows the results for samples of size 75.

In this case, we have some bias for high thresholds and

Frank copula. However, the most important aspect is the

high uncertainty of the estimates that makes any conclu-

sion on the upper tail extremely difficult, further stressing

the low (or almost null and void) reliability of the

inference concerning the behavior of the tails when the

analysis is based on small samples (without additional

information).

Finally, we consider the binary entropy on triples

introduced by Bárdossy and Pegram (2009). The rationale

of this index is to overcome a pairwise assessment in order

to look effectively at the high-order dependence properties.

This measure can be applied to any triple of variables, but

for the sake of simplicity and without loss of generality, let

us consider three variables (e.g., rainfall or stream flow

records) recorded at three different locations. Fix a quantile

threshold for each time series and define the corresponding

binary vectors as for qt, assigning for instance the value 1

to the records exceeding the threshold and 0 otherwise. At

each time, the state of a triple is described by the set

i; j; kf g, for i; j; k ¼ 0; 1. Thus, if all three locations are

under threshold we have {0, 0, 0}, whereas if they are over

threshold we have the state 1; 1; 1f g: For each triple we

have 23 = 8 possible mutually exclusive states (i.e. the

number of possible permutations of length three from an

alphabet of two symbols {0, 1}), and eight binary proba-

bilities pði; j; kÞ; for i; j; k ¼ 0; 1; can be calculated over

the N realizations, recalling that the states 0 and 1 are the

lower and upper partition of the probabilities by the t

quantile threshold. Therefore, for example, the probability

that all three locations are simultaneously under threshold
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Fig. 6 S� sK diagrams for four copula families (Gauss, Student with

four degrees of freedom, Gumbel, and Frank). Points denote the

average values over 1,000 simulated samples of size 1,000 (top) and

75 (bottom). Crosses denote the 95 % Monte Carlo confidence

intervals of S and sK estimates. Lines indicate theoretical relationships

corresponding to Gauss, Student with four degrees of freedom,

Gumbel, and Frank copulas. S is rescaled by the factor

�1=ðt log2ðtÞ þ ð1� tÞ log2ð1� tÞÞ
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or over threshold are p(0, 0, 0) and p(1, 1, 1), respectively.

The information entropy S (Shannon 1948) of each of the

sets of eight probabilities is calculated as a measure of

dependence in a given triple; thus

S ¼ �
X1

i; j; k¼0

pði; j; kÞ log2 pði; j; kÞð Þ: ð11Þ

For ease of interpretation, we use the normalized Shannon

entropy HS :¼ S=Smax 2 ½0; 1�; where Smax ¼ log2ð8Þ is the
maximum value of S corresponding with the set of proba-

bilities Pe ¼ f1=8; . . .; 1=8g; describing the uniform distri-

bution. Independence corresponds with the set of

probabilities fð1� tÞ3; ð1� tÞ2t; ð1� tÞ2t; ð1� tÞ2t; ð1�
tÞt2; ð1� tÞt2; ð1� tÞt2; t3g; whereas comonotonicity with

the condition that p(0, 0, 0) = (1 - t), pð1; 1; 1Þ ¼ t; and

the other probabilities equal to zero.

Since HS implies triples whose mutual correlations can

be rather different, general diagnostic plots such as kU � sK
or qt1 � qt2 diagrams cannot be defined. Nevertheless,

setting sKðx1; x2Þ ¼ sKðx1; x3Þ ¼ sKðx2; x3Þ and t ¼ 0:95;

Fig. 6 shows the performance of the S estimator for sam-

ples of size 1,000 and 75 drawn from four different

dependence structures. Similar to qt, entropy on triples is

almost unbiased and uncertainty increases as the sample

size decreases and t ! 1.

For empirical analyses, the comparison between

observed and theoretical dependence structures is carried

out by ad hoc simulations. In particular, in order to fully

preserve the marginal distributions of the records and

highlight only the effect of the dependence structure, we

have applied the following simulation-supported rank-

permutation approach:

1. For each triple of time series ðx1; x2; x3Þ with size N,

the observed records in each vector xi, i ¼ 1; 2; 3, are

replaced by their ranks ðR1;R2;R3Þ; identical values
(statistical ties) are handled by randomization. Note

that in this context, randomization does not affect the

final results.

2. For each triple, simulate a sample with size N from a

three-variate distribution function and replace the

simulated values ðxs1; xs2; xs3Þ with their ranks

ðRs
1;R

s
2;R

s
3Þ. In this study we use Gauss and Student

(with four degrees of freedom) as they allow us to

assess the impact of tail dependence by models that

preserve pairwise mutual correlations (embedded in

the correlation matrix).

3. Replace the simulated (cross-correlated) vectors of

ranks with the observations whose observed ranks

match the simulated ranks, i.e. ðx1;ðRs
1
Þ; x2;ðRs

2
Þ; x3;ðRs

3
ÞÞ.

This procedure generates samples with marginal distribu-

tions identical to the observed and a desired latent depen-

dence structure (here, Gauss and Student).

When the variables studied are spatially distributed and

the dependence structure reflects the nature of the spatial

organization, the mutual position of the triples is important

(Bárdossy and Pegram 2009). Indeed, the triangle cannot

be too long and thin, else there will be two points close

together or one near the middle of a line joining the other

two. Even though the ideal is an equilateral triangle, in
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Fig. 7 Maps of rainfall stations and grid points of the data sets used

in the empirical analyses. ECA&D data are distinguished between

East countries, West countries and Slovenia as is specified in Sect.

4.1. Three examples of triples of sites suitable to compute HS are

shown in the right

Stoch Environ Res Risk Assess (2015) 29:1211–1233 1221

123



randomly scattered sites a compromise is necessary. As we

used Heron’s formula for the calculation of the triangle

area A, the acceptance of a suitable triple of points relies on

the following criterion (Bárdossy and Pegram 2009): for

each of the three pairs of sides in an adopted triangle, we

chose that the maximum difference in a pair must be less

than 10 % of the perimeter of the triangle; i.e. for sides s1,

s2, and s3, P ¼ s1 þ s2 þ s3, the criterion is: accept triple if

max jsi � sjj=P\0:1, 8i 6¼ j. Once the triangle has been

identified, A is calculated. Diagrams of HS versus A are

used as diagnostics of the relationship between the areal

information content and the spatial scale.

3 Data

As mentioned in Sect. 2.1, we first re-evaluate the prop-

erties of the rainfall data studied by Serinaldi (2008).

Referring to that work for further details, we recall that the

data set comprises 35 rainfall series collected from 1995 to

2001 at 30-min time scale by a network of raingauges

located in Umbria (central Italy). Ten time series are

complete whereas the others show some intervals of

missing data in 1995 and 1996. However, this does not

affect the analyses very much, as they focus on the spatial

correlations between simultaneous observations. In order to

study the behavior of the rainfall fields at different time

scales, the data were aggregated at 1, 3, 6, 12, and 24 h.

The mutual distances between stations range from 0.9 to

120 km (see Fig. 7).

Since good-quality data sets at a fine temporal scale are

available only for relatively small areas and a few years, in

order to study the spatial structure of rainfall and draw

general results, the data set above was complemented with

287 daily rainfall series extracted from the ECA&D data-

base available at the web site http://eca.knmi.nl/dailydata/

predefinedseries.php (Klein Tank et al. 2002). These time

series cover more than 40 years with less than 10 % of

missing values. They are shifted in time, but the length

ensures that simultaneous observations to be used in corre-

lation analyses are close to 40 years. This data set allows us

to expand the analysis on super-daily time scales (namely, 2,
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Fig. 8 Relationship between kU and sK and inter-station distance, and kU � sK diagrams for central-eastern Europe daily data
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5, 10, and 30 days) and wider spatial scales (up to a mutual

distance between stations of �3;000 km; see Fig. 7).

Some analyses were performed on an additional data

set already studied by Serinaldi and Kilsby (2014a), that

comprises 0.25� 9 0.25� (i.e., �25� 25 km2) rainfall

gridded data covering the Danube basin (1,462 grid points;

Fig. 7) extracted from the E-OBS database developed

within the EU-FP6 project ENSEMBLES and available at

the web site http://eca.knmi.nl/download/ensembles/down

load.php (Haylock et al. 2008). The selected data set covers

the 32-year period between 1950 and 1981, in which the

data show a small number of missing values and reason-

ably homogeneous coverage over the entire area.

4 Empirical results

4.1 Results for kU estimators

For the Umbria data set, Serinaldi (2008) provided a

detailed analysis of the relationship between kU and inter-

station distance, and sK � kU diagrams. Similar patterns of
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Fig. 9 UTD test results for Umbria rainfall data
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kU versus distance were also found by AghaKouchak et al.

(2013). However, since the results reported in Sect. 2.1

show that the kU estimators are generally biased and clo-

sely reflect the strength of the overall correlation of data,

the above mentioned patterns are expected and do not add

much information compared to the spatial patterns of sK.
On the contrary, they indicate UTD even if it could not

exist.

For the sake of completeness we report the same diagrams

for the 287 daily time series of central-eastern Europe data

set. Figure 8 confirms that the relationships kU-distance are
almost insensitive to the spatial and temporal time scales.

Indeed, the exponentiated power functions estimated by

Serinaldi (2008) on the 30-min Umbria rainfall data fit the

central-eastern Europe data well. The kU � sK diagrams also

confirm the bias towards EV behavior. Schmidt and Sta-

dtmüller (2006) already recognized that ‘‘an increasing

correlation ½qP� deteriorates the results because of the

increasing bias of the non-parametric kU estimator’’. Note

that the Europe data set was split in three subsets (western

and eastern countries, and Slovenia; see Fig. 7) to avoid the

concealing effect caused by the cluster of Slovenia’s stations

on the pairwise calculations, and to show the coherence

across the geographic area. Similar results can be found for

the gridded data. The kU � sK diagrams look like those

obtained for the simulated samples (Fig. 1) and further stress

the strong bias of both kCFGU and kSSU estimators. The appli-

cation of additional diagnostics is therefore mandatory.

4.2 Results for formal statistical tests for upper tail

independence

Based on the power study described in Sect. 2.2, we dis-

carded the Fisher test, and performed the Zhang test with

l ¼ x0:975: In order to obtain a comprehensive picture, the

tests were applied to the Umbria data set both in an annual

and seasonal basis (distinguishing four seasons: DJF, MAM,

JJA, SON) as the summer events are often convective and

different tail dependence behavior can be expected. More-

over, we considered six time scales (from 30 min to 24 h) to

explore the possible existence of a characteristic scale for

which the rainfall dynamics generate UTD. With the same

rationale, the central-eastern Europe data set was analysed

both in an annual basis and extracting the summer months

(approximately identified with MJJA). Daily data were

aggregated up to 30 days. Finally the gridded data set (in an

annual basis) was also considered in this analysis to under-

stand the effect of spatial averaging (from 0.25� 9 0.25� up
to 2� 9 2�). Results are summarized as box-plots of the

p-values resulting fromeach test performed pairwise. IfUTD

is a dominant property in rainfall fields, we expect a large

number of small p-values (for instance, smaller than 0.05, if

we perform the test at the 5 % significance level). Of course,

since this is a multiple testing exercise, a percentage of false

positive results is expected. However, this aspect does not

matter very much, as we anticipate that all results point to no

much evidence for UTD, apart from cases corresponding to

strong overall (sK) dependence and small inter-site distances.

Results for Umbria rainfall data in Fig. 9 show that only

the Neyman–Pearson test returns a reasonable percentage

of p-values ð�50%Þ in between 0.01 and 0.05 for annual

and SON data; however, it should be noted that in several

cases the tests provide no outcomes as the data over the

threshold c are not enough. This explains the lack of results

for MAM season. In these cases every conclusion is

speculative, but the lack of concurrent observations in the

upper tail is reasonably an indication of lack of UTD.

Therefore the overall conclusion is that if UTD does exist,

it is not supported by empirical evidence (based on the set

of formal tests used in this study). Analogous results hold

true for the central-eastern Europe daily raingauge data and

gridded data at all space and time scales mentioned above.

4.3 Pairwise binary correlation and binary entropy

on triples

To further investigate the behavior of the UTD without

resorting to asymptotic concepts, Fig. 10 shows the qt1 �
qt2 diagrams of binary correlation for several quantiles and

temporal scales of aggregation for the Umbria data set. The

patterns of JJA rainfall can be clearly distinguished from

those of the other seasons for time scales below 12 hours,

and indicate UTD stronger than that of rest of the year.

This can easily be ascribed to the convective nature of the

summer rainfall in this region (note that some time scales

are not shown for the sake of better visualization). How-

ever, the main result is that the qt ratios tend to lie below

the Gaussian theoretical curve, thus denoting an upper tail

correlation weaker than Gaussian. The cloud of points is

close to the EV theoretical curve only for the JJA data, the

smallest time scales (0.5 and 1 hour) and moderately

extreme quantiles (i.e., x0.95 and x0.99). However, in these

cases distinguishing between Gauss and EV behavior is

difficult because the theoretical curves of the two models

are too close to each other and confidence bands (not

reported for the sake of readability) cover both curves. For

the highest quantiles, the difference between the theoretical

curves becomes more remarkable; however, the uncertainty

increases (as the size of samples used to compute q0.995 and
q0.999 decreases). Moreover, for the highest quantiles, a

sub-Gaussian behavior is more evident.

Since the length of Umbria data set (seven years) is not

enough to explore daily and coarser time scales, the dia-

grams in Fig. 10 are virtually extended using the gridded

data. Figure 11 shows the results corresponding to
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0.25� 9 0.25� spatial resolution (similar results were found

for the other spatial scales up to 2� 9 2�). The patterns are
very similar to those obtained for sub-daily scales. For the

finest resolution (here, 1 day) and the largest sample size,

the cloud of points is close to both EV and Gauss when the

curves are close to each other, and to Gauss when the

differences between the theoretical curves increase (i.e. for

the highest quantiles).

Therefore, the qt1 � qt2 diagrams seem to confirm the

results of the formal tests: when qt ratios indicate possible

UTD, the uncertainty and/or the small difference between

EV and Gauss patterns do not allow us to distinguish, and

when the difference is more evident, results indicate UTD

close to or weaker than Gaussian.

However, is the Gaussian dependence structure enough to

explain the spatial structure of the rainfall extremes? Our

working hypothesis is that hidden properties could be rela-

ted to higher-order correlations. In this respect,HS can be a

useful diagnostic. Following the procedures introduced in

Sect. 2.3, we calculated HS on 443 triples describing

approximately equilateral triangles for the Umbria data set,

and for the resampled data with latent Gauss and Student

dependence structures. Figure 12 shows the HS � A dia-

grams for observed and Gaussian resampled data and

highlights that HS increases as A increases. The resampled

data exhibit higher HS values, especially for moderately

high quantiles (i.e., below or equal to x0.99) and time scales

below 24 h. The HS values confirm the difference between

the rainfall in summer (JJA) and the other seasons. Similar

results were found for the Student resampled data.

Since the practical information we are interested in is

the rainfall amount, which impacts on the actual risk

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0
DJF
MAM
JJA
SON

Gauss
EV

ρ 0
.9

5

0.5 h

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0

ρ 0
.9

9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0

ρ 0
.9

95

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0

ρ 0
.9

99

ρ0.9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0
3 h

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0

ρ0.9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0
6 h

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0

ρ0.9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0
24 h

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0

ρ0.9

Fig. 10 qt1 � qt2 diagrams for Umbria rainfall data
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assessment procedures, the loss of information related to

Gaussian or Student spatial dependence structures was

quantified by the mean and standard deviation of the

rainfall amount summed over each triple. Figure 13 shows

that the Gaussian dependence structure implies a system-

atic underestimation of the average rainfall amount on

triples of locations, the bias reducing for the highest

thresholds and coarse aggregation time scales, for which

however the sample size reduces and the uncertainty

increases. Note that Student dependence structure yields

similar results, with a smaller bias for the highest quantile

thresholds (x0.99 and x0.995) and time scales below six hours

(figures not shown). Both models reproduce rather well the

standard deviation rainfall amount summed over each triple

(figures not shown). Generally, we observed that the Stu-

dent model (with tail dependence) produces a slight infla-

tion of the average rainfall amount on triples, which

improves the performance at fine time scales but gives a

positive bias when the data are upscaled.

Daily and coarser time scales are explored using the

central-eastern Europe data set. Figure 14 highlights a

scaling relationship between HS and A with a break point
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Fig. 11 qt1 � qt2 diagrams for

gridded data at 0.25� 9 0.25�
spatial resolution
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around 20,000 km2 corresponding to mutual inter-site

distances of �280 km; beyond this distance the entropy is

almost independent of the distance and approaches the

limiting value corresponding to mutual independence.

Figure 15 completes the picture showing that the negative

bias observed at sub-daily time scales persists up to 2-day

time scale, whereas it is smoothed out at coarser scales.

5 Discussion

When mathematical/statistical models and tools are intro-

duced in applied disciplines, such as hydrology, theoretical

limits and basic assumptions can be overlooked in the

process of generating results. The upper tail dependence kU
and its estimators seem to be some of these concepts. Since
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the simultaneous occurrence of extreme events has a strong

impact in practical applications ranging from risk man-

agement to insurance strategies, the interest in empirical

results concerning rainfall, flood and drought data (to

mention just a few) has drawn attention away from the true

asymptotic nature of kU and the reliability of the estimators

applied to the generally short records of hydrological

variables.

However, since UTD is an asymptotic property similar

to other characteristics such as the univariate EV behavior

and long range dependence, making inference on UTD

requires large data sets and particular care. As for an

example, Papalexiou and Koutsoyiannis (2013) and Seri-

naldi and Kilsby (2014b) highlighted the concealing effect

of the (short) record length on the recognition of the nature

of the univariate tails of rainfall extremes. The finite-

sample properties (bias and uncertainty) of the statistical

tools used in such analyses must always be checked,

especially if they are borrowed from theoretical literature

without specific preliminary checks accounting for the

requirements of hydrological studies and the properties of

the data at hand. Moreover, often these tools are tested on

large data sets (thousands) or high frequency econometric

or biometric records (e.g., Poon et al. 2003; Wu et al. 2012;

Cai et al. 2013). Therefore, blindly adopting the same

technology for analyzing a few dozens of annual maxima

or zero-inflated rainfall records might be expected to return

misleading results.

In this respect, it should be noted that the set of diag-

nostics tested in this study is not exhaustive as other indices

and tests for tail (in)dependence have been proposed in the

literature (see e.g., Bacro and Toulemonde 2013 for a

recent review). However, such alternative methods are

generally affected by the same problems discussed in this

study. For example, Coles et al. (1999) complemented kU
with a complementary index �kU related to the joint survival

function and set up an inference procedure based on the

pair ðkU; �kUÞ so that ðkU [ 0; �kU ¼ 1Þ indicates asymptotic

dependence, and the value of kU determines a measure of

strength of dependence within the class of asymptotically
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dependent distributions; alternatively, ðkU ¼ 0; �kU\1Þ
indicates asymptotic independence, and the value of �kU
determines the strength of dependence within the class

asymptotically independent distributions. Unfortunately,

this procedure still suffers the bias and uncertainty of the

estimators of kU and �kU as shown by Coles et al. (1999) for

the Gauss dependence structure. Coles et al. (1999) also

highlighted that the inference procedure on finite-size

samples requires the definition of the confidence intervals

of the estimates of kU and �kU, which are obtained by the

delta method and rely on three assumptions: (1) indepen-

dence of the observations, (2) each marginal distribution is

estimated exactly by its empirical distribution function, and

(3) the sampling distribution of a proportion is well

approximated by its asymptotic distribution (see also Poon

et al. 2003). Since these properties are rarely fulfilled (if

ever), resulting in general underestimation of the width of

the confidence intervals, Coles et al. (1999) explicitly

warned about the reliability of conclusions drawn from

these intervals. The analyses of real-world environmental

data discussed by Coles et al. (1999) also confirm the

uncertainty affecting the results and the difficulty to dis-

tinguish between asymptotic dependence and asymptotic

independence.

As far as tests of independence are concerned, Bacro

and Toulemonde (2013) suggested to distinguish between

approaches related to a sample from the bivariate EV dis-

tribution and approaches which can be used on distribu-

tions in a domain of attraction of an EV distribution. The

first class comprises the tests proposed by Falk and Michel

(2006), Bacro et al. (2010) and Ramos and Ledford (2005),

whereas the second class includes the tests developed by

Zhang (2008) and Hüsler and Li (2009), for instance. Even

though we tested only some of the tests in both classes, our
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conclusions about the effect of the sampling uncertainty

and model misspecification hold true also for other tests.

For example Bacro et al. (2010) recognized the slow

convergence (and consequent lack of power) of their

madogram test in the case of the Gauss model as the overall

correlation increases ([0.5), which is coherent with our

results concerning the difficulty of discriminating between

limit dependence and independence for joint distribution

with Gauss-like tail shape. The use of relatively large

samples (hundreds or thousands of observations) for sim-

ulation-based power studies and real-world (usually

econometric) examples (e.g., Poon et al. 2003; Hüsler and

Li 2009; Bacro et al. 2010) also confirms that the minimal

sample size needed to obtain reliable results is usually

much larger than that of hydrological records of interest

such as annual maxima or slightly longer peak-over-

threshold data. Moreover, unlike well-behaved data such as

time series of (filtered) returns (e.g., Bacro et al. 2010),

hyrological data are affected by several factors (e.g., zeros’

inflation, discretization due to finite resolution of

measurement devices, etc.) that can further conceal the true

tail behavior.

6 Conclusions

In this study we have thoroughly revised the finite-sample

properties of the most popular kU estimators and the rec-

ommendations and caveats about their application reported

in the theoretical literature. Following these suggestions we

have also studied the finite-sample performance of a suit-

able set of tests for tail independence under alternative

models, as well as new alternative diagnostics. Finally, an

extensive analysis of three rainfall data sets covering a

wide range of spatio-temporal scales allowed us to draw

general conclusions on the dependence properties of

simultaneous extremes. Therefore, we obtained both

methodological results which are general and valid for

whatever type of data, and empirical results concerning the

UTD behavior of rainfall fields, these being also rather
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Fig. 15 Average rainfall amount on triples for central-eastern Europe data
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general in light of the spatio-temporal coverage of the data

sets. The methodological results can be summarized as

follows:

(1) The kSSU and kCFGU estimators are generally biased and

yield kU values strongly related to the overall

correlation even if the underlying (true) dependence

structure has zero tail dependence. These estimators

are not only biased toward positive tail dependence

but also affected by high uncertainty even for

samples with large size (compared with the typical

record length of hydrological data). In particular, it

should be noted that kCFGU is actually a parametric

estimator as it relies on the assumption that the

underlying structure of dependence is EV. Our

Monte Carlo experiments highlight that this assump-

tion is not weak and the estimator systematically

points to EV models, being almost insensitive to the

true nature of the tail dependence structure. There-

fore, this estimator must be used with great care and

possibly avoided, when the true dependence struc-

ture is unknown. Since its application is widespread

because of its closed form expression (which does

not need iterative algorithms), and several results

reported in the hydrological literature rely on it, we

argue that those results are questionable and must be

carefully reconsidered.

(2) Since tests for tail (in)dependence are absolutely

mandatory for every kU estimation (Schmidt 2003;

Frahm et al. 2005; Schmidt and Stadtmüller 2006),

we have provided an extensive power study of five

formal statistical tests proposed in the literature. We

have checked the performance of these tests for

dependence structures with zero and positive theo-

retical UTD and the whole range of possible positive

correlation values using both a relatively large

sample size (i.e. 1,000) and a typical hydrological

record length (75; mimicking a typical set of annual

maxima). Simulation results showed that Fisher test

exhibits a poor performance and must be discarded,

whereas Neyman–Pearson, Kolmogorov–Smirnov,

v2, and Zhang tests perform satisfactorily. In more

detail, Kolmogorov–Smirnov and v2 are almost

redundant as they use two different criteria to

measure the discrepancy between the empirical and

theoretical distributions of the same test statistic. On

the other hand, Neyman–Pearson and Zhang tests

rely on different rationales. Since the performance

depends on the value of the overall correlation and

sample size, we do not provide a ranking of these

tests, but recommend the use of Neyman–Pearson,

Zhang and at least one of Kolmogorov–Smirnov and

v2 in order to provide a cross-check based on

different criteria.

(3) Binary correlations and binary entropy on triples

provide alternative diagnostics based on finite sam-

ples. Unlike kU estimators, binary correlation was

shown to be almost unbiased but is unavoidably

affected by large uncertainty when the record length

has the typical values of hydrological data sets. On

the other hand, the binary entropy on triples is an

attempt to measure the so-called high-order depen-

dence moving from pairwise mutual relationships to

higher dimensional relationships which can reflect or

be responsible for more complex interactions char-

acterizing the dynamics of hydrological phenomena

such as storms and floods. We anticipate that binary

entropy and kU are formally related; however, these

aspects are still under study and further results will

be communicated in the future.

As far as the empirical results corresponding to the joint

upper tail behavior of rainfall fields are concerned, we can

conclude:

(1) Looking at pairwise UTD values, both kU versus

inter-site distances and sK � kU diagrams exhibit the

typical patterns already reported in the literature, and

confirm the strong relationship between kU estimates

and the overall pairwise correlation values as well as

the bias of the estimators. These results hold true for

every data set across a broad range of spatio-

temporal scales from 30 min and 1 km to 30 days

and �3000 km.

(2) The formal statistical tests for upper tail indepen-

dence confirm the above results pointing to the

existence of possible upper tail dependence in a

number of cases much smaller than the expected.

These cases correspond to nearby records character-

ized by strong overall correlation, which affect the

tests’ outcomes similarly to kU estimators.

(3) The binary correlation computed over a suitable set

of quantile thresholds further confirms the lack of

empirical evidence for a general presence of the

upper tail dependence in rainfall fields. In more

detail, the empirical qt1 � qt2 patterns are closer to

the Gauss theoretical curves than EV models. Given

the substantial lack of bias of the binary correlation

estimators, this result is deemed reliable (keeping in

mind the uncertainty of the estimates). Moreover, it

should be noted that the small difference between the

theoretical curves corresponding to Gauss and EV

models for the smallest quantile thresholds does not

allow us to recognize the true behavior of the upper

tails. Therefore, qt1 � qt2 must be applied to a set of
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thresholds in order to highlight the evolution of the

correlation in the upper tail region of the joint

distribution and obtain insight about UTD.

(4) The longer the aggregation time the closer the

empirical entropy comes to the values corresponding

to the latent Gauss or Student dependence structures.

However, the entropy corresponding to these models

is higher than the observed, indicating that there

must be a stronger organization of extreme rainfall

which is not captured by any of the previous models.

Even though the introduction of tail dependence by

the Student copula reduces the entropy (as expected)

this is not enough to explain the above mentioned

organization. On the other hand, in light of the

results of the UTD analysis, there is no empirical

evidence to justify the use of tail dependent models,

which therefore assume the role of a fix rather than

an explanation.

(5) The analysis of the rainfall accumulation over triples

of locations further confirms the loss of information

resulting from the use of Gauss and Student models,

thus meaning that UTD is not enough to explain the

spatial structure of rainfall extremes. The underes-

timation of accumulated rainfall is more evident at

sub-daily time scales, becoming negligible at coarser

time scales. Indeed, a sort of convergence toward

meta-elliptical dependence structures (such as Gauss

and Student) might be expected because of the

averaging and smoothing effect of the upscaling

process.
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