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Abstract Emerging infectious diseases continue to place

a strain on the welfare of the population by decreasing the

population’s general health and increasing the burden on

public health infrastructure. This paper addresses these

issues through the development of a computational

framework for modeling and simulating infectious disease

outbreaks in a specific geographic region facilitating the

quantification of public health policy decisions. Effectively

modeling and simulating past epidemics to project current

or future disease outbreaks will lead to improved control

and intervention policies and disaster preparedness. In this

paper, we introduce a computational framework that

brings together spatio–temporal geography and population

demographics with specific disease pathology in a novel

simulation paradigm termed, global stochastic field simu-

lation (GSFS). The primary aim of this simulation para-

digm is to facilitate intelligent what-if-analysis in the event

of health crisis, such as an influenza pandemic. The

dynamics of any epidemic are intrinsically related to a

region’s spatio–temporal characteristics and demographic

composition and as such, must be considered when

developing infectious disease control and intervention

strategies. Similarly, comparison of past and current epi-

demics must include demographic changes into any

effective public health policy for control and intervention

strategies. GSFS is a hybrid approach to modeling,

implicitly combining agent-based modeling with the cel-

lular automata paradigm. Specifically, GSFS is a compu-

tational framework that will facilitate the effective

identification of risk groups in the population and deter-

mine adequate points of control, leading to more effective

surveillance and control of infectious diseases epidemics.

The analysis of past disease outbreaks in a given popula-

tion and the projection of current or future epidemics

constitutes a significant challenge to Public Health. The

corresponding design of computational models and the

simulation that facilitates epidemiologists’ understanding

of the manifestation of diseases represents a challenge to

computer and mathematical sciences.

Keywords Global stochastic field simulation � Infectious

diseases

1 Introduction

Epidemics of infectious diseases have plagued humankind

since historical times. There are accounts of epidemics

dating back to the times of Hippocrates (459–377 B.C.)

and the ancient Greeks (Bailey 1957). The fourteenth

century Europe lost a quarter of its 100 million people to

Black Death. The fall of the Aztecs empire in 1521 was due

to smallpox that eradicated half of its 3 1
2

million popula-

tion. The pandemic influenza of 1918 caused over 20

million excess deaths in 12 months. More recently, the

severe acute respiratory syndrome (SARS) outbreak of

2003 highlighted the rapid spread of an epidemic at the

global level. The outbreak, emanating from a small

Guangzhou province in China, spread around the world

requiring a concerted response from public health admin-
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istrations around the world and the World Health Organi-

zation (WHO) to curtail the epidemic (Heymann and Ro-

dier 2004). The WHO (2004) and Centers for Disease

Control and Prevention (CDC) (2004) actively engage in

worldwide surveillance of infectious diseases, and priori-

tize prevention and control measures at the root cause of

epidemics.

The lurking threat of emerging and re-emerging dis-

eases, and the necessity to prepare for disaster in the wake

of bioterrorism raise complex issues for Public Health

researchers in general and Epidemiologists in particular.

This research requires computational support to facilitate

policy and decision-making under uncertainty to allocate

limited public health resources. This paper addresses these

requirements through the development of a computational

framework for modeling and simulating infectious disease

outbreaks in a geographic region that allows for the

quantification of public health policies. The proposed

framework is based on a novel concept of GSFS and uti-

lizes information about regional demographics, geography,

and disease parameters. GSFS is a hybrid approach to

modeling, implicitly combining agent-based modeling with

the cellular automata paradigm. Specifically, the GSFS will

facilitate the effective identification of high risk groups in

the population and adequate points of control, leading to

more effective surveillance and control of infectious dis-

ease epidemics. Preliminary results for the incidence and

prevalence of a simulated influenza-like infectious disease

outbreak in parts of Denton County, Texas, elucidate the

utility of the proposed modeling and simulation approach.

1.1 Modeling epidemics

In what follows, we are introducing a new framework for

modeling infectious disease epidemics in a given popu-

lation. The primary goal is to facilitate what-if-analysis

that will allow the formulation of public health strategies

in the event of infectious disease epidemics. It is essential

to recognize that the dynamics of an epidemic are tightly

coupled with the geography and demographics of a region

in which an outbreak has manifested itself. This suggests

that results that have been obtained by analyzing a disease

outbreak in one particular geographic location may not be

readily applicable when defining control and prevention

strategies in other regions. Similarly, one must recognize

that comparison of morbidity/mortality of two or more

past epidemics for the purpose of deciding control mea-

sures must take demographic changes during these years

into consideration. Further, this necessitates the avail-

ability of computational tools, which enable epidemiolo-

gists to model an outbreak by bringing together

knowledge of disease, geography, and demographics from

past and present.

1.2 Epidemics in time and space

The spatial and temporal dynamics of the distribution of

the population in the United States is of great concern to

planners, service providers and epidemiologists in both

public and private sectors. For example, changes in

socioeconomic status, lifestyle, and demand for appropriate

living conditions and health-care services, as the geo-

graphical pattern of the elderly in many American cities

has changed considerably in the past decade. Unfortunately

the nature of this change is not clearly documented and still

being studied. Some states are more attractive to elderly.

However, limited research exists on association between an

extensive set of location-specific factors and the migration

of retirement-age individuals. For instance, Duncombe

et al. (2003) estimated an individual-level location-choice

model by using a combination of place-characteristics data

and Census county-to-county migration data, identifying

income taxes to have the largest relative effects. However,

other factors, including climate, economic conditions, and

population characteristics, appear to play much larger roles

in migration and location decisions. Such findings may

provide clues to understanding geographic distribution and

the change in the level of health care demands, particularly

in the context of aging America. Understanding of the

temporal pattern of the geographic distribution of the

population, including the urban elderly, will provide in-

sight into the future trends and facilitate strategic planning

of needed services. Disease surveillance systems based on

antiquated demographic data are inadequate. Thus, exam-

ining and evaluating the appropriateness of current com-

munity services available to the elderly is critical for

identifying and eliminating gaps in service.

In anticipation of the baby boomers beginning to turn

into the aged cohort in 2010, a thorough study on the

spatial and temporal changes of urban elderly seem

imperative. Human migration, changes in economy, births,

and deaths, cause the demographic characteristic of geo-

graphic region to change continually. Certain life cycle

changes—marriage, birth of a child, age of current chil-

dren—all impact a family’s housing needs and causes

people to migrate to different places. These natural chan-

ges in the demographic characteristics necessitate demo-

graphic data to be continually updated.

Rogerson and Han (2002) report that migration can have

a serious effect on the detection of geographical differences

in disease risk. In general, areas of high in-migration are

also characterized by high out-migration, and there is

substantial regional variation in mobility rates. Hence,

disease data and disease prevalence projections based on

human interaction patterns, are easily and quickly outdated

if there are significant changes in demographics resulting

from migration or urbanization. Population structure plays
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an important role in determining the spreading patterns of

infectious diseases among humans, forcing us to consider

meta-population models making an explicit distinction

between the intra- and inter-community interactions

(Sattenspiel and Dietz 1995). Environmental factors asso-

ciated with the location of contact can have important ef-

fects on transmission risk. For instance, a natural disaster

such as Hurricane Katrina has led to drastic changes in the

demography in the New Orleans as well as in surrounding

states.

Public health policy and disaster preparedness has often

relied on historical data of past epidemics. This is partic-

ularly true for the comparison of specific epidemics on the

basis of the associated attack-rate or reproduction number

R0, as used by Longini et al. (2005) to develop strategies

for containing pandemic influenza. R0 is the expected

(average) number of new infectious individuals in a com-

pletely susceptible population produced by a single infec-

tious individual during their entire period of infectiousness.

Accordingly, when R0 > 1, an epidemic occurs in a com-

pletely susceptible population; if R0 < 1, the disease dies

out and cannot establish itself in the population (Ferguson

et al. 2005). Traditionally, R0 was computed directly from

the equations that form the SIR-type models used to de-

scribe disease dynamics in a homogeneous population.

More recently, the attack rate R0 of a specific infectious

disease has been determined by analyzing data that has

been collected during the epidemic (Glass et al. 2006). As

discussed above, interaction patterns are a function of

changing demographics and infrastructure in response to

migration and urbanization. Thus, to be able to analyze and

compare past epidemics to present ones, the R0 of a past

outbreak must be adjusted to account for such changes.

This necessitates the analysis of how past disease outbreaks

may have manifested themselves in the corresponding

demographics. The displacement of individuals caused by

Hurricane Katrina, for instance, is therefore an important

factor that must be taken into consideration when predict-

ing or planning for potential epidemics. GSFS facilitates

the prediction of how infectious disease outbreaks will

manifest in the current demographics through the simula-

tion of contacts, which are deemed the primary determinant

of an epidemic’s dynamics.

2 Approaches to modeling epidemics

With the ever-present risk of infectious disease outbreaks,

it has become imperative to develop new methodologies

that facilitate the preparedness and training of public health

professionals. Recent examples of epidemics possibly

pandemics include SARS and Avian Influenza. Further, the

threat of bio-terrorism forces epidemiologists to develop

disaster preparedness plans that outline explicit responses

to possible disease outbreaks. Newly emerging or re-

emerging infectious diseases continue to occur regularly

(Heymann and Rodier 2004). Some diseases have changed

their appearance, some have become resistant to drug

treatment, while others are so new that no previous out-

breaks have ever been studied.

Medical research has enhanced the understanding of

disease characteristics in an individual. For example, the

epidemiologic stages of influenza as described by Latent

Period, Infectious Period, and Recovery Period (Benenson

1995) are well known (Benenson 1995). So are the

symptomatic stages of influenza (i.e., incubation period

until symptoms occur) as shown in Fig. 1. The Suscepti-

bles–Infectives–Removals (SIR) state diagram Fig. 2.

illustrates the course of a disease in an individual. The

manifestation and spread of many infectious diseases in the

population remain elusive and are dependent on socio-

behavioral interaction patterns and population dynamics.

To gain insight into the intricacies of disease dynamics

in a specific population, statistical and mathematical

models of infectious disease epidemics have been devel-

oped. Recently, some computational disease models have

emerged, which facilitate the simulation and investigation

of different disease characteristics. These include models

that exploit SIR paradigm, Cellular Automata (CA) meth-

odology, Agent-Based Modeling and Bayesian Reasoning.

Most of the work in modeling infectious disease epi-

demics is mathematically inspired and based on differential

equations and SIR/SEIR model (Aron 2000; Bagni et al.

2002). Differential equations and SIR modeling rely on the

assumption of closed population and neglect the spatial

effects (Boccara and Cheong 1993; Boccara et al. 1994).

Infection
Symtoms

appear

Time

Incubation period

Latent period Infectious period

Not infective
anymore

Recovering
or dead

Viral/Bacterial

Fig. 1 Infection time-line

S I R

disease contraction
infectious

not infectious expiry, recovering, or

upon recovery
acquire disease immunity

S      Susceptible
I       Infective
R     Removal

exposed

recovered but lacking disease immunity

Fig. 2 SIR/SEIR state diagram
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They often fail to consider individual contact/interaction

processes, assume populations to mix homogeneously, and

do not include variable susceptibility. Both partial and

ordinary differential equation models are deterministic in

nature and neglect stochastic or probabilistic behavior

(Stefano et al. 2000). Ahmed and Agiza (1998) introduce

incubation and latency time that lend to an accelerating

impact on the spread of a disease epidemic.

Most mathematical models are based on the interaction

principles between groups of susceptible(S), exposed(E)/

infective(I), and removed(R) individuals, i.e., the SIR/SEIR

model. Susceptibles are those individuals in a population

who can be infected by the disease under study. Infectives

are those individuals who have been infected and are

infectious. Removals include all individuals that are inca-

pable of transmitting the infection, and are either recovering,

fully recovered or expired from the disease. In complex

models, the removals who recover may revert to suscepti-

bles, leading to a SIS model, if the exposure to the disease

does not result in lifelong immunity. The Kermack–

McKendrick Threshold Theorem (Bailey 1957) is the basis

for the SIR model. A continuous influx of susceptibles is a

requisite for sustained infection in a population. The model

is based on the presumption of a closed homogeneous pop-

ulation, assuming that the epidemic spreads sufficiently fast

such that the changes brought in by births, deaths, migration

and demographic changes are negligible (Aron 2000).

The spatial and temporal correlation of influenza epi-

demics in the United States, France, and Australia from

1972 to 1997 has been analyzed using the SIR model

(Viboud et al. 1972). The results indicate a high correlation

between United States and France, but irregularity in the

patterns between Australia and the other two countries.

Geography, demography, cultural diversity and the result-

ing varied socio-behavioral interactions are highlighted as

the reasons for the discrepancies, and call for computa-

tional modeling for further investigation.

The SIR model provides a simple framework to represent

the spread of a disease. However, it does not provide suf-

ficiently accurate insight into the composition of an epi-

demic to be used as a policy and planning tool for the

allocation of public health resources. The SIR model does

not take into account the geography or the spatial dimen-

sions of a region, i.e., it does not model the fact that the

probabilities of contacts may be distance dependent. Fur-

ther, the spread of a disease may depend on the specifics of

geography and demographics of a region. While the SIR

model could potentially be extended to include geography

and demographics this would drastically increase its

intrinsic complexity, thus rendering the model computa-

tionally infeasible.

Cellular automata have been used for several decades

for computational models (Fu and Milne 2003). A two

dimensional automaton is used in epidemic models utiliz-

ing cellular automata (Ahmed and Agiza 1998; Fu and

Milne 2003; Situngkir 2004; Stefano et al. 2000). Each cell

may represent an individual or a sub-population, and is

characterized with state and likelihood risks for exposure

and contraction of the disease. The disease progression is

studied through its diffusion across the neighboring cells.

The earliest example of use of cellular automata is

Bailey’s lattice model (Bailey 1967) for the spread of

diseases from micro-level interactions. Di Stefano et al.

(2000) have developed a lattice gas cellular automata

model to analyze the spread of epidemics of infectious

diseases. This model, however, does not consider the crit-

ical factor of infection time-line. Fu (2002, 2003) has used

stochastic cellular automata to model epidemic outbreaks

that take into account the spatial heterogeneity. Situngkir

(2004) has developed a dynamic model of spatial epide-

miology to study avian influenza disease in Indonesia and

uses cellular automata for computational analysis. Naive

cellular automata are impeded by a limited neighborhood,

and the social interactions based on demographics are not

readily incorporated. The authors have introduced the

global stochastic cellular automata paradigm, addressing

the issue of limited neighborhood in a classical CA (Mikler

et al. 2005). In order to overcome the limitations posed by

naive cellular automata, we introduce GSFM, which

incorporates the demographics of location and population

density. The current models can be potentially extended to

include geography, demographics, and social dynamics,

nevertheless, the drastic increase in intrinsic complexity

may render the model computationally infeasible. The

restrictions and scalability limitations of the current models

will be addressed by the proposed computational frame-

work for modeling infectious diseases. This framework

will complement the current existing methodologies with

studies of heterogeneous population, including dynamic

interactions based on geography, demography, environ-

ment and migration patterns.

Spatially delineated regions with a small (< < 10,000)

population can be constructed using an agent-based

approach, in which each individual is represented by an

autonomous agent (Mikler et al. 2004). Larger models

with millions of agents necessitate the use of large com-

puting clusters or grid computing that can provide the

necessary computational power. The parameters that

control interactions among individuals are generally pre-

determined through social science research when a pop-

ulation’s real-world mixing patterns are studied. The agent

based model is then used to understand the progression of

diseases in a simulated agent society by observing the

emergent behavior of the epidemic. Real work mixing

patterns and social interactions can be modeled by social

networks, which have become increasingly important in
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our understanding of complex networks and the epidemic

spread of diseases in the real world. A social network is a

social structure made of nodes each representing indi-

viduals or organizations. Links indicate the ways in which

individuals or groups are connected through various social

familiarities ranging from casual acquaintance to close

familial bonds. The term social network was first coined

in 1954 by Barness (1954). Much research has been

conducted in the past half century on social networks;

however, only in the last decade have researchers in a

variety of domains (i.e., computer scientists, physicists,

mathematicians) become interested in this field. Complex

networks are comprised of lattice-type, small-world and

scale-free network structures. Social networks have many

of the same properties as other real world networks such

as degree distribution. However, one of the large differ-

ences between a social network and other complex net-

works (i.e. topology of the Internet) is network transitivity

(Barabasi et al. 2002). The clustering in social networks

occur with greater frequency than pure chance, or more

casually ‘‘party people party together". Examples of so-

cial networks include scientific collaboration networks,

friendship networks in the blogosphere, and networks of

human contacts (Barabasi et al. 2002; Flake et al. 2000;

Liljeros et al. 2001]. Applying methods in social network

analysis to public health and epidemiology has grown in

the recent years. Some of these methods include agent-

based simulation to model the spread of infection on a

population (Eubank 2002) and targeted social distancing

to mitigate influenza attack rates. An interesting extension

to the work by Glass et al. (2006) would be to not only

mitigate attack rate by targeted social distancing but to

borrow the concept of min-cuts from graph theory to

determine an epidemic distance in the social network and

target responses in those areas with maximum flow of

infection. Applying social network analysis to problems in

population-health has many exciting open research

opportunities in the future. However, a cumulative mod-

eling error that may be introduced when the number of

individuals increases may grow prohibitively and thus it is

essential to represent members of society with high

fidelity, as attainable by behavioral statistics. Agent-based

models have been used to analyze HIV/AIDS spread in

the population and individual immune levels following

the infection (Callaghan 2005). A survey of agent-based

epidemic simulation models is available (Bagni et al.

2002). BioWar (2004) is an agent-based system that

analyzes the disease spread, treatment, and recovery, by

porting principles of interactions from social, knowledge

and work networks. The authors have applied agent-based

models to analyze real world outbreaks of tuberculosis in

factory and homeless shelter settings (Mikler et al. 2004;

Oppong et al. 2004).

The Bayesian paradigm incorporates the capabilities of

probabilistic reasoning and reasoning under uncertainty.

Probabilistic and stochastic analysis are integral to

Bayesian methodologies and give a closer view of the real

world compared with rule-based systems. Bayesian learn-

ing has been successfully applied in the areas of medical

diagnosis, weather forecasting, gaming, and fault diagno-

sis. Nevertheless, in the field of modeling epidemics and

their analysis, the Bayesian paradigm has been rarely uti-

lized to its full potential. In the Amazon region, where

onchocerciasis (river blindness) is endemic, Bayesian rea-

soning has been used to identify communities that needed

priority ivermectin treatment (Carabin et al. 2003).

Spiegelhalter et al. (1999) investigated the utility of

Bayesian analysis for health technology assessment and

highlighted its practical advantages in handling complex

inter-related problems. Bayesian monitoring of critical fac-

tors in cancer related clinical trials, such as toxicity and

quality of life measures, led to higher accuracy (Fayers et al.

1997). An epidemiological model using Bayesian analysis

has been developed for malaria in Ndiop, Senegal (Cancre

et al. 2000). The authors have used Bayesian learning to

infer the dependency of disease incidence on the demo-

graphics in different geographic regions (Abbas et al. 2004).

3 Global stochastic field simulation framework

The GSFS paradigm is a hybrid of agent-based simulation

and cellular automata. Rather than restricting the interac-

tions between geographic regions to a well defined neigh-

borhood as in the CA paradigm, GSFS models the spread

of diseases based on a field representation of a geographic

region. A field is an overlay of the geographic region

encompassing the spatial distribution of population and

interaction distributions. Each location in the field is as-

sumed to contain a population of n individuals with asso-

ciated demographics as obtained from US Census data.

Individuals belonging to specific locations can be charac-

terized by a state and likelihood of risks for exposure and

contracting the disease. A set of four possible states (S, L,

I, R) has been defined to signify individuals’ clinical dis-

ease stage. As opposed to a purely agent-based model, a

stochastic field simulator, maintains the statistics of the

three states for each location. Disease spread is driven by

contacts generated based on population statistics, unlike

agent-based models, for which individuals (agents) them-

selves engage in contacts. Further, if a model of a spatially

delineated region with a small population is to be con-

structed, an agent-based approach, by which each indi-

vidual is represented by an autonomous agent is possible

(Barfoot and D’Eleuterio 2001; Billari and Prskawetz

2003). However, the composite modeling error introduced
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when the the number of individuals increases, is prohibi-

tive. Further, it would require collecting information about

individuals’ behavior, which can only be coarsely de-

scribed.

In order to model spatial spread of disease over a geo-

graphic region with a large population, it is important to

understand the underlying population and demographic

dynamics of the region. Consequently, one must rely on

other means to derive the population dynamics that pro-

mote the spread of diseases. This can be accomplished by

utilizing publicly available datasets, that describe compo-

sition and behavior of the population of interest. For

example, US census information provides necessary data

that describes the population in terms of socio-demo-

graphic, race/ethnicity, age, gender, etc., at different levels

of geographic aggregation. Geographic information sys-

tems (GIS) facilitates the integration of information from

different sources for a specific geographic region or loca-

tion. Any larger geographic region, such as a city, county,

or state can be decomposed into individual census blocks.

We are proposing to use this structure as an overlay to a

global stochastic field, which will use the associated census

information to define its corresponding interactions among

individuals and places. For demonstration purposes, an

age-structure of the population has been incorporated into

the model as one of the demographic constraints. In order

to model different behavior patterns among individuals, the

age–structure has been categorized into four groups, which

have been chosen to model the following interaction

characteristics:

• Children are more likely to interact locally, making

contact with other children in daycare settings or pre-K

and elementary school environments.

• Youths and Young Adults represent the sub-popula-

tion that interacts across small distances in the context

of schooling or employment.

• Adults represent individuals with well established

contact patterns. Contacts for this group may be across

different distances for everyday activities such as

shopping and employment.

• Elderly form a mostly isolated group whose members

may have fewer contacts and limited interaction

distances.

Global stochastic field simulation model is imple-

mented to incorporate heterogeneous populations. Regional

census block data is imported in vector format to a GIS

package. This vector file is then converted into a raster file

with each block representing a unique location with spe-

cific demographic. Let Pi and Ni be the population and

number of cells in the ith census block respectively. Let Cij

be the population of the jth cell of the ith census block. The

population of each census block is assumed to be uniformly

distributed among all the cells in that block i.e., Cij = Pi/Ni;

where j= 1 to Ni and i = 1 to m and m is the number of

census blocks in the county.

Upon introducing the infection to the population at a

specific location, interactions drive the spread of the dis-

ease. Rather than simulating all possible interactions, GSFS

models contacts, which are a subset of all possible inter-

actions that facilitate the spread of disease. In general, a

contact is any interaction between two individuals, which

has the potential for successful disease transmission. While

the concept of contact modeling seems intuitive, one must

carefully consider what constitutes a contact when model-

ing epidemics. Specifically, we must acknowledge that

contacts necessary to transmit different types of diseases

differ greatly. For instance, pathogens of Influenza, Syphi-

lis, and Athlete’s Foot utilize completely different modes of

transmission, thereby defining the type of contact necessary

to spread the disease. The proportion of contacts emitted by

a location is a function of the population and demographic

characteristics of that location. Two individuals that are

participating in a simulated contact are representatives of

their corresponding location and demographic characteris-

tics. Consequently, GSFS models heterogeneous mixing in

the population by establishing contacts non-deterministi-

cally. To generate a contact, age and location are randomly

chosen based on the demographics and population propor-

tions of the location. Subsequently, individuals belonging to

locations with larger populations and age group with higher

contact rates have a higher probability of being chosen for a

contact as compared to the ones belonging to locations with

smaller populations and lower contact rates. Once the two

end points are identified, based on the proportions of

infectious and susceptible populations present in the loca-

tions they belong to, their clinical stage of being suscepti-

ble, latent, infectious, or recovered is decided using a

random experiment. The probability of transmission re-

ferred to in the model as infectivity is the virulence of the

virus strain being modeled. Based on the infectivity, the

infection may be transmitted to the susceptible individual.

During each simulation day individuals are moved from

infectious to recovered state and from latent to infectious

state based on the latent period and infectious period of the

disease.

3.1 Simulating contact structure

Global stochastic field simulation models heterogeneous

mixing in the population by establishing contacts randomly

but not arbitrary. A contact, as defined above is any

interaction between two individuals which can lead to a

successful disease transmission. To generate contacts pro-

portional to the demographics, GSFS utilizes probability

distributions for contact frequencies for different sub
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groups. Assuming that contacts among individuals are

Poisson distributed over time, the effective contact rate for

a location is determined by a Poisson random variate. Thus,

the number of contacts to be simulated is determined

independently for each time frame of the simulation. For

example, if contacts are modeled as a function of age, the

contact rates associated with different age groups will

determine how many contacts are to be simulated in each

time step.

3.1.1 Generating contacts proportional to demographics

Let Ni be the number of individuals in age group i and

N =
P

Ni. Let Ci be the contacts established by the age

group i where Ci = Ni · CRi;. Here, CRi is the contact rate

specific to each demographic subgroup; C is the total

number of contacts established in the region C ¼
P

i Ci:

Let P be the probability distribution and pi be the contact

probability associated with each age group, given by: pi: =

{pi-1 + Ci /C if i > 1}; pi: = {Ci/C if i = 1}; where
Pn

i¼1 pi ¼ 1: This approach generalizes for any categorical

parameter and thus provides a means for modeling of

contacts as a function of specific demographic character-

istics.

Modeling outbreaks of infectious diseases using the

traditional cellular automata (CA) model is constrained by

neighborhood saturation. The classic SIR model is oriented

towards a homogeneous population with uniform mixing.

GSFM can be used to model outbreaks of infectious

diseases. It facilitates the analysis of disease progression in

heterogeneous environments and can incorporate geogra-

phy, demography, environment, and migration patterns into

the interaction measure between cells on a global neigh-

borhood level. To facilitate surveillance, monitoring, pre-

vention and control of different diseases, computational

models must be developed. As compared to agent-based

models, contacts generated in GSFS models are not driven

by individual agents but rather as a function of a Monte

Carlo process that distributes contacts across the entire

population according to the underlying demographic and

geographic characteristics.

4 Experimental results

The features of GSFS have been evaluated through the

simulation of outbreak models based on population data for

the northern part of Denton County, Texas. The disease-

specific parameters have been selected to approximate an

influenza-like disease. Figure 3a depicts the population

distribution of the areas in Denton County that have been

modeled, whereas Fig. 3b illustrates the disease prevalence

over that region as determined by GSFS. The total popu-

lation of the region is 110,000 and the disease prevalence is

48,000. The contact patterns between individuals have

been based on several parameters. These include popula-

tion density, Euclidean distances between regions, and age-

structure. GSFS models are easily extended to incorporate

other geographic, demographic, environmental, and

migration patterns.

Networks of social contacts channel the transmission of

airborne infections. The dynamics of an airborne infectious

disease like influenza hinges on the simulation of contacts

that are established in the population, as most of the

transmissions take place during these contacts. The contact

structure of a population generally varies as a function of

the number of contacts made by individuals, the context of

the contact, the age group of the contact, and distance of

the contact. An experiment was conducted during which

different contact patterns were generated by associating

specific contact rates among the four different age groups.

Global stochastic Field Simulation models different

interaction patterns based on different contact rates. From

Fig. 4 it is evident that the incidence level of infection in

the population varies as a function of the contact rates of

age groups. Table 1 summarizes the contact rates used in

the experiments for each of the age groups. Higher contact

rates for the second and the third age group resulted in

higher incidence level of the simulated influenza-like
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Fig. 3 Disease prevalence in a

heterogeneous population

Stoch Environ Res Risk Assess (2007) 21:533–543 539

123



illness. It is noteworthy, however, that the reduction in

contact rate CR for children from seven to four results in an

epidemic curve that peaks at a lower level. However, the

number of infections increases earlier in the epidemic time

line. This experiment highlights the importance of model-

ing disease dynamics for different contact rates as it depicts

the effects of health policies that result in reduced contact

rates, thereby delaying or even eliminating the onset of an

epidemic.

The incidence level of the disease in each group is a

function of group-specific interaction modeled by different

contact rates. Table 2 shows the respective contact rates

used for each age group. The results in Fig. 5 show nor-

malized outbreak-graphs of the resulting epidemic for the

four different age groups. The graphs show the dynamics of

the epidemic for each age group as opposed to the cumu-

lative incidence as observed in Fig. 4. GSFS allows for the

analysis of the difference in incidence across demographic

groups, which is an important feature that facilitates the

formulation of affective public health policy.

To evaluate the effect of the age as a demographic

characteristic experiments were conducted by introducing

index cases in different age groups. Table 3 shows the total

number of infected individuals in the population for index

cases in different age groups. An index case in the elderly

age group does not result in a spread of the disease,

whereas one index case in the Youths/Young Adult age

group triggers an epidemic. We postulate that the different

behavior as represented by different contact rate in these

groups facilitate the spread of the disease and thus the

manifestation of an epidemic. Nevertheless, it is important

to note that GSFS is based on a Monte Carlo methodology,

thus any results should be interpreted as trends, rather than

expected outcome as result of specific parameter choices.

The probability of a contact resulting in successful

disease transmission depends on the disease infectivity.

Infectivity is defined as a pathogen’s ability to manifest an

infection. When modeling virus strains the infectivity can

be thought of as the differentiating factor between the

strains. The infectivity of a strain is an important factor that

determines the dynamics of disease spread. Experiments

have been conducted to demonstrate the prevalence of
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Table 1 Contact rate

Age range Average

CR

Average

CR

Average

CR

Average

CR

Children 6 7 4 7

Youths and young

adults

6 10 10 10

Adults 4 10 10 4

Elderly 3 3 3 3

Table 2 Contact rates

Age group Average contact rate

Children 10

Youths and young adults 10

Adults 6

Elderly 3
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Fig. 5 Epidemic curves for different age groups in the population

Table 3 Experiments with different index cases

No. of index cases Age group Total infected

2 Children and elderly 18601

1 Youths/young adults 12377

1 Elderly 2

2 Youths/young adults and adults 22384

2 Children and adults 22424
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influenza-like illness for varied levels of infectivity. Fig-

ure 6 illustrates that incidence decreases for lower levels of

infectivity. The remaining parameters were similar to that

of the basic experiments described above. This experiment

exemplifies the sensitivity of the infectivity parameter. As

this parameter is primarily related to the disease dynamics,

it has been maintained uniform across different age groups.

The GSFS models facilitate the modeling and simulation

of a single disease outbreak in a large geographic region.

The results obtained from this model represent the severity

of an epidemic over time, allowing an epidemiologist to

quantify the incidence and prevalence, as computed by

GSFS, in response to employing different public health

policies (e.g., vaccination strategies). In addition to com-

paring and quantifying different outbreak scenarios, the

experimental analysis of GSFS revealed that an epidemic

as observed by health care providers and public health

officials, is the cumulative effect of multiple spatially and

temporally distributed small outbreaks as shown in Fig. 7.

In the context of influenza-like illnesses, the temporal-

spatial progression of the disease account for cases that are

observed by health care providers during a flu season.

Clearly, population density and specific age strata are

important demographic parameters that will determine how

the disease will manifest itself in a particular sub-region.

For instance, the infectious period for influenza in young

children is known to exceed that of adults. Hence, one

could expect cells (or sub-regions) with a larger proportion

of children to display an increased prevalence of influenza

as compared to regions with a larger proportion of adult

population. Further, it is known that children are the pri-

mary transmitters of influenza. Consequently, one might

hypothesize that the composition model will yield results

that reflect an accelerated spread among regions with larger

proportion of children. The model can be used to investi-

gate the spread of disease in each location and the spread of

infection from one location to the other. Analyzing the

order of local outbreaks may help identify a set of highly

probable paths the epidemic may take in the population at

large. This will facilitate the identification of high risk

groups and prevalence among particular regions, which

will aid in the formulation of surveillance and control

measures.

5 Summary

The prediction of how an infectious disease outbreak may

manifest itself in a given population and whether or not

prevalence will rise to epidemic or pandemic proportions

has eluded public health experts. Most predictions are based

on past records of epidemics that have occurred in different

regions with different demographics. Modeling such out-

breaks either mathematically or by means of simulation

paradigms such as cellular automata and other methodolo-

gies have primarily focused on disease spread with respect

to the infection or virulence of the disease in homogeneous

populations. The GSFS paradigm is the basis for modeling

outbreaks of infectious diseases in populations with varied

demographic characteristics. That is, GSFS facilitates the

analysis of disease progression in heterogeneous environ-

ments, and can incorporate geographic and demographic

parameters into the model. In order to quantify public health

policies in preparation for potential epidemics, predictive

tools are required that can facilitate the what-if-analysis of

different surveillance and control methodologies. This re-

quires the analysis of how past disease epidemics have

manifested themselves in their region with corresponding

demographics. These results must then be mapped to pre-

dict the disease dynamics in current and future demo-
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graphics. This paper demonstrates some of the features of

GSFS through an experimental analysis of the incidence

and prevalence of an influenza-like illness for parts of

Denton County, Texas. From the analysis it is evident that

regional demographics are an important aspect when

modeling disease outbreak and making decisions about

policies to address infectious diseases. GSFS facilitates the

identification of high risk groups in the population and

adequate points of control, leading to more effective sur-

veillance and control of infectious disease epidemics.

Analysis of age as one of the population characteristics has

revealed that disease spread patterns changes with different

demographics. To this end, GSFS shall prove to be a

valuable asset in the analysis of progression of infectious

diseases, thereby leading to optimal utilization of public

health resources. As the computational demand of

simulating epidemics across multiple regions grows

significantly, the use of high-performance computing

infrastructure must be considered and public health pro-

fessionals must be prepared to incorporate computational

science methodologies into their repertoire of tools.

References

Abbas K, Mikler A, Ramezani A, Menezes S (2004) Computational

epidemiology: Bayesian disease surveillance. In: Proceedings of

the international conference on bioinformatics and its applica-

tions, Florida

Ahmed E, Agiza H (1998) On modeling epidemics, including latency,

incubation and variable susceptibility. Physica A 253:347–352

Aron J (2000) Mathematical modeling: the dynamics of infection.

Aspen Publishers, Gaithersburg, chap 6

Bagni R, Berchi R, Cariello P (2002) A comparison of simulation

models applied to epidemics. J Artif Soc Social Simul 5(3)

Bailey N (1957) The mathematical theory of epidemics. Hafner

Publishing Company, New York

Bailey N (1967) The simulation of stochastic epidemics in two

dimensions. In: Proceeding of the 5th Berkeley symposium on

mathematics and statistics, vol 4. University of California,

Berkeley and Los Angeles

Barabasi A, Jeong H, Ravasz E, Schubert A, Vicsek T (2002)

Evolution of the social netowrk of scientific collaborations.

Physica A Stat Mech Appl 311(3-4):590–614

Barfoot T, D’Eleuterio G (2001) Multiagent coordination by

stochastic cellular automata. In: Proceedings of the international

joint conference on artificial intelligence

Barnes J (1954) Class and communities in a Norwegian island parish.

Hum Relat 7:39–58

Benenson A (Ed) (1995) Control of communicable diseases manual.

American Public Health Association

Billari F, Prskawetz A (2003) Agent-based computational demogra-

phy. Physica-Verlag, Heidelbreg

BIOWAR (2004) Simulating disease outbreaks using social

networks. [Online]. Available: http://www.casos.ece.cmu.edu/

projects/BioWar/biowar.doc

Boccara N, Cheong K (1993) Critical behavior of a probabilistic

automata network SIS model for the spread of an infectious

disease in a population of moving individuals. J Phys A Math

Gen 26(5):3707–3717

Boccara N, Cheong K, Oram M (1994) A probabilistic automata

network epidemic model with births and deaths exhibiting cyclic

behavior. J Phys A Math Gen 27:1585–1597

Callaghan A (2005) Agent-Based Modelling applied to HIV/AIDS.

ERCIM News

Cancre N, Tall A, Rogier C, Faye J, Sarr O, Trape J, Spiegel A, Bois

F (2000) Bayesian analysis of an epidemiologic model of

Plasmodium falciparum Malaria Infection in Ndiop, Senegal.

Am J Epidemiol 152(8):760–770

Carabin H, Escalona M, Marshall C, Vivas-Martinez S, Botto C,

Joseph L, Basanez M (2003) Prediction of community preva-

lence of human onchocerciasis in the amazonian onchocerciasis

focus: Bayesian approach. Bull World Health Organ 81(7):473–

550

The CDC website (2004) (Online). Available: http://www.cdc.gov/

Duncombe W, Robbins M, Wolf DA (2003) Place characteristics and

residential location choice among the retirement-age population.

J Gerontol Social Sci 58(4):S244–52

Eubank S (2002) Scalable, efficient epidemiological simulation. In:

Proceedings of the 17th annual ACM symposium on applied

computing (SAC’02), Madrid

Fayers P, Ashby D, Parmar M (1997) Tutorial in biostatistics:

Bayesian data monitoring in clinical trials. Stat Med 16:1413–

1430

Ferguson NM, Cummings DA, Cauchemez S, Fraser C, Riley S,

Meeyai A, Iamsirithaworn S, Burke D (2005) Strategies for

containing an emerging influenza pandemic in Southeast Asia.

Nature 437(7056):209–214

Flake G, Lawrence S, Giles C (2000) Efficient identification of web

communities. In: Proceedings of the 6th ACM SIGKDD

international conference on knowledge discovery and data

mining, Boston, pp 150–160

Fu S (2002) Modelling epidemic spread through cellular automata.

Master’s thesis, The University of Western Australia, Perth

Fu S, Milne G (2003) Epidemic modelling using cellular automata.

In: Proceedings of the Australian conference on artificial life

Glass R, Glass L, Beyeler W, Min H (2006) Targeted social

distancing design for pandemic influenza. Emerg Infect Dis

12(11)

Heymann D, Rodier G (2004) Global surveillance, national surveil-

lance, and sars. Emerg Infect Dis 10(2)

Longini IM Jr, Nizam A, Xu S, Ungchusak K, Hanshaoworakul W,

Cummings CA , Halloran ME (2005) Containing pandemic

influenza at the source. Science 309(5737):1083–1087

Liljeros F, Edling C, Amaral L, Stanley H, Aberg Y (2001) Social

networks: the web of human sexual contacts. Nature 6840:907

Mikler A, Jacob R, Gunupudi V, Patlolla P (2004) Agent-based

Simulation Tools in Computational Epidemiology. In: Proceed-

ings of the International Conference on Innovative Internet

Community Systems, Guadalajara, Mexico

Mikler A, Venkatachalam S, Abbas K (2005) Modeling infectious

diseases using global stochastic cellular automata. J Biol Syst

13(4):421–439

Oppong J, Mikler A, Moonan P, Weis S (2004) From medical

geography to computational epidemiology—dynamics of tuber-

culosis transmission in enclosed spaces. In: Proceedings of the

international conference on innovative internet community

systems, Guadalajara

Rogerson PA, Han D (2002) The effects of migration on the detection

of geographic differences in disease risk. Soc Sci Med

55(10):1817–1828

Sattenspiel L, Dietz K (1995) A structured epidemic model incorpo-

rating geographic mobility among regions. Math Biosci

128(43):1–2

Situngkir H (2004) Epidemiology through cellular automata,

Bandung Fe Institute, Technical Report

542 Stoch Environ Res Risk Assess (2007) 21:533–543

123



Spiegelhalter D, Myles J, Jones D, Abrams K (1999) An introduction

to Bayesian methods in health technology assessment. BMJ

319:508–512
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