Skip to main content
Log in

Physiological drought resistance mechanisms in wild species vs. rootstocks of almond and plum

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Among wild relatives of cultivated almond and plum, a desert almond species, but not a montane plum species, showed higher drought resistance than the common rootstocks routinely used in orchards.

Abstract

Water shortage is a severe environmental factor causing growth disruption and yield-\loss in many agricultural plant species. As fruit trees are likely to suffer from the effects of severe drought in the future, wild relatives of cultivated crops can provide plant breeders a unique material to improve the drought resistance of modern crop varieties. We conducted a drought and rewatering greenhouse experiment along 51 days with young trees of almond (the desert wild species Prunus ramonensis vs. the commonly used rootstock hybrid Prunus dulcis × Prunus persica) and plum (the montane wild species Prunus ursina vs. the rootstock Prunus cerasifera × Prunus persica). To decipher the drought resistance mechanisms in these trees we monitored physiological responses. Expression dynamics of cellular water channels from the plasma intrinsic protein (PIP) aquaporin family were measured in the almond species. Our results indicate a higher drought resistance in wild almond compared to the rootstock, but not in the wild plum species. Under drought, P. ramonensis had ~ ninefold higher photosynthesis activity, ~ 50-fold higher water-use efficiency and lower vulnerability to embolism than the rootstock. In the almond species, PIP downregulation was linked with maintenance of hydraulic conductivity, and vice versa for upregulation. This study implies that there is a link between drought resistance in wild tree species and their native habitat conditions, with an advantage for the desert, but not the montane, species. Finally, our study highlights the need to protect and conserve wild relatives of fruit tree species, partly as potential plant materials to be used by breeders to improve the resilience of orchard tree species to drought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

All data obtained in this study are reported in its text and figures. Information about primers used for Prunus PduPIP aquaporin reference gene qPCR analyses is included in the Supplementary Information.

References

  • Abdolshahi R, Nazari M, Safarian A, Sadathossini TS, Salarpour M, Amiri H (2015) Integrated selection criteria for drought tolerance in wheat (Triticum aestivum L.) breeding programs using discriminant analysis. Field Crop Res 174:20–29

    Article  Google Scholar 

  • Alexandersson E, Fraysse L, Sjövall-Larsen S, Gustavsson S, Fellert M, Karlsson M, Johanson U, Kjellbom P (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59(3):469–484

    Article  CAS  PubMed  Google Scholar 

  • Almeida-Rodriguez AM, Hacke UG (2012) Cellular localization of aquaporin mRNA in hybrid poplar stems. Am J Bot 99(7):1249–1254

    Article  CAS  PubMed  Google Scholar 

  • Arab MR, Shekafandeh A (2016) In vitro propagation of GF677 hybrid rootstock (Prunus persica × Prunus amygdalus) from mature cotyledons. J Hortic Sci Biotechnol 91(3):236–242

    Article  Google Scholar 

  • Blackman CJ, Creek D, Maier C, Aspinwall MJ, Drake JE, Pfautsch S, Choat B (2019) Drought response strategies and hydraulic traits contribute to mechanistic understanding of plant dry-down to hydraulic failure. Tree Physiol 39(6):910–924

    Article  CAS  PubMed  Google Scholar 

  • Brestic M, Cornic G, Freyer MJ, Baker NR (1995) Does photorespiration protect the photosynthetic apparatus in French bean leaves from photoinhibition during drought stress? Planta 196(3):450–457

    Article  CAS  Google Scholar 

  • Browicz K, Zohary D (1996) The genus Amygdalus L. (Rosaceae): species relationships, distribution and evolution under domestication. Genet Resour Crop Evol 43(3):229–247

    Article  Google Scholar 

  • Choat B (2013) Predicting thresholds of drought-induced mortality in woody plant species. Tree Physiol 33(7):669–671

    Article  PubMed  Google Scholar 

  • Cochard H, Barigah ST, Kleinhentz M, Eshel A (2008) Is xylem cavitation resistance a relevant criterion for screening drought resistance among Prunus species? J Plant Physiol 165(9):976–982

    Article  CAS  PubMed  Google Scholar 

  • Cochard H, Venisse JS, Barigah TS, Brunel N, Herbette S, Guilliot A, Sakr S (2007) Putative role of aquaporins in variable hydraulic conductance of leaves in response to light. Plant Physiol 143(1):122–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalal A, Attia Z, Moshelion M (2017) To produce or to survive: how plastic is your crop stress physiology? Front Plant Sci 8:2067

    Article  PubMed  PubMed Central  Google Scholar 

  • Danin A (1980) A new Amygdalus from Israel. Notes Roy Bot Gard Edinburgh 38:285–293

    Google Scholar 

  • Das B, Ahmed N, Singh P (2011) Prunus diversity—early and present development: a review. Int J Biodivers Conserv 3(14):721–734

    Google Scholar 

  • DeJong TM, Johnson R, Ramming D, Doyle J, Day K (1994) Evaluation of size controlling rootstocks for California peach, plum and nectarine production. California Tree Fruit Agreement Report, Reedley

  • Farris MA (1984) Leaf size and shape variation associated with drought stress in Rumex acetosella L. (Polygonaceae). Am Midl Naturalist 111(2):358–363

    Article  Google Scholar 

  • Feurtey A, Cornille A, Shykoff JA, Snirc A, Giraud T (2017) Crop-to-wild gene flow and its fitness consequences for a wild fruit tree: towards a comprehensive conservation strategy of the wild apple in Europe. Evol Appl 10(2):180–188

    Article  PubMed  Google Scholar 

  • Font i Forcada C, Gogorcena Y, Moreno MA (2009) Effect of almond× peach hybrid rootstocks on fruit quality parameters and yield characteristics of peach cultivars. In: VII international peach symposium 962, pp 599–603

  • Foyer CH, Rasool B, Davey JW, Hancock RD (2016) Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation. J Exp Bot 67(7):2025–2037

    Article  CAS  PubMed  Google Scholar 

  • Hossain M, Veneklaas EJ, Hardy GESJ, Poot P (2018) Tree host–pathogen interactions as influenced by drought timing: linking physiological performance, biochemical defence and disease severity. Tree Physiol 39(1):6–18

    Article  Google Scholar 

  • Jang JY, Kim DG, Kim YO, Kim JS, Kang H (2004) An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol Biol 54(5):713–725

    Article  CAS  PubMed  Google Scholar 

  • Jang JY, Lee SH, Rhee JY, Chung GC, Ahn SJ, Kang H (2007) Transgenic Arabidopsis and tobacco plants overexpressing an aquaporin respond differently to various abiotic stresses. Plant Mol Biol 64(6):621–632

    Article  CAS  PubMed  Google Scholar 

  • Klein T, Cahanovitc R, Sprintsin M, Herr N, Schiller G (2019) A nation-wide analysis of tree mortality under climate change: forest loss and its causes in Israel 1948–2017. For Ecol Manag 432:840–849

    Article  Google Scholar 

  • Kurek I, Chang TK, Bertain SM, Madrigal A, Liu L, Lassner MW, Zhu G (2007) Enhanced thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress. Plant Cell 19(10):3230–3241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Wang J, Li S, Zhang L, Qi C, Weeda S, Guo YD (2016) Plasma membrane intrinsic proteins SlPIP2; 1, SlPIP2; 7 and SlPIP2; 5 conferring enhanced drought stress tolerance in tomato. Sci Rep 6:31814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Deng YP, Wang X, Ni YY, Xiao W, Lei J, Jiang Z (2018) The concentration of non-structural carbohydrates, N and P in Quercus variabilis does not decline towards its northernmost distribution range along a 1500 km transect in China. Front Plant Sci 9:1444

    Article  PubMed  PubMed Central  Google Scholar 

  • Madlung A, Comai L (2004) The effect of stress on genome regulation and structure. Ann Bot 94(4):481–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178(4):719–739

    Article  PubMed  Google Scholar 

  • North GB, Martre P, Nobel PS (2004) Aquaporins account for variations in hydraulic conductance for metabolically active root regions of Agave deserti in wet, dry, and rewetted soil. Plant, Cell Environ 27(2):219–228

    Article  CAS  Google Scholar 

  • Okajima Y, Taneda H, Noguchi K, Terashima I (2012) Optimum leaf size predicted by a novel leaf energy balance model incorporating dependencies of photosynthesis on light and temperature. Ecol Res 27(2):333–346

    Article  CAS  Google Scholar 

  • Pammenter NV, Van der Willigen C (1998) A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiol 18(8–9):589–593

    Article  PubMed  Google Scholar 

  • Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 8:537

    Article  PubMed  PubMed Central  Google Scholar 

  • Paudel I, Cohen S, Shlizerman L, Jaiswal AK, Shaviv A, Sadka A (2017) Reductions in root hydraulic conductivity in response to clay soil and treated waste water are related to PIPs down-regulation in Citrus. Sci Rep 7(1):15429

    Article  PubMed  PubMed Central  Google Scholar 

  • Paudel I, Gerbi H, Zisovich A, Sapir G, Ben-Dor S, Brumfeld V, Klein T (2019) Drought tolerance mechanisms and aquaporin expression of wild vs cultivated pear tree species in the field. Environ Exp Bot 167:103832 (Paw, Izabela, and Katarzyna)

    Article  CAS  Google Scholar 

  • Paudel I, Gerbi H, Wagner Y, Zisovich A, Sapir G, Brumfeld V, Klein T (2020) Drought tolerance of wild vs. cultivated tree species of almond and plum in the field. Tree Physiol 40(4):454–466

    Article  CAS  PubMed  Google Scholar 

  • Pawłowicz I, Masajada K (2019) Aquaporins as a link between water relations and photosynthetic pathway in abiotic stress tolerance in plants. Gene 687:166–172

    Article  PubMed  Google Scholar 

  • Perrone I, Gambino G, Chitarra W, Vitali M, Pagliarani C, Riccomagno N, Schubert A (2012) The grapevine root-specific aquaporin VvPIP2; 4N controls root hydraulic conductance and leaf gas exchange under well-watered conditions but not under water stress. Plant Physiol 160(2):965–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poorter H, Bühler J, van Dusschoten D, Climent J, Postma JA (2012) Pot size matters: a meta-analysis of the effects of rooting volume on plant growth. Funct Plant Biol 39(11):839–850

    Article  PubMed  Google Scholar 

  • Potter D (2011) Prunus. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Berlin, Heidelberg, pp 129–145

    Chapter  Google Scholar 

  • Reighard GL, Newall Jr WC, Zehr EI, Beckman TG, Okie WR, Nyczepir AP (1996) Field performance of Prunus rootstock cultivars and selections on replant soils in South Carolina. In: VI international symposium on integrated canopy, rootstock, environmental physiology in orchard systems 451, pp 243–250

  • Reynolds VA, Anderegg LD, Loy X, HilleRisLambers J, Mayfield MM (2017) Unexpected drought resistance strategies in seedlings of four Brachychiton species. Tree Physiol 38(5):664–677

    Article  Google Scholar 

  • Rieger M, Duemmel MJ (1992) Comparison of drought resistance among Prunus species from divergent habitats. Tree Physiol 11(4):369–380

    Article  CAS  PubMed  Google Scholar 

  • Rom RC (1987) Roots. In: Rom RC, Carlson RF (eds) Rootstocks for fruit crops. Wiley, NY, USA, pp 5–8

    Google Scholar 

  • Sage RF, Kubien DS (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Environ 30(9):1086–1106

    Article  CAS  PubMed  Google Scholar 

  • Sala A, Woodruff DR, Meinzer FC (2012) Carbon dynamics in trees: feast or famine? Tree Physiol 32(6):764–775

    Article  CAS  PubMed  Google Scholar 

  • Scharf KD, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta (BBA) Gene Regul Mech 1819(2):104–119

    Article  CAS  Google Scholar 

  • Scholz A, Rabaey D, Stein A, Cochard H, Smets E, Jansen S (2013) The evolution and function of vessel and pit characters with respect to cavitation resistance across 10 Prunus species. Tree Physiol 33(7):684–694

    Article  PubMed  Google Scholar 

  • Secchi F, Zwieniecki MA (2014) Down-regulation of plasma intrinsic protein1 aquaporin in poplar trees is detrimental to recovery from embolism. Plant Physiol 164(4):1789–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smart LB, Moskal WA, Cameron KD, Bennett AB (2001) MIP genes are down-regulated under drought stress in Nicotiana glauca. Plant Cell Physiol 42(7):686–693

    Article  CAS  PubMed  Google Scholar 

  • Sperry JS, Donnelly JR, Tyree MT (1988) A method for measuring hydraulic conductivity and embolism in xylem. Plant Cell Environ 11(1):35–40

    Article  Google Scholar 

  • Steppe K, Niinemets Ü, Teskey RO (2011) Tree size-and age-related changes in leaf physiology and their influence on carbon gain. In: Meizner FC, Lachenbruch B, Dawson TE (eds) Size-and age-related changes in tree structure and function. Springer, Dordrecht, The Netherlands, pp 235–253

    Chapter  Google Scholar 

  • Stocker T (ed) (2014) Climate change 2013: the physical science basis: Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press

  • Tsamir-Rimon M, Ben-Dor S, Feldmesser E, Oppenhimer-Shaanan Y, David-Schwartz R, Samach A, Klein T (2021) Rapid starch degradation in the wood of olive trees under heat and drought is permitted by three stress-specific beta amylases. New Phytol 229(3):1398–1414

    Article  CAS  PubMed  Google Scholar 

  • Tyree MT, Patiño S, Bennink J, Alexander J (1995) Dynamic measurements of roots hydraulic conductance using a high-pressure flowmeter in the laboratory and field. J Exp Bot 46(1):83–94

    Article  CAS  Google Scholar 

  • Wagner Y, Pozner E, Bar-On P, Ramon U, Raveh E, Neuhaus E, Klein T (2021) Rapid stomatal response in lemon saves trees and their fruit yields under summer desiccation, but fails under recurring droughts. Agric for Meteorol 307:108487

    Article  Google Scholar 

  • Wang J, Zheng R, Bai S, Gao X, Liu M, Yan W (2015) Mongolian almond (Prunus mongolica Maxim): the morpho-physiological, biochemical and transcriptomic response to drought stress. PLoS ONE 10(4):e0124442

    Article  PubMed  PubMed Central  Google Scholar 

  • Wheeler JK, Huggett BA, Tofte AN, Rockwell FE, Holbrook NM (2013) Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism. Plant Cell Environ 36(11):1938–1949

    CAS  PubMed  Google Scholar 

  • Xuan H, Spann D, Schlottmann P, Neumüller M (2010) Approaches to determine the origin of European plum (Prunus domestica) based on DNA nucleotide sequences. In: XXVIII international horticultural congress on science and horticulture for people (IHC2010): III international symposium on 918, pp 261–267

  • Zohary D, Hopf M (2000) Domestication of plants in the old world: the origin and spread of cultivated plants in West Asia, Europe and the Nile Valley, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Zwieniecki MA, Secchi F (2017) Role of aquaporins in the maintenance of xylem hydraulic capacity. In: Tyerman SD, Chaumont F (eds) Plant aquaporins: from transport to signaling, Springer

Download references

Acknowledgements

HG wishes to thank the Jewish National Fund (KKL) for providing the saplings for the greenhouse experiment (through the nurseries in Golany & Eshtaol); Dr. Dan Yosef Michael for consulting in primers calibration; Dr. David Pilzer for preforming RT-qPCR analysis using Fluidigm; Sophie Lieberman of Yale University for English editing; and The Weizmann campus greenhouse facility crew for greenhouse maintenance and support.

Funding

This work was supported by the Merle S. Cahn Foundation and the Monroe and Marjorie Burk Fund for Alternative Energy Studies; Mr. and Mrs. Norman Reiser, together with the Weizmann Center for New Scientists; The Yeda-Sela Center for Basic Research; and the Edith & Nathan Goldberg Career Development Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamir Klein.

Additional information

Communicated by H. Roaki Ishii.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 382 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerbi, H., Paudel, I., Zisovich, A. et al. Physiological drought resistance mechanisms in wild species vs. rootstocks of almond and plum. Trees 36, 669–683 (2022). https://doi.org/10.1007/s00468-021-02238-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-021-02238-0

Keywords

Navigation