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Abstract
Key message Mediterranean forest stands manifest diverse flammability traits according to their potential ecological 
successional stage and promoting a gradient from flammable to less flammable ecosystem.
From a general consideration of vegetation as ‘fuel’, it has been well proven that plant traits have the potential to promote 
the forest stand gradient from flammable to less flammable. While the ever-growing literature helps to assess the relationship 
between plants and their flammability at species level, at the landscape scale this relationship should be evaluated along with 
a variety of forest features such as structural and stand parameters and from the perspective of successional forest stages. 
To this end, we clustered several forest stands in Southern Europe (Apulia region, Italy), characterized by oaks, conifers, 
and arboreal shrub species, according to their flammability traits. We hypothesized that flammability traits change along 
different horizontal and vertical structural features of forest stands, shifting from high to low-flammability propensity. The 
results confirmed that forest stands with greater height and diameter classes are associated with traits with a low-flammability 
propensity. It is worth highlighting the importance of shrub coverage in differentiating the clusters denoting their strong 
influence in increasing fuel load (litter and fuel bed traits). Finally, our findings lead us to assume that high-flammability 
propensity traits are associated with typical pioneer successional stages, supporting the notion that later successional forest 
stands are less flammable and, therefore, that flammability decreases along with succession.

Keywords Flammability traits · Forest · Wildfire · Forest successional stages · Pioneer species · Structural features · Late 
successional forest · PAM clusterization

Introduction

Wildfires are one of the most important natural threatening 
events that alter landscapes and forest ecosystems world-
wide (Bowman et al. 2020). At the European level, wildfires 
mostly affect the Mediterranean regions of Southern Europe 
where climate change, land abandonment and human pres-
sure are triggering changes in fire regimes (Ganteaume et al. 
2013; Hagmann et al. 2021). These changes generate feed-
back on the ecological processes of plant growth and vegeta-
tion successional stages, acting as internal controls on forest 

flammability (Kitzberger et al. 2016). Plant feedback on fire 
regimes has the potential to result in forest stand gradients 
shifting from flammable to less flammable. Both reproduc-
tive and vegetative traits, affecting forest flammability, have 
been widely analyzed in many fire-prone ecosystems (Pausas 
et al. 2017; Keeley and Pausas 2022). Plants do not only 
react to fire but can create structural stands that prevent and 
protect themselves from wildfire (Burger and Bond 2015).

From a general consideration of vegetation as ‘fuel’, it 
has been well proven that plant flammability varies between 
and within species, determining a great variety of vegeta-
tion flammability-related responses in fire-prone ecosystems 
(Pausas et al. 2017; Cui et al. 2020). Plant traits linked to 
flammability are genetically determined, but can be consid-
erably modified by environmental and biotic factors (Rowe 
and Speck 2005) and vary depending on tree size and forest 
stands (Babl et al. 2020).

In particular, the continuous growing literature reveals 
how plant traits can be related to flammability (Schwilk 
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and Caprio 2011; Fernandes and Cruz 2012; Pausas and 
Moreira 2012; Burton et al. 2021; Scarff et al. 2021). Many 
authors (see Popović et al. 2021 for a consistent synthesis) 
have attempted to associate flammability traits to classify 
species from low to high-flammability levels empirically, 
improving the understanding of fire behavior and promot-
ing species selection for appropriate forest management. 
For example, Kane et al. (2021) used leaf litter traits to 
understand the potential of red maple to reduce community 
flammability in North America. Babl et al. (2020) found a 
strong relationship between four oak species and five non-
oak species with flammability in western Kentucky, United 
States. They found that non-oak tree species have canopy, 
bark, and leaf litter traits associated with low flammabil-
ity and that the range of non-flammable traits changes with 
tree size, resulting in a potential fire-mitigation capacity. 
Other studies (Bianchi et al. 2019; Barberá et al. 2023) have 
compared the live fuel moisture content (FMC) of different 
conifers in Argentina, to understand the ignitability of each 
investigated species. Curt et al. (2011) compared the flam-
mability of litter within a mosaic of different oak forests 
in south-eastern France to test if litter flammability traits 
vary according to vegetation typology. Krix et al. (2022) 
attempted to link plant trait-based ignition to different forest 
habitats, meteorological conditions, and biotic pressures in 
south-eastern Australia.

While these studies may help to assess the relationship 
between plants and flammability at species levels, at the 
landscape scale this relationship should be evaluated con-
sidering other forest features such as structural and stand 
parameters and from the perspective of successional forest 
stages. For instance, intrinsic flammability traits, such as 
litter moisture content, surface-to-volume ratio (S/V), and 
bulk density determining different consequences in terms of 
ignitability, consumability and sustainability, can be strongly 
affected by tree height, tree diameter class, and shrub cover-
age at a larger scale (Varner et al. 2022).

In this paper, we explored if flammability traits change 
along different horizontal and vertical structural features of 
several forest stands, shifting from high to low-flammability 
propensity. In particular, we hypothesized that (i) greater 
height classes of forest stands would have traits associated 
with low-flammability propensity; (ii) ampler tree diameter 
classes have traits related to low-flammability propensity; 
and (iii) forest stands with a wider abundance of understory 
vegetation have traits associated with high-flammability 
propensity.

Studies linking flammability traits to forest stands play a 
key role in better understanding fire-related ecological pro-
cesses and providing effective information for restoration 
programs, especially in the Mediterranean region. In addi-
tion, understanding whether horizontal and vertical struc-
tural features of forest stands are associated with a gradient 

from low to high-flammability propensityis useful to explore 
the evolution of new forests or reforestation areas.

Materials and methods

Study area

The study was conducted in forested landscapes of the 
Apulia region, a peninsula located in southern Italy at a lati-
tude of 39°50′–41°50′N and a longitude of 15°50′–18°50′E 
(Fig. 1). Most of the landscape is characterized by plains 
(53%) while rolling hills and low mountains are found 
North-West, reaching a mean altitude of 565 m a.s.l. Aver-
age temperatures are around 15 °C and 16 °C, with higher 
average values in the Ionian-Salento area and lower values 
in the Dauno and Gargano Sub-Apennines. Summers are 
hot, with average temperatures between 28 °C and 33 °C 
and peaks up to 40 °C on the hottest days. Precipitation is 
mostly concentrated in the fall (November–December) and 
winter (range between 450 and 650 mm/yr) seasons, while 
the summer season is relatively dry, with lacks of rainfall 
even for long periods (Elia et al. 2016, 2020).

The Apulia region is mostly agricultural territory, where 
olive trees and vineyards dominate (36%). Only 10% of 
the landscape is covered by forests: broadleaved forests 
(Quercus ilex L., Q. pubescens Willd., Q. cerris L., Fagus 
Sylvatica L.) are mainly located in hilly and mountainous 
areas, while conifers (Pinus pinea L., P. halepensis Mill. and 
P. pinaster Ait.) are limited to coastal areas where, histori-
cally, reforestation was carried out for different purposes. 
Despite the low amount of forest cover, this region expe-
riences on average 460 forest fires per year, with a mean 
annual burnt area of 2433 ha (2006–2020 data). These data 
depict a region characterized by high-wildfire occurrence 
with 70% of the events cover an area of less than 5 ha. 
Almost 3% of the events, on the other hand, involve an area 
of more than 50 ha, with some extraordinary events occur-
ring in wooded areas of more than 600 ha.

Field sampling and flammability traits

A total of 209 circular plots (13-m radius) were randomly 
selected from the Apulian land-cover layer (http:// www. sit. 
puglia. it, accessed Dec. 06, 2022) provided by the regional 
government. The vegetation characteristics were collected 
according to Elia et al. (2015) and Brown (1982). We col-
lected data on trees, shrub characteristics, herbaceous com-
ponents, litter parameters and the fallen dead woody material 
(for a better description of the sampling plot, see the supple-
mentary material—Fig. S1). According to the large review 
by Popović et al. (2021) and other studies (see Table 1) we 
derived our flammability traits by field data such as: canopy 
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depth (m), canopy bulk density (CBD) (kg/m3), fuel bed 
depth (m) litter compactness (dimensionless), and litter 
leaf thickness (cm). Furthermore, Litter FMC (%) and litter 
surface area-to-volume ratio (RA S/V)  (m2/m3) were deter-
mined in the laboratory following the protocol developed by 
Pollet and Brown (2007). These plant traits and their posi-
tive ( +) and/or negative (−) relationship with flammability 
components are described in Table 1.

A number of structural features of forest stands were 
selected to explore changes in flammability traits. Accord-
ing to Spies (1998) the following horizontal and vertical 
structural features of forest stands were derived: diameter 
(cm), tree height (m), crown base height (m), canopy cover 
(%), abundance of shrub (%), shrub height (m), abundance 
of herbs (%), herb height (m).

Cluster and statistical analyses

To understand if flammability traits change along different 
horizontal and vertical structural features of forest stands, 
we first clustered all the 209 circular plots randomly located 

within the study area. This approach allows to classify veg-
etation attributes, thus avoiding errors stemming from veg-
etation-type-based classification and considers fuel param-
eter variations caused by different agents such as logging, 
insects, disease, etc.

Clustering is a technique that, given a set of data points, 
uses an algorithm to classify each data point into a specific 
group. In theory, data points belonging to the same group 
should have similar properties, while data points in differ-
ent groups should exhibit dissimilar properties. According 
to Elia et al. (2022), a consistent grouping process should 
include: (1) representative points from the original dataset 
and (2) an algorithm strictly built on the characteristics of 
the issue under study.

After a complex and detailed review of the main cluster-
ing techniques (Xu and Tian 2015), we opted to use a clus-
tering algorithm based on partitioning where the core idea 
is to consider the center of data points as the center of the 
corresponding cluster. Among these, Partitioning Around 
Medoids (PAM) is known to be a robust version of k-means, 
as it is considered to be less sensitive to outliers (Jain et al. 

Fig. 1  Location of the Apulia region and the 209 field sampling plots
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2020). Despite the elevated time complexity, this method has 
an overall high computing efficiency (Velmurugan and San-
thanam 2011). As part of the PAM algorithm, we analyzed 
several indices to determine the optimal number of clusters, 
such as the Average Silhouette Method, the Hubert index 
and the D-index, as well as the total sum of squares within 
the cluster. The Silhouette co-efficient estimates the average 
distance between clusters, the Hubert index and D-index are 
graphical methods to determine the number of clusters. All 
analyses were performed in R (Team, 2016) the NbClust 
package (Charrad et al. 2014).

A one-way ANOVA followed by Tukey’s HSD (honestly 
significant difference) was performed to test the differences 
between clusters according to structural features of forest 
stands such as tree diameter class, tree height class, crown 
base height, abundance of shrub, shrub height, abundance of 
herbs, herb height (see Sect. 2.2). All data concerning tree 

diameter and height were previously grouped in frequency 
classes of 5 cm (5, 10, 15, 20 …) according to the protocol 
developed by the Italian National Forest Inventory (INFC) 
(Gasparini et al. 2022).

Results

Cluster analysis

The PAM analysis indicated that the optimal number of 
clusters is 3. Figure 2 shows the components of the data-
set and the grouping of the points. The algorithm divided 
the initial 209 plots into 74 points for Cluster-1, 87 points 
for Cluster-2, and 48 points for Cluster-3, displaced along 
a single vertical axis. Cluster-1 and Cluster-3 are clearly 

Table 1  Canopy, litter, and shrub traits and their influence on forest flammability and fire behavior

The signs describe the directly ( +) and/or inversely (−) proportional relationship of traits with one or more flammability components (ignitabil-
ity, combustibility, sustainability, consumability)

Trait Role in flammability Relationship 
with flamma-
bility

Citation

Canopy
Canopy depth Light intensity decreases with increasing can-

opy depth, leading to shadier undergrowth. A 
shadier undergrowth can lead to cooler and 
wetter conditions, reducing flammability

– Kozlowski and Pallardy (1997), Tanskanen et al. 
(2005)

Canopy bulk density Canopy bulk density (CBD) describes the 
density of fuel available in the canopy of a 
stand. In some cases is positively correlated 
with flammability and the likelihood of 
active canopy fire, whereas in other cases, it 
is negatively correlated, as it delays the burn-
ing process due to the distribution among a 
greater number of solid particles and a higher 
moisture content of these

 + or − Dahale et al. (2013), Balaguer-Romano et al. 
(2020)

Litter
Litter compactness Compact litter can remain wet and inhibit fuel 

consumption during fires
– Herwitz (1985), Hengst and Dawson (1994), 

Aboal et al. (1999), Dimitrakopoulos (2002), 
Plucinski et al. (2008), Kreye et al. (2012), 
Cornwell et al. (2015), Dickinson et al. (2016), 
Zhang et al. (2022), Dimitrakopoulos and 
Panov (2001), Weise et al. (2005), Saura-
Mas et al. (2010), Engber and Varner (2012), 
Simeoni et al. (2012)

Litter leaf thickness Thin litters burn with lower maximum tem-
peratures. Litter leaf thickness is negatively 
correlated with the initial moisture content of 
litter beds

 + 

Litter fuel moisture content High fuel moisture content can reduce both the 
susceptibility to ignition and the rate at which 
a fuel burns

–

Litter RA S/V High litter surface area-to-volume ratio is asso-
ciated with higher rates of energy and mass 
exchange, resulting in short ignition delays 
and rapid fire spread

 + 

Herb and Shrub
Fuel bed depth Fuel bed depth have a significant effect on the 

probability of fire spread, as the distribution 
of available combustible fuels increases

 + Berry et al. (2011), Dickinson et al. (2013)
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distinguished, while Cluster-2 is shown as an intermediate 
cluster tending more toward Cluster-1.

Table 2 shows the average values of each cluster’s flam-
mability traits: canopy depth, CBD, litter compactness, litter 
leaf thickness, litter FMCS/V and fuel bed depth for each of 
the three clusters. Except for RA S/V, Cluster-1 exhibited 
the highest values for each trait. On the contrary, Cluster-3 

showed the highest value of RA S/V and the second highest 
value of litter FMC.

The three clusters are significantly different according to 
the algorithm performed and the applied indices. Figure 3 
summarizes the values of each cluster after data normali-
zation (Minimum–Maximum Value Based Normalization 
Methods) (Han et al. 2011). The radar charts (Fig. 3) were 

Fig. 2  Cluster plot on the base of flammability traits: canopy depth, canopy bulk density, litter compactness, litter leaf thickness, litter fuel mois-
ture content, surface-to-volume ratio (S/V) and fuel bed depth

Table 2  Average values of the flammability traits used to perform the PAM analysis grouped per cluster

PAM Partitioning Around Medoids, FMC Fuel moisture content, RA S/V litter surface area-to-volume ratio

Cluster Canopy depth 
(m)

Canopy bulk den-
sity (kg/m3)

Litter com-
pactness

Litter leaf thick-
ness (cm)

Litter FMC (%) RA S/V  (m2/m3) Fuel bed 
depth 
(m)

1 4.952 0.447 1.473 18.060 30.671 1288.594 0.320
2 4.808 0.428 1.368 19.849 27.741 2368.957 0.274
3 4.827 0.415 1.298 16.405 30.003 5477.337 0.289
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structured to observe (on the left) the flammability traits 
having an inversely proportional relationship with one or 
more flammability components (e.g., ignitability, combus-
tibility, sustainability, consumability) (Popović et al. 2021) 
and (on the right) to observe the flammability traits having 
a directly proportional relationship with one or more flam-
mability components. CBD is a flammability trait that we 
preferred to keep in the middle as it can be both directly and 

inversely proportional to the flammability components (see 
Table 1). Structuring the radar charts in this way, we clari-
fied whether a cluster is more inclined (higher values toward 
the right and lower values towards the left) or less inclined 
(higher values towards the left and lower values towards the 
right) to the flammability components.

In Cluster-1, the values for litter FMC, litter compactness 
and canopy depth were higher than in the other two clusters. 
In fact, Cluster-1 values shifted far to the left, thus classify-
ing it as a cluster that is not very inclined to flammability. 
In Cluster-2, values such as litter FMC, litter compactness 
and canopy depths were slightly lower than in Cluster-1, 
with a significant increase, however, in the values of RA 
S/V and litter leaf thickness. Cluster-2, in fact, showed high 
values in both directions of the radar chart, thus classifying 
it as an inflammation-neutral cluster. In Cluster-3, the pre-
viously mentioned values drastically decreased in favor of 
other values such as RA S/V and litter leaf thickness which 
significantly increased. In contrast to Cluster-1, Cluster-3 
values shifted far to the right, thus classifying it as a cluster 
highly inclined to inflammation. The CBD value was similar 
for the three clusters but higher in Cluster-1 than in Cluster-2 
and lastly in Cluster-3. Based on the results described above, 
it is possible to define the three clusters as forest stands with 
low flammable propensity (LFP) (Cluster-1), forest stand 
with transitional flammable propensity (TFP) (Cluster-2), 
and forest stand with highly flammable propensity (HFP) 
(Cluster-3).

Figure 4 depicts forest-category classes among clusters 
according to the INFC (Gasparini et al. 2022). We found that 
LFP is characterized by a predominance of multi-species 
forests with an abundance of broadleaf trees. TFP (located 
in the center) is characterized by a slight predominance of 
multi-species forests but still with an abundance of broad-
leaf trees. Conifers are present in both LFP and TFP, but 
in less abundance than broadleaf trees. Also, in these two 
clusters there are forest categories such as arboreal shrubs 
(shrub species having tree habit). HFP (on the left) is mostly 
characterized by equal numbers of single-species and multi-
species forests and an absolute predominance of conifers. 
No arboreal shrubs are present in this cluster, and broadleaf 
species are minimal (Fig. 4).

Cluster comparison over structural features

The one-way ANOVA followed by Tukey’s HSD test high-
lighted the main differences of the three clusters according 
to horizontal and vertical structural features of forest stands 
(Fig. 5). Clusters with the same letter were not significantly 
different (P < 0.05). We found significant differences in the 
clusters for the diameter classes (%), tree height classes (%), 
abundance of shrub (%), and shrub height (m). Considering 
all other variables such as crown base height (m), canopy 

Fig. 3  Radar chart of flammability traits: canopy depth, canopy bulk 
density, litter compactness, litter leaf thickness, litter fuel moisture 
content (FMC), litter surface area-to-volume ratio (RA S/V) and fuel 
bed depth for the three clusters. LFP, forest stand with low flammable 
propensity (Cluster-1); TFP, forest stand with transitional flammable 
propensity (Cluster-2); and HFP, forest stand with high flammable 
propensity
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cover (%), abundance of herbs (%) and herb height (m), no 
significant differences were found. LFP consists of trees with 
both diametric classes and greater height classes than the 
other two clusters (Figs. S1, S2). In contrast, HFP has both 
a higher percentage of shrubs and a greater height of shrubs. 
In all cases of analysis, TFP always displayed intermediate 
values between the other two clusters.

Discussion

The Climate-induced alteration of fire regimes and other 
human-derived changes have modified fire-related ecologi-
cal processes with profound effects on many forest ecosys-
tems worldwide (Lafortezza et al. 2013). In this study we 
attempted to cluster diverse forest stands according to their 
flammability traits. In particular, we demonstrated that flam-
mability traits change along with forest structural and stand 
parameters following a gradient from low to high-flamma-
bility propensity.

Our analysis demonstrated a strong distinction between 
HFP and the other two clusters LFP and TFP, which are 
more similar in terms of structural parameters and forest cat-
egories. We strongly believe that our results seem to be con-
sistent with the theory of ecological successions from pio-
neer species to later successional forests (Huston & Smith 
1987; Keane et al. 2004; Marozas et al. 2007; Adámek et al. 
2016), following a gradient from high to low-flammability 
propensity. Pioneer species distribution and stand features 
are closely linked to forest disturbance, such as wildfires 
(Goodale et al. 2009). Figure 4 and Table S1 emphasize 

the distinction between clusters in terms of forest category 
and species composition, as the HFP is mostly constituted 
by conifers such as Pinus spp. and Cupressus spp. (pioneer 
communities), while the other two are mostly composed of 
broadleaved species and shrubs having tree habit (i.e., arbo-
real shrubs) (later successional communities).

Our study supports the hypothesis that a gradient of 
flammability, from high to low, could be associated with 
successional forest stands at landscape scale, probably due 
to resource availability (e.g., light) during the successional 
path. In the early successional stages, the traditional domi-
nant communities are short-lived, fast-growing, and shade-
intolerant pioneers (e.g., conifers with shrub understory) 
that reproduce from seed. Over time, pioneer communities 
are replaced by more competitive ones (Huston and Smith 
1987), and these changes in species composition along suc-
cessional gradients similarly produce changes in flammabil-
ity traits, depending on the characteristics of coexisting com-
munities. In addition, it is worth noting that the flammability 
of this species have been recognized as a niche construction 
characteristic, since the retention of dead branches in the 
canopy greatly facilitate plant regrowth after a fire (Schwilk 
2003).

Therefore, conifers are principally responsible for colo-
nizing barren, lifeless habitats or are used for reforestation 
as is often made in Mediterranean ecosystems, especially in 
Southern Europe (Baeza et al. 2011; de las Heras et al. 2012; 
Vallejo et al. 2012). Through their interactions they build a 
simple initial biological community becoming more com-
plex as new species arrive (e.g., broadleaved) which play a 
key role in the different phases of forest succession (Brokaw 

Fig. 4  Distribution of forest-category classes among clusters
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1982; Chazdon and Fetcher 1984; Denslow 1987; Dalling 
and Hubbell 2002). During their growth from young to 
mature trees broadleaved species experience abrupt changes 
in the physical environment: they must overcome the shady 

conditions under the close canopy of the competing vegeta-
tion (i.e., pioneer conifers) and deal with wide changes in 
the diurnal environment within canopy gaps (Bazzaz and 
Pickett 1980; Grime 2002).

Fig. 5  Box plots showing the distribution of values for each flamma-
bility trait. For each plot, a cluster was assigned to a specific group 
represented by a letter above each box, in accordance with the signifi-

cance difference of Tukey’s HSD test. Clusters with the same letter 
are not significantly different (P < 0.05)
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Following these considerations, our analysis showed that 
forest stands with greater height and diameter classes are 
associated with traits with low-flammability propensity. At 
early successional stages, canopies contribute to fuel loads 
in the understory and the trees have finer trunks, making 
them more susceptible to burning along with the resprouting 
shrubs of the understory (Tiribelli et al. 2018). Furthermore, 
previous authors have found that interspecific differences 
in tree structure, due to the diverse allocation of growth to 
horizontal and vertical extension, have significant conse-
quences for light interception (Horn 1971) and can be asso-
ciated with predictable forest stand stages (Kohyama 1987; 
Gamon et al. 2005). This finding is even more evident and 
important for pioneer species competing for similar light 
environments during their adult stages when dense canopies 
mostly try to reach a light intense environment (Goodale 
et al. 2009). In our study, this is reflected in the canopy depth 
trait, which is lower in the HFP cluster mostly constituted by 
conifers. Light intensity increases with decreasing canopy 
depth, leading to increased solar radiation of the under-
growth. An irradiated undergrowth can lead to dryer fuel 
increasing potential flammability. These forest ecosystems, 
belonging to the HFP, where P. halepensis and Cupressus 
spp. dominate, showed traits associated to a dense canopy 
cover, as well as to a huge amount of fuel loads in the litter 
of finer dead woody fuel classes (Hernandez-Tecles et al. 
2015; Saracino et al. 2017; Jafarzade et al. 2022).

Litter traits play a fundamental role in forest flammability 
(Scarff and Westoby 2006; Parsons et al. 2015), and vary 
among clusters according to their positive or negative rela-
tionship with flammability components. In general, varia-
tions in litter traits between forest categories were mostly 
explained by leaf thickness and volume and to a lesser 
degree by leaf area and the litter S/V ratio.

For example, the P. halepensis and Cupressus spp. lit-
ter traits are similar; their needles and twigs are relatively 
thin and small with a higher litter RA S/V than oak lit-
ter traits of the TFP and LFP clusters. The litter RA S/V 
was found to be one of the most important flammability 
traits among the structural and morphologic parameters 
of fuel complexes. This trait defines the particle geometry 
and relative dimensions of fuel-complex elements (Fer-
nandes and Rego 1998) and has a significant influence 
on flammability propensity (Grootemaat et al. 2017). Its 
higher values are associated with higher rates of energy 
and mass exchange, resulting in shorter ignition delays 
and faster fire spread (Simeoni et al. 2012; Popović et al. 
2021). These litter traits are explained by different life his-
tory strategies such as shade-tolerance, browse-tolerance, 
carbon allocation, growth strategies, and drought toler-
ance of parent trees (Valladares and Niinemets 2008). For 
instance, conifer pioneer species use needle foliage (thick 
leaves) as a mechanism to withstand high temperatures and 

perform evaporative cooling on warm, dry sites (Abrams 
and Kubiske 1990). In contrast, more shade-tolerant spe-
cies, like oaks, tend to have thinner leaves with increased 
leaf area which helps increase light capture efficiency and 
maximize carbon gain in shady environments (Jackson 
1967; Evans and Poorter 2001).

It is also worth highlighting the importance of shrubs 
in differentiating the clusters. In HFP, the abundance of 
shrubs was about 20% more than in the other two clusters 
denoting their strong influence in contributing to increased 
fuel loads and thus litter and fuel bed traits. Tiribelli et al 
(2018) found that the fuel amount quickly increases during 
early forest successional stages, when shrubs dominate the 
community, and decreases to a relatively constant value 
when tall trees dominate in later successional stages of 
the forest community. The decrease in shrub fuels prevents 
the potential surface to crown fire transition. The presence 
of later successional communities (broadleaved species 
such as Quercus spp., F. sylvatica) alters light environ-
ments, reduces thermal excursion, and augments the rela-
tive humidity of the understory, increasing the difference 
in flammability propensity among young and old stands 
(Paritsis et al. 2015; Tepley et al. 2016; Blackhall et al. 
2017). Therefore, these changes in flammability traits were 
largely related to shifts in horizontal and vertical structural 
features of forest stands, which in turn were controlled by 
the dominant growth strategies and life forms.

Taken together these results lead us to suppose that 
high-flammability propensity traits are associated with 
typical pioneer successional stages. Baeza et al. (2011) 
found that early successional species, such as P. halepen-
sis, have a higher percentage of standing dead biomass 
at earlier stages in the succession than species typical of 
later successional stages (e.g., Q. spp.). These findings 
support the notion that flammability is not necessarily pro-
portional to increasing stand maturity in Mediterranean 
forests, since it has been demonstrated that the turnover 
of early species by later species with fewer amounts of 
accumulated fuel loads could reduce flammability in the 
more progressive stages of succession (Bond and Midgley 
1995; Bond and van Wilgen 1996).

Despite the interesting results found in the forested 
landscape of the Apulia region, we recognized that there 
is room for improvement in our study. Our investigation 
was developed at a wide scale, i.e., a scale that includes 
several forest ecosystems from an ecological, geomorpho-
logical, and pedological point of view. Research carried 
out at a lower scale (e.g., catchment area, single-forested 
landscape), where biophysical characteristics are similar, 
would allow to obtain a more precise analysis of succes-
sional dynamics and the relative influence on flammability 
traits.
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Conclusions

Our study suggests that forest stands of the Mediterranean 
landscape of Southern Europe manifest a set of fuel traits 
that promote a gradient from flammable to less flammable. 
These traits may become pronounced according to their 
potential ecological successional stage. On the one hand, 
we found forest stands with greater height and diameter 
classes, large leaf area, elevated canopy depth and litter 
compactness, and reduced-S/V ratios, often characterized by 
late-successional species, such as broadleaved. These traits 
configure stands with a reduced flammability propensity 
because of the major presence of humidity and moist litter 
in their understory. On the other hand, we found pioneer 
forest stands, mostly characterized by conifer species and a 
high presence of shrub coverage. These forest stands denoted 
traits associated with high-flammability propensity, given 
their decreased canopy depth and high values of litter RA 
S/V. We further found plant communities in dynamic transi-
tion between early and late-successional forest stages, with 
traits associated with decreasing flammability propensity.

However, forest successions in the Mediterranean land-
scapes of Southern Europe are still complex ecological pro-
cesses that need to be fully understood as they are dynamic 
and strongly subject to climate change and anthropic influ-
ence. Climate change, human pressure and their effects on 
fire regime can affect the succession of forest stands and the 
associated flammability traits as well as create conditions 
that promote secondary successions or conversions to shrub 
or grass landscapes. Furthermore, fire regimes are foreseen 
to vary across the Mediterranean Basin (Pausas 2022), gen-
erating potential mesophication processes with hotter and 
drier conditions that promote pyrophytic plant communi-
ties (oaks and conifers) and more severe fires (Nowacki and 
Abrams 2015). Understanding the mechanisms of plant com-
munities that contribute to reducing flammability and benefit 
forest resistance and resilience could lead to more effective 
fire implementation and management interventions.
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