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Abstract More than three years after its appearance in

Haiti, cholera has already caused more than 8,500 deaths

and 695,000 infections and it is feared to become endemic.

However, no clear evidence of a stable environmental

reservoir of pathogenic Vibrio cholerae, the infective agent

of the disease, has emerged so far, suggesting the possi-

bility that the transmission cycle of the disease is being

maintained by bacteria freshly shed by infected individuals.

Should this be the case, cholera could in principle be

eradicated from Haiti. Here, we develop a framework for

the estimation of the probability of extinction of the epi-

demic based on current information on epidemiological

dynamics and health-care practice. Cholera spreading is

modeled by an individual-based spatially-explicit stochas-

tic model that accounts for the dynamics of susceptible,

infected and recovered individuals hosted in different local

communities connected through hydrologic and human

mobility networks. Our results indicate that the probability

that the epidemic goes extinct before the end of 2016 is of

the order of 1 %. This low probability of extinction high-

lights the need for more targeted and effective interven-

tions to possibly stop cholera in Haiti.

Keywords Haiti � Cholera � Extinction �
SIR epidemic model � Stochastic simulator

1 Introduction

The largest cholera epidemic ever recorded during the

current pandemic wave is striking Haiti. At the end of

October 2010, 10 months after a catastrophic earthquake, a

violent cholera outbreak flared up in the valley of the

Artibonite, the main river system of the country, most

likely triggered by the importation of a toxigenic Vibrio

cholerae strain (Chin et al. 2011; Piarroux et al. 2011;

Hendriksen and al. 2011; Frerichs et al. 2012). The epi-

demic spread to the whole Haitian territory in less than two

months. As of December 31, 2013, the Ministry of Public

Health and Population reported more than 695,000 cases

and an average cumulative attack rate of 6.9 %. With more

than 8,500 deaths, the resulting cumulative case fatality

rate is 1.2 %, an unusually high figure for a cholera epi-

demic, likely attributable, among other causes, to the

unpreparedness of the Haitian health infrastructure to deal

with such an emergency, in particular after the earthquake

(Barzilay et al. 2013).

Cholera is an acute diarrheal disease that is transmitted

through the ingestion of water or food contaminated with

V. cholerae. The bacterium colonizes the human intestine

but it can also survive outside the human host in the aquatic

environment. Moreover V. cholerae can be a natural

member of the aquatic microbial community in certain

regions of the world where cholera is endemic (Colwell

1996; Lipp et al. 2002; Islam et al. 2004). Laboratory tests

confirmed that V. cholerae can thrive in freshwater (Vital

et al. 2007). A few studies in Haiti have screened envi-

ronmental samples for toxigenic V. cholerae. One such
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Universitá degli studi di Padova, 35100 Padua, Italy

123

Stoch Environ Res Risk Assess (2016) 30:2043–2055

DOI 10.1007/s00477-014-0906-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s00477-014-0906-3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00477-014-0906-3&amp;domain=pdf


study, conducted in the final months of 2010, when the

epidemic was peaking, found the strain in only 5 samples

out of 18 (Hill et al. 2011). Two other environmental

studies were staged after the peak of the epidemic. The first

attested the detection of toxigenic V. cholerae in 3 out of

179 samples (Alam et al. 2014), while the other found none

(Baron et al. 2013). The absence of clear evidence of an

established environmental community of toxigenic

V. cholerae, supported by detailed field investigations, led

some authors to conclude that the transmission cycle of the

disease is being maintained by bacteria freshly shed by

infected individuals (Rebaudet et al. 2013) and thus that the

disease could possibly be eradicated. In particular, it was

suggested that the dry season, when the disease is in a lull

phase, represents a window of opportunity for targeted

efforts to stop cholera transmission.

In this context, we develop a framework for the esti-

mation of the probability that the variability of the dry

season, together with the inherent demographic stochas-

ticity of the disease transmission, lead to the extinction of

the epidemic outbreak. In our analysis we assume that an

environmental reservoir of V. cholerae cannot self-sustain

indefinitely without inputs form infected individuals. The

alternative hypothesis of a self-sustained reservoir of

V. cholerae will be also discussed.

The dramatic outcome of the Haiti epidemic promoted

the development of a number of mathematical models of

cholera transmission (Bertuzzo et al. 2011; Andrews and

Basu 2011; Tuite et al. 2011; Chao et al. 2011; Rinaldo

et al. 2012; Gatto et al. 2012; Eisenberg et al. 2013; Mu-

kandavire et al. 2013) in an effort to provide key insights

into the course of the ongoing epidemic, potentially aiding

real-time emergency management in allocating health care

resources and evaluating the effects of alternative inter-

vention strategies. The development and the application of

these models were made possible by the immediate release

of epidemiological records, and by the continuous advance

of satellite estimates of environmental variables and

georeferenced data-sets (Griffith and Christakos 2007; Jutla

et al. 2013a, b). The various modeling approaches differ in

assumptions, spatial resolution and degrees of spatial

coupling, but they all address the coupled dynamics of

susceptibles, infected individuals and bacterial concentra-

tions in a spatially explicit setting of local human com-

munities. Most of the models approximate the number of

infected and susceptible individuals with continuous vari-

ables, an assumption often made in mathematical epide-

miology when the number of individuals in each class is

large enough to neglect the demographic stochasticity

emerging from the intrinsic discrete nature of individual

processes. Continuous models are computationally efficient

and therefore suitable to be calibrated by contrasting sim-

ulations and epidemiological records. A notable exception

is the agent-based model proposed by Chao et al. (2011),

which, however, was not calibrated against data but relied

on parameter values taken from literature. Other possible

approaches to model stochasticity in disease transmission

are the use of Langevin-type differential equations (Azaele

et al. 2010; Mukandavire et al. 2013) or of spatiotemporal

random fields which account for multiple sources of

uncertainty (Angulo et al. 2012, 2013).

Continuous epidemic models are not suitable for the case

at hand. In fact, they do not admit disease extinction in a

finite time (Bartlett 1957). Moreover, demographic sto-

chasticity is expected to play an important role during the lull

phases when the number of infected individuals is small. We

therefore develop a novel individual-based spatially-explicit

stochastic model that accounts for the dynamics of suscep-

tible, infected and recovered individuals hosted in different

local communities connected through hydrologic and human

mobility networks. The model also accounts for enhanced

cholera transmission mediated by rainfall (Rinaldo et al.

2012), a critical factor for the seasonality of the epidemic

cycle (Eisenberg et al. 2013; Gaudart et al. 2013). Moreover,

we model the possible effect of the progressive decrease of

population exposure to cholera due to intervention strategies

(e.g. distribution of safe water and information campaigns)

and increased population awareness of cholera transmission

risk factors (de Rochars et al. 2011).

From an operational viewpoint, the deterministic coun-

terpart of the stochastic model is used to calibrate the

parameters in conditions in which differences between the

two formulations are immaterial. To that end, fitting is

performed on the first phase of the epidemic, when the

number of infected individuals is deemed sufficiently large

for the continuous approximation to apply. The stochastic

model is then run with parameter sets sampled from the

posterior distribution obtained in the calibration phase. We

project the future evolution of the epidemic forcing the

model with stochastically generated rainfall scenarios and

we estimate the probability of extinction.

The paper is organized as follows. Section 2 details the

spatially explicit model of cholera transmission in its

deterministic and stochastic formulations. In Sect. 3 we

illustrate the application to the Haiti epidemic case study.

Results are presented in Sect. 4. A discussion Sect. 5 closes

the paper.

2 Spatially explicit cholera model

The theoretical framework adopted builds on previous

spatially explicit epidemiological models (Bertuzzo et al.

2008, 2010; Mari et al. 2012a, b) which have also been

applied to the Haiti cholera epidemic (Bertuzzo et al. 2011;

Rinaldo et al. 2012). The model subdivides the total
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population into n human communities spatially distributed

within a domain that embeds both the human mobility and

the hydrological networks. Two main improvements are

introduced: first, we differentiate the role played by

symptomatic and asymptomatic infected individuals in the

environmental contamination; and second, we model the

decrease of exposure to cholera due to intervention strat-

egies and increased population awareness. In this section,

we first describe the population-based, continuous deter-

ministic model and then we derive its individual-based

discrete stochastic counterpart.

2.1 Deterministic formulation

Let SiðtÞ, IiðtÞ and RiðtÞ be the local abundances of sus-

ceptible, symptomatic infected and recovered individuals

at time t in each node i of the network, and let BiðtÞ be the
environmental concentration of V. cholerae at site i (Fig.

1). Cholera transmission dynamics can be described by the

following set of coupled differential equations:

dSi

dt
¼ lðHi � SiÞ � FiðtÞSi þ qRi ð1Þ

dIi

dt
¼ rFiðtÞSi � ðcþ lþ aÞIi ð2Þ

dRi

dt
¼ ð1� rÞFiðtÞSi þ cIi � ðqþ lÞRi ð3Þ

dBi

dt
¼ �lBBi þ

p

Wi

1þ /JiðtÞ½ �Ii � l Bi �
Xn

j¼1

Pji

Wj

Wi

Bj

 !
:

ð4Þ

The population of each node is assumed to be at demo-

graphic equilibrium, with l being the human mortality

rate, Hi the population size of the local community and lHi

a constant recruitment rate. The demographic structure of

the population is neglected because of the lack of infor-

mation on how epidemiological parameters vary with age.

The force of infection FiðtÞ, which represents the rate at

which susceptible individuals become infected due to

contact with contaminated water, is expressed as:

FiðtÞ ¼ biðtÞ ð1� mÞ Bi

K þ Bi

þ m
Xn

j¼1

Qij

Bj

K þ Bj

" #
: ð5Þ

The parameter biðtÞ represents the maximum exposure

rate, which can change in time and space due to increasing

population awareness as the epidemic unfolds (see below).

The fraction Bi=ðK þ BiÞ is the probability of becoming

infected due to the exposure to a concentration Bi of

V. cholerae, K being the half-saturation constant (Codeço

2001). Because of human mobility, a susceptible individual

residing at node i can, while travelling, be exposed to

pathogens in the destination community j. This is modeled

assuming that the force of infection in a given node

depends on the local concentration Bi for a fraction (1� m)

of the susceptible hosts and on the concentration Bj of the

surrounding communities for the remaining fraction m. The

parameter m represents the community-level probability

that individuals travel outside their node and is assumed, in

this formulation, to be node-independent. The concentra-

tions Bj are weighted according to the probabilities Qij that

an individual living in node i would reach j as a destina-

tion. We model human mobility through a gravity model

(Erlander and Stewart 1990). Accordingly, connection

probabilities are defined as

Qij ¼
Hje

�dij=D

Pn
k 6¼i Hke�dik=D

;

where the attractiveness factor of node j depends on its

population size, while the deterrence factor is assumed to

be dependent on the distance dij between the two com-

munities and represented by an exponential kernel (with

shape factor D). A fraction r of infected individuals

develops symptoms thus entering the Ii class. Symptomatic

infected individuals recover at a rate c, or die due to

cholera or other causes at rates a or l, respectively.

Asymptomatic infected individuals shed V. cholerae at a

much lower rate [around 1,000 times, (Kaper et al. 1995;

Nelson et al. 2009)] than symptomatic ones and recover

much more rapidly [in around one day instead of five

according to Nelson et al. (2009)]. It is thus reasonable to

assume that their role in the environmental contamination

is negligible with respect to that of symptomatic individ-

uals. However, it is crucial to account for asymptomatic

infections because these individuals are temporarily

immune and thus contribute to the depletion of the pool of

susceptibles, affecting also the rate of occurrence of

symptomatic infections. Mathematically, this translates

into a flux of asymptomatic infected ð1� rÞFiðtÞSi that

enters the recovered compartment RiðtÞ directly. The

fraction r of infections that produce symptoms is likely

dependent on the dose of bacteria ingested. However, due

to the lack of detailed information and for the sake of

simplicity it is here assumed to be constant. Recovered

individuals lose their immunity and return to the suscep-

tible compartment at a rate q or die at a rate l. Symp-

tomatic infected individuals are assume to be non-mobile,

therefore they contribute only to the local environmental

concentration of V. cholerae at a rate p=Wi, where p is the

rate at which bacteria excreted by one infected individual
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reach and contaminate the local water reservoir of volume

Wi [assumed to be proportional to population size, i.e.

Wi ¼ cHi as in Rinaldo et al. (2012)]. It is assumed that the

death rate of V. cholerae in the environment exceeds the

birth rate thus resulting in the net mortality rate lB. Bac-
teria undergo also hydrologic dispersal at a rate l: patho-

gens can travel from node i to j with probability Pij. We

assume Pij ¼ 1 if j is the downstream nearest neighbor of

node i and zero otherwise. In order to express the wors-

ening of sanitation conditions caused by rainfall-induced

runoff, which causes additional loads of pathogens to enter

the water reservoir due to the overflow of latrines and

washout of open-air defecation sites (Gaudart et al. 2013),

the contamination rate p is increased by the rainfall

intensity JiðtÞ via a coefficient / (Rinaldo et al. 2012;

Righetto et al. 2013).

Disease incidence (i.e. number of new reported cases per

unit of time, the quantity usually reported in epidemio-

logical records) can be derived by computing the cumula-

tive reported cases CiðtÞ solving
dCi

dt
¼ rFiðtÞSi ;

and differentiating CiðtÞ in time.

As anticipated before, we assume that the exposure rate

biðtÞ can decrease as the population awareness of the

cholera transmission risk factors increases and the inter-

vention strategies unfold. From a mathematical standpoint,

we assume that the local exposure decreases proportionally

to the local cumulative attack rate Ci=Hi through an

exponential function:

biðtÞ ¼ b0e
� Ci

Hiw; ð6Þ

where b0 is the exposure at the beginning of the epidemic

and the parameter w controls the rate at which biðtÞ
decreases. The formulation used in Eq. 6 assumes that the

awareness of the population increases more in regions hit

more severely by the epidemic. This assumption is aimed

at mimicking the fact that the health response of the Haiti

government and of the partner agencies was targeted to the

most-at-risk and plagued communities (de Rochars et al.

2011). Moreover, it is likely that the probability that a

person changes her/his behaviour (e.g. the use of treated

water, soap, latrines, etc.) in response to an information

campaign is higher in communities with higher incidence,

where the dramatic effects of the disease are evident.

2.2 Stochastic formulation

In the stochastic formulation of the model, the population

of each node is assumed to be made up of identical indi-

viduals classified according to their epidemiological status.

Accordingly, the numbers of susceptible, symptomatic

infected and recovered individuals hosted in node i at

time t are discrete stochastic variables denoted as SiðtÞ,
I iðtÞ and RiðtÞ, respectively. Calligraphic letters are used

to differentiate stochastic variables from their deterministic

counterparts. Concentration of V. cholerae at site i, BiðtÞ,
is modeled as a continuous stochastic variable instead, as

the number of bacteria is expected to be large enough to

allow a continuous representation. Time is also a contin-

uous variable. The state of the system is described by the

vector (S,I ,R,B), where S ¼ ðS1;S2; . . .;SnÞT and the

other vectors are defined analogously.

All events involving human individuals (births, deaths

and changes of epidemiological status) are treated as sto-

chastic events that occur at rates that depend on the state of

the system. Possible events are:

1. birth;

2. death of a susceptible individual;

3. symptomatic infection;

4. death of a symptomatic infected individual for causes

other than cholera;

5. cholera-induced death of a symptomatic infected

individual;

6. recovery of a symptomatic infected individual;

7. asymptomatic infection;

8. death of a recovered individual;

9. immunity loss of a recovered individual.

S

B
IR

Q
ij

P
ij

i

j

Fig. 1 Schematic representation of the modeling framework. For a

detailed description, see Sect. 2.1
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Table 1 lists the rates mki at which the generic event k

occurs in node i and the corresponding state transitions of

the system. Analogously to the deterministic approach (Eq.

5), the force of infection is defined as

F iðtÞ ¼ biðtÞ ð1� mÞ Bi

K þ Bi

þ m
Xn

j¼1

Qij

Bj

K þ Bj

" #
: ð7Þ

Note that we do not model individual trips to specific

destinations as in agent-based approaches (e.g. Chao et al.

2011), yet human mobility is accounted for by the force of

infection (e.g. Xia et al. 2004). The equation that describes

the dynamic of the concentration of V. cholerae BiðtÞ is

obtained by substituting deterministic variables with their

stochastic counterparts in Eq. (4).

The stochastic model outlined above is too complex to

derive an analytical solution for the probability distribu-

tions of the state variables (or their moments). To inves-

tigate the properties of the system, we therefore resort to a

Monte Carlo approach and simulate many different tra-

jectories (realizations) of the process with a stochastic

simulator algorithm (SSA, Gillespie 1977). The SSA

assumes that event occurrence is a Poisson process whose

rate m is defined by summing the rates of occurrence of all

possible events:

m ¼
X9

k¼1

Xn

i¼1

mki :

At every time t, m represents the rate at which the next

event is expected to occur. Therefore, the inter-arrival time

between two subsequent events is an exponentially dis-

tributed random variable with mean 1=m (Gillespie 1977).

The type of event that will occur is randomly selected

among all possible events. Specifically, the probability of

selecting event k in node i is equal to mki =m. The state of the
system is then updated according to the randomly selected

event. The SSA is iterated until the expiration of the sim-

ulation horizon.

3 Case study: Haiti cholera epidemic

3.1 Model set-up and data

To derive the computational domain, the Haitian territory

(Fig. 2a) is subdivided into watersheds on the basis of

hydrologic divides. Human communities are then defined

as the population hosted within each watershed. Hydro-

logic divides can be inferred from drainage directions

extracted from digital terrain models [DTM, see e.g. Tar-

boton (1997)]. We use the DTM provided by the US

Geological Survey (USGS, available online at http://seam

less.usgs.gov) which has a grid resolution of 100 m and a

precision of �0:5 m in the elevation field. The first step

consists in the determination of the unique steepest-descent

flow-path from each pixel to the sea outlet. It is then

possible to delineate the river basins, defined as the set of

pixels that drain into the same point of the coastline. As

this leads to a very heterogeneous basin size distribution,

the larger basins have to be split into smaller units

according to catchment divides, whereas the coastal

(smaller) watersheds are aggregated to match the size of

inland watersheds. The use of hydrologically-defined sub-

units allows to identify the unique hydrological connection

from every node to the downstream one (or to the ocean for

coastal watersheds) directly. These communities can thus

be hierarchically organized within a river network, with the

hydrologic connectivity matrix P following directly. Fol-

lowing this procedure, the Haitian territory is subdivided

into 365 hydrological subunits with an average extent of 76

km2 (Fig. 2b).

The population hosted in each hydrologic unit is esti-

mated by using a remotely sensed map of population dis-

tribution provided by the Oak Ridge National Laboratory

O.R.N.L. (2011). The spatial resolution is 30� 30 arc-

seconds which represent, at that latitude, cells of about

1 km2 (Fig. 2c). Within hydrologic units, the population is

assumed to be perfectly mixed. Distances dij among

Table 1 Transitions and rates

of occurrence of all possible

events in the generic node i

Event Transition Rate

Birth ðSi; I i;RiÞ ! ðSi þ 1; I i;RiÞ m1i ¼ lHi

Death of a susceptible ðSi; I i;RiÞ ! ðSi � 1; I i;RiÞ m2i ¼ lSi

Symptomatic infection ðSi; I i;RiÞ ! ðSi � 1; I i þ 1;RiÞ m3i ¼ rF iSi

Death of an infected ðSi; I i;RiÞ ! ðSi; I i � 1;RiÞ m4i ¼ lI i

Cholera-induced death ðSi; I i;RiÞ ! ðSi; I i � 1;RiÞ m5i ¼ aI i

Recovery of an infected ðSi; I i;RiÞ ! ðSi; I i � 1;Ri þ 1Þ m6i ¼ cI i

Asymptomatic infection ðSi; I i;RiÞ ! ðSi � 1; I i;Ri þ 1Þ m7i ¼ ð1� rÞF iSi

Death of a recovered ðSi; I i;RiÞ ! ðSi; I i;Ri � 1Þ m8i ¼ lRi

Immunity loss ðSi; I i;RiÞ ! ðSi þ 1; I i;Ri � 1Þ m9i ¼ qRi
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communities are computed using the road network pro-

vided by the OpenStreetMap contributors (available on-

line at http://www.openstreetmap.org, Fig. 2d). Specifi-

cally, we compute the shortest distance along the road

network between the centroids of the population distribu-

tion of each community.

Daily satellite rainfall estimates JiðtÞ for each commu-

nity have been computed starting from data collected by

the NASA-JAXA’s Tropical Rainfall Measuring Mission

(TRMM_3B42 precipitation estimates, see http://trmm.

gsfc.nasa.gov/ for details). Rainfall data are spatially dis-

tributed with a resolution of 0.25� of latitude and longitude.
Precipitation fields are first downscaled to the DTM reso-

lution with nearest neighbor interpolation and then aver-

aged over the watershed area to obtain a representative

value for the whole community.

Epidemiological records are provided by the Haitian

Ministry of Public Health and Population (available on-line

at http://mspp.gouv.ht) and consist of a daily count of the

total new reported cases of cholera in the ten Haitian

departments (Fig. 2a).

3.2 Model calibration

We use the deterministic formulation presented in Sect. 2.1

to calibrate the model parameters. Specifically, we use the

first phase of the epidemic, from November 2010 to the end

of 2012, as training set. During this period the number of

infected individuals is large and can thus be reasonably

approximated with a continuous variable. This hypothesis

will be later verified. Simulations of the deterministic for-

mulation are much faster (O (103) times) than the stochastic

ones, thus allowing the use of efficient iterative calibration

schemes. Some of the model parameters can be reliably

estimated based on literature values, and epidemiological

and demographic records (see Table 2 for an overview). The

remaining parameters have been calibrated. By introducing

the dimensionless bacterial concentrations B�
i ¼ Bi=K it is

possible to group three model parameters (namely the rate p

at which bacteria excreted by one infected individual reach

and contaminate the local water reservoir, the per capita

volume of water reservoir c and the half-saturation constant

K) into a single ratio h ¼ p=ðcKÞ, which is one of the cal-

ibrated parameters. The ratio h epitomizes all the parame-

ters related to contamination and sanitation—the higher h
the worse the sanitation conditions and the resulting con-

tamination of the environment.

As initial conditions for model simulations we assume

that, as of October 20 (t ¼ 0), the values of Iið0Þ match the

reported cases detailed in Piarroux et al. (2011). Also,

Bið0Þ is assumed to be in equilibrium with the local number

of infected cases, i.e. B�
i ð0Þ ¼ hIið0Þ=ðHilBÞ. Moreover,

we impose that the whole population is susceptible at the

beginning of the epidemic, i.e. Sið0Þ ¼ Hi � Iið0Þ, because
of the lack of any pre-existing immunity (Enserink 2010;

Walton and Ivers 2011; Sack 2011; Piarroux et al. 2011).

a b

c d

0 50 km

Fig. 2 Overview of model set-

up and of the relevant data-sets

used. a Haitian territory and

boundaries of the 10

departments; b digital elevation

model and watershed

boundaries; c population density
distribution; d road network

(red lines)
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The calibration approach is based on Markov Chain

Monte Carlo (MCMC) sampling. Specifically, we use

the DREAM algorithm [Differential Evolution Adaptive

Metropolis available online at http://jasper.eng.uci.edu/

software.html] (ter Braak and Vrugt 2008), an efficient

implementation of MCMC that runs multiple different

chains simultaneously to ensure global exploration of the

parameter space, and adaptively tunes the scale and ori-

entation of the jumping distribution using Differential

Evolution (Storn and Price 1997) and a Metropolis–Has-

tings update step (Metropolis et al. 1953; Hastings 1970).

We adopt the DREAMZS variant of the DREAM algorithm

(Vrugt et al. 2009). The algorithm is initialized with broad

flat prior distributions (see Table 2) for parameter values

and is allowed to run up to convergence (Oð105Þ itera-

tions). The goodness of each single simulation is computed

as the residual sum of squares (RSS) between weekly

reported cholera cases in each of the Haitian departments

(Fig. 2a) as recorded in the epidemiological data-set and

simulated by the model.

3.3 Probability of extinction

To estimate the probability of extinction of the epidemic,

we simulate several realizations of the stochastic formu-

lation of the model from October 20, 2010 to December 31,

2017. To project the trajectory of the epidemic in the

future, we also need to project rainfall scenarios. They are

generated starting from the observed daily fields of pre-

cipitation estimates (15-years data-set, 1998–2012). Each

month (say, a May) of the rainfall time-series used to force

the model from January 2013 to December 2017 is

obtained by randomly selecting (with replacement) among

all the corresponding months (all the Mays) available. As a

result, each sequence of generated rainfall is a standard

bootstrapping of the observed data. This procedure allows

to generate realistically space–time correlated rainfall

fields.

Differently from a standard stochastic SIR model, the

absence of infected individuals (I ¼ 0) is not an absorbing

state of the system. In fact, the presence of bacteria that can

survive outside the human host may allow for new infec-

tions even in absence of other infected individuals. We

therefore classify a trajectory as extinct when, from that

time on, no new infections are observed in the simulated

time span.

Summarizing, to estimate the probability of extinction

(i) we sample a parameter set from the posterior distribu-

tion obtained in the calibration phase; (ii) we generate a

rainfall scenario; and (iii) we simulate the epidemic using

the stochastic formulation of the model. The previous

points are iterated for 104 times and the relative proportion

of trajectories that go extinct is recorded.

4 Results

Results of the calibration procedure are reported in Table 2.

The corresponding fit is illustrated in Fig. 3. We show

results aggregated at the country level; notice, however,

that the calibration is performed by simultaneously fitting

data at a higher spatial resolution—the departmental level

shown in Fig. 2a (1,130 data points, RSS ¼ 2:41� 108,

Nash-Sutcliffe index ¼ 0:79). The model shows an overall

good agreement with the data, capturing the timing and the

magnitude of the peaks correctly. In particular the model

grasps the response to heavy rainfall events which promote

a seasonal recrudescence of the epidemic. However, the

model underestimates the peak of reported cases in spring

2012.

Table 2 Estimated (top) and

fitted (bottom) parameter

values, extremes of the uniform

prior distribution, 50th (5th–

95th) percentile of the posterior

distribution and relevant units.

For the estimated parameters

see the literature cited in the last

column and reference therein

Parameter Units Prior Value References

l day�1 – 4:5� 10�5 CIA (2009)

c day�1 – 0:20 Rinaldo et al. (2012)

a day�1 – 0:004 Bertuzzo et al. (2011)

b0 day�1 0.01–10 0.21 (0.17–0.25)

w – 0.01–1 0.068 (0.064–0.070)

m – 0–1 0.22 (0.16–0.29)

D km 1–300 65 (83–133)

q day�1 0.0005–0.02 0.0032 (0.0026–0.0046)

r – 0.03–0.20 0.054 (0.051–0.058)

lB day�1 0.01–1 0.027 (0.025–0.032)

h day�1 0.01–10 1.23 (0.87–1.26)

l day�1 0.01–1 0.042 (0.030–0.052)

/ day mm�1 0.01–10 0.56 (0.41–0.73)
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Calibration results indicate a likely lifetime of bacteria

in the environment of about 1 month. Similar values have

previously been obtained through calibration for the same

case study (Tuite et al. 2011) or assumed in modeling

studies (Hartley et al. 2006; Andrews and Basu 2011;

Chao et al. 2011) based on clinical evidence (Tudor and

Strati 1977; Kaper et al. 1995). The fitted value of the

symptomatic ratio is close to the qualitative estimate of

the World Health Organization (WHO 2010) according to

which only 25 % of infected individuals reportedly show

symptoms and among these just around 20 % develop

profuse diarrhoea requiring medical attention. The

immunity loss rate deserves some further considerations.

The calibrated value corresponds to an average immunity

duration of less than 1 year, which is somewhat shorter

than the multi-year estimates usually reported in the lit-

erature (Koelle et al. 2005; WHO 2010). Notice, how-

ever, that these estimates refer to the duration of the

immunity conferred by symptomatic infections, while in

our framework 1=q refers to the average immunity

duration resulting from both symptomatic and asymp-

tomatic infections. The latter are indeed expected to

confer shorter protection [e.g. few months according to

King et al. (2008)].

To disentangle the impact of each parameter on the

dynamics of the epidemic outbreak, we have performed a

sensitivity analysis of the model outcomes with respect to

variations of the parameter values. In particular, we allow

the parameters to vary (�20% variation with respect to the

best-fit parameter set) one by one through repeated model

runs. We then compute the variations of simulated total

cholera incidence in the calibration phase with respect to

the best-fit simulation (Fig. 3c).

Figure 4 shows the projection of the future course of

the epidemic obtained using the stochastic formulation of

the model forced by the generated rainfall scenarios. Data

on incidence during 2013, which became available after

the implementation of the model, are also reported for

comparison with the model forecast. Projected future

patterns show that the annual epidemic cycle is expected

to show a lull phase during the dry winter months, fol-

lowed by an increased incidence caused by spring rain-

falls. The epidemic is expected to peak each year during

autumn rainfalls. This yearly cycle is progressively

attenuated by the decreasing population exposure. On

average, the exposure rate is estimated to be reduced by

20, 50 and 55 % at the end of 2010, 2011 and 2012,

respectively. At the end of the simulated period, the

exposure rate is, on average, approximatively 30 % of its

pre-epidemic value. The median incidence values simu-

lated by the deterministic and stochastic formulations of

the model during the calibration phase are almost indis-

tinguishable (Figs. 3 and 4, comparison not shown for

brevity), supporting the initial hypothesis that during the

calibration phase the population of infected individuals is

large enough to neglect demographic stochasticity and to

approximate state variables with continuous variables.

Finally, Fig. 4c shows that the probability that the epi-

demic goes extinct before the end of 2016 and 2017 is

approximately 1 and 7 %, respectively.

We also performed a sensitivity analysis to assess the

impact of each parameter on the future trajectory of the
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Fig. 3 Calibration of the continuous deterministic model. a Time

series of mean daily rainfall averaged over the Haitian territory. b
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circles) and simulated by the model (blue line). The blue shaded area

shows the 5th–95th percentile bounds of the uncertainty related to

parameter estimation. c Effects of parameter variations. Shown are

variations of total cholera incidence during the calibration phase

(October 2010–December 2012) produced by �20% variations of the

parameters. Shaded or open bars represent, respectively, positive or
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epidemic. In particular, we repeated the estimation of the

probability of extinction varying, after the calibration

horizon (December 31, 2012), each parameter one at a time

(�20%). Figure 5 shows how the probability that the

epidemic goes extinct before the end 2017 changes for each

parameter variation.

5 Discussion

In this paper, a framework for the estimation of the prob-

ability of extinction of large cholera outbreaks has been

presented and applied to the Haiti epidemic. Before dis-

cussing the actual estimates, which are not exempt from

uncertainties and limitations as we shall analyze in this

section, we want to highlight the strengths of the method

proposed. We use a combination of deterministic and sto-

chastic approaches trying to keep the advantages of both

while avoiding their drawbacks. Specifically, the deter-

ministic framework allows for an efficient and reliable

calibration of the model parameters. The stochastic

framework allows to evaluate the probability of extinction

of the epidemic exploring the variability induced by

parameter uncertainty, demographic stochasticity and

rainfall fluctuations.

The results presented in Figs. 3 and 4 show that the

model is able to reproduce complex spatio-temporal pat-

terns with a so-far unseen level of detail, at least for the

Haiti cholera epidemic. The sensitivity analysis (Fig. 3c)

shows that the model results in the calibration phase are

robust with respect to parameter variations. Indeed, varia-

tions of the model outputs are comparable to (or smaller

than) the parameter variations. It is interesting to note the

role of hydrologic transport. A positive variation of the rate

l increases the rate at which bacteria are flushed away and

lost into the ocean, thus reducing disease incidence. The

analysis also shows that the total incidence is not particu-

larly sensitive to variations of the parameters controlling

human mobility (m and D). This can be explained by the

fact that human mobility plays a crucial role at the onset of

an outbreak when the infection invades disease-free

regions [as shown by Bertuzzo et al. (2011), Rinaldo et al.

(2012), Gatto et al. (2012)]; whereas it may becomes less

important looking at longer time horizons (27 months in

this case) when the disease has already invaded the whole

country and epidemic dynamics are mostly controlled by

local factors.

The comparison with the incidence data of 2013 (Fig.

4b), which were not used for calibration, provides the most

compelling test for the predictive ability of the model. The

2011 2012 2013 2014 2015 2016 2017
0

1

2

3

W
ee

kl
y 

ca
se

s 
[1

04 ]
0

50

100

150

R
ai

nf
al

l [
m

m
/d

ay
]

a

b

0

0.1

2015 2016 2017

c

P
ro

ba
bi

lit
y

of
 e

xt
in

ct
io

n
Fig. 4 Projection of the future course of the epidemic obtained using

the individual-based stochastic model. a Recorded rainfall patterns
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(green shaded area) of the generated rainfall scenarios. b New

weekly cholera cases as reported in the epidemiological records (gray

and red circles) and simulated by the model. The green line and the

green shaded area represent the median and the 5th–95th percentile

bounds of the simulated trajectories, respectively. c Probability that

the epidemic goes extinct before a certain time horizon (black line).

The gray shaded area represents the 5th–95th percentile of the

uncertainty estimated through a standard bootstrapping (random

sampling with replacement) of the simulated trajectories
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pattern that actually occurred (a lull phase during winter

followed by a slow increase during summer that finally

peaks in autumn) was satisfactorily anticipated by our

model forecast.

The results presented in this work strongly support the

use of mathematical models for real-time prediction of the

evolution of a cholera outbreak. Yet shortcomings remain.

For instance, the model underestimates the epidemic peak

in spring 2012. Analyzing the epidemiological records in

more detail, one can notice that this peak was mostly

localized in the capital Port-au-Prince. The comparative

mismatch could be caused by an erroneous estimation of

rainfall intensity. Indeed, satellite-based estimates of pre-

cipitation represent a precious alternative to traditional

ground measurements, especially in developing countries

where the gauge network is scarce or absent. However,

they are not exempt from limitations, especially when

looking at very local features (Huffman et al. 2007).

Another possible source of such mismatch could be a local

outbreak caused by environmental or social factors not

directly (or not entirely) linked to rainfall, and therefore not

accounted for in the model. This is also supported by the

fact that a similar peak was not observed in spring 2013

and the model correctly predicts this feature (Fig. 4b). The

analysis of epidemiological reports at the communal level

[which are recorded but not yet available to the scientific

community, see e.g. Barzilay et al. (2013), Gaudart et al.

(2013)] perspectively represents a possible way to reduce

structural errors of the model. Such data could shed light

on specific transmission processes that become blurred

when zooming out at the departmental level.

The sensitivity analysis illustrated in Fig. 5 expectedly

reveals that the rate at which the exposure to the risk of

cholera decreases as the epidemic unfolds (controlled by

the parameter w) is the most important factor for the

extinction of the epidemic. According to the calibrated

parameters, exposure to cholera was reduced by 20 % at

the end of 2010, the time of the main peak of the outbreak,

and it is projected to be, on average, 30 % of its pre-epi-

demic value by the end of 2017. Notice that this estimate

should not be interpreted as that the 70 % of the population

will no longer be at risk, but rather that the rate at which

individuals are exposed to the risk of disease transmission

will decrease by 70 % due to the increased population

awareness of the modes of cholera transmission. It is dif-

ficult to judge if these figures are realistic. The only study

that investigates how the behaviour of the population has

changed due to the epidemic dates back to the end of 2010

(de Rochars et al. 2011) and reports that household water

treatment increased from 30 to 74 % on average. These

figures suggest that the population was quite responsive to

the campaigns for hygiene promotion set up by the Haiti

government and its partner agencies. Moreover, the gradual

return of the internally displaced people to their original

households (Bengtsson et al. 2011) should generally

improve the sanitation conditions. However, the expecta-

tion of a progressively decreasing exposure also in the

future is far from being certainly matched. In fact, while

the Ministry of Health is struggling to find funds for a long-

term plan to eliminate cholera through investments in water

and sanitation, many non-governmental organizations,

which are preciously supporting local health facilities, are

pulling out facing the donors’ fatigue (Adams 2013).

Moreover it is possible that the gained awareness has a

finite memory and could possibly wane if people are not

continuously exposed to the risk of cholera. To have a

better vision of the spectrum of possible future scenarios

we have also repeated the analysis assuming that the

exposure will no longer decrease after the calibration

horizon—end of 2012. Under this assumption, no extinct

trajectories are observed. This analysis highlights how the

probability of extinction is very sensitive to this crucial, yet

uncertain, parameter.

The results of the sensitivity analysis illustrated in Fig. 5

can also be interpreted to infer the effect of interventions

aimed at improving the sanitary conditions on the extinc-

tion probability. Extensive constructions of sewage sys-

tems and latrines leading to an overall reduction of the

contamination rate h of 20 % could increase the probability

of eradicating the disease before 2018 up to 36 %. Like-

wise, an improvement of safe water distribution that can

reduce the baseline risk of exposure to contaminated water

b0 by 20 %, would result in a 34 % probability of extinc-

tion of the outbreak in the same time horizon. Less intuitive

is the fact that also an increment of 20 % of the exposure

b0 would results in an increased probability of extinction
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Fig. 5 Effects of parameter variations on the probability that the

epidemic goes extinct before the end of 2017. The black vertical line

refers to the estimated probability (7 %). Bars show the variations

produced by �20% variations of the parameters. Shaded or open bars

represent, respectively, positive or negative variations of the relevant

parameters
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(Fig. 5). This counterintuitive effect derives directly from

our simplified assumptions on the development of aware-

ness. Higher exposure increases incidence (see Fig. 3c)

which, in turn, increases awareness (Eq. 6), thus leading to

a higher probability of extinction. Given the simplified

modeling of awareness and the abovementioned uncer-

tainties related to its future development, increasing the

exposure to cholera is obviously not a recommended

measure to eradicate the disease. The same effect can also

be observed for other parameters that exacerbate cholera

incidence, namely r, h, / and m. On the contrary, reduc-

tions of V. cholerae net mortality lB or hydrologic trans-

port rate l worsen the disease burden (see Fig. 3c) but

reduce the extinction probability. Parameters controlling

human mobility (m and D) are confirmed to be the least

sensitive also for the probability of extinction.

Despite all the uncertainties, our estimates indicate that

the extinction of the epidemic in Haiti is a rather unlikely

event. This result quantitatively confirms field experts’

feelings that cholera ‘‘hasn’t burned itself out’’ and ‘‘won’t

just go away’’ (Adams 2013). In our modeling framework,

new infections are promoted by bacteria shed by other

infected individuals; no other sources of contamination are

considered. However, should clear evidence of an estab-

lished environmental reservoir of pathogenic V. cholerae

that can persist even in the absence of infected individuals

(for instance in the estuarine environment) emerge, our

estimates should be reconsidered. Including a self-sus-

tained reservoir of V. cholerae in our framework would

lead to an endemic dynamics without any possibility of a

permanent extinction of the disease. More extensive and

targeted environmental field studies to detect reservoirs of

bacteria and to identify transmission pathways are there-

fore called for.

Understanding disease transmission during the lull

phases that characterize the dry season is of crucial

importance to understand extinction dynamics. However,

the particular case definition used by the national cholera

surveillance system (Barzilay et al. 2013), which differs

from the standard adopted by WHO, could actually lead to

on overestimation of the cholera burden during these

phases. In fact, Haitian reports also include children under

the age of 5, who are excluded by WHO standards because

of the high prevalence of acute diarrhea caused by infec-

tions other than cholera in this age group. Diarrhea in

adults is also likely to be reported as cholera independently

of its actual origins because laboratory confirmation could

not be performed for every single patient due to the huge

number of cases. Rebaudet et al. (2013) estimated a

background noise of diarrhea cases not related to cholera of

about 250 cases per week. This noise source is not relevant

when analyzing outbreak peaks, but it may become

important during lull phases. For instance, this value

accounts for almost 40 % of the cases reported during

February 2012. These simple observations reveal the

importance of targeted field epidemiological studies in the

epidemic foci to estimate the actual cholera burden, pos-

sibly through extensive laboratory confirmations. Lull

phases of the epidemic during the dry season are windows

of opportunity to fight cholera (Rebaudet et al. 2013).

Improving our understanding of the transmission dynamics

during these periods would help design specific interven-

tion strategies whose effects can be estimated by the pro-

posed modeling framework. A real-time assessment not

only of the future course of an outbreak but also of the

effects of alternative intervention strategies is, in our

opinion, the next important development that modern

mathematical epidemiology should focus on in order to

become an essential tool for emergency management.
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