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Abstract
Key message We identified two poplar clones of the same species as highly comparable, yet clones of two further 
species of the same genus to be distinctly different regarding multiple morphological and ecophysiological traits.
Abstract Leaf morphology, wax composition, and residual (cuticular) transpiration of four poplar clones (two clones of the 
hybrid species P. × canescens, P. trichocarpa, and P. euphratica) were monitored from the beginning to end of the growing 
season 2020. A pronounced epicuticular wax coverage was found only with P. euphratica. As the most prominent substance 
classes of cuticular wax primary alcohols, alkanes and esters were identified with P. × canescens and P. trichocarpa, whereas 
esters and alkanes were completely lacking in P. euphratica. Wax amounts were slightly decreasing during the season and 
significantly lower wax amounts were found for newly formed leaves in summer compared to leaves of the same age formed 
in spring. Residual (cuticular) transpiration was about five to tenfold lower for P. × canescens compared with the two other 
poplar species. Interestingly, with three of the four investigated species, newly formed leaves in summer had lower wax 
coverages and lower rates of residual (cuticular) transpiration compared to leaves of exactly the same age formed in spring. 
Our findings were especially surprising with P. euphratica, representing the only one of the four investigated poplar species 
naturally growing in very dry and hot climates in Central Asia. Instead of developing very low rates of residual (cuticular) 
transpiration, it seems to be of major advantage for P. euphratica to develop a pronounced epicuticular wax bloom efficiently 
reflecting light.

Keywords P. × canescens · P. trichocarpa · P. euphratica · Cuticular wax · Plant cuticle · Residual transpiration

Introduction

Due to its considerably fast growth and ease of vegetative 
propagation, the genus of Populus became an increasingly 
interesting taxon for short-rotation agroforestry (Sannigrahi 
and Ragauskas 2010), even despite its generally high needs 
for a constant water supply caused by low water-use efficien-
cies (Blake et al. 1984; Souch and Stephens 1997). Espe-
cially after the publication of the genome of Arabidopsis 
thaliana as the first plant genome in 2000 (The Arabidopsis 
Genome Initiative 2000), desires for a tree model organism 

arose with a species of the genus Populus being the favored 
candidate (Bradshaw et al. 2000; Taylor 2002). Ultimately, 
Populus trichocarpa became the first tree species with its 
genome sequence being published in 2006 (Tuskan et al. 
2006), leading to a multitude of subsequent genetical stud-
ies (Jansson and Douglas 2007; Quesada et al. 2008) fur-
ther strengthening the standing of P. trichocarpa as the new 
model organism of trees. In this study, we report on a sub-
set of four commonly researched Populus clones covering 
two intra-sectional hybrids and two true species, belonging 
to three sections in total: two clones of the hybrid species 
P. × canescens (Aiton) Sm. (section Populus), P. trichocarpa 
Torr. & Gray ex Brayshaw (section Tacamahaca), and 
P. euphratica Oliv. (section Turanga). To date, genomes 
of these 4 genotypes are available, allowing for extensive 
genomic comparisons in the future.

The interface between leaves and the surrounding envi-
ronment is formed by the plant cuticle (Mérida et al. 1981). 
It is composed of the cutin polymer and cuticular waxes 
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(Jetter et al. 2006; Schreiber 2010; Stark and Tian 2006) 
deposited in the cutin polymer (intracuticular waxes) and 
on its outer surface (epicuticular waxes). Its main function 
is the protection of the living tissues inside the leaf from 
environmental stress factors. This includes (i) the restric-
tion of uncontrolled water loss (cuticular transpiration) 
under drought conditions (Riederer and Schreiber 2001), (ii) 
protection from microbial pathogens (Andrews and Harris 
2000) and herbivores (Alfaro-Tapia et al. 2007), and (iii) 
reflection of UV light (Shepherd and Griffiths 2006). The 
transpiration barrier of cuticles is essentially established by 
cuticular waxes, since upon wax extraction using organic 
solvents rates of cuticular transpiration increase by factors 
of 1–3 orders of magnitude (Schönherr and Lendzian 1981). 
When measuring cuticular transpiration using intact leaves 
instead of isolated astomatous cuticles, it has been sug-
gested to use the term”residual transpiration” (Burghardt 
and Riederer 2003; Kerstiens 1996). This considers the fact 
that incomplete stomatal closure after leaf abscission can not 
always be excluded. Thus, cuticular transpiration (residual 
transpiration) measured with intact leaves must not but could 
potentially overestimate the true cuticular transpiration to 
some extent (Burghardt and Riederer 2003). Therefore, in 
the following, we will use the term “residual (cuticular) tran-
spiration” to indicate that the transpiration was measured 
with intact leaves and not with isolated astomatous cuticles.

We investigated in detail the cuticular wax composition 
and residual transpiration of four poplar clones. We intended 
to find out to what extent the four investigated poplar clones 
are similar or different in wax composition and residual tran-
spiration, and whether this is related in some way to the 
climate of their natural habitats. The information presented 
here could be helpful in future genetic approaches deciding 
which of the four clones will be best suited for molecular 
biological and ecophysiological investigations on wax bio-
synthesis and the effect of an altered wax composition on 
residual (cuticular) transpiration, or whether all 4 clones are 
equally suited.

Materials and methods

Poplar clones investigated

The four different clones were chosen because (i) they 
represent widely used models in poplar research, (ii) their 
genomes were sequenced and published and they can be 
genetically modified, and (iii) they reflect very different 
adaptations to their natural habitats. P. × canescens hybrids 
are frequently occurring in close geographical proximity 
to their parent species P. alba (van Loo et al. 2008) which 
prefers floodplain ecosystems of the Northern Temperate 
Zone (Eckenwalder 1996). One of the P. × canescens clones 

(“84 K”, Qiu et  al. 2019), a cross between P. alba and 
P. tremula var. glandulosa, is frequently researched in Asian 
geographical regions. The other clone (“INRA 717-1B4”, 
Mader et al. 2016), a cross between P. tremula and P. alba is 
more prominently investigated in Europe. In the following, 
the two clones will be abbreviated A × T and T × A, respec-
tively. P. trichocarpa naturally situates in Pacific coastal and 
adjacent inland areas of north-western North America (Ise-
brands and Richardson 2014). The genotype “Nisqually 1” 
of P. trichocarpa from North America was the first poplar 
species to be sequenced (Tuskan et al. 2006). In strong con-
trast, P. euphratica may be considered as the geographical 
outlier species. It is well adapted to semi-arid desert envi-
ronments (Ottow et al. 2005) and may tolerate extreme light 
intensities and temperatures (Zhou et al. 2010) as long as its 
roots can reach a continuously available groundwater table 
(Aishan et al. 2015; Chen et al. 2006). Individuals of the 
species P. euphratica (clone “B2” from Israel was used in 
this study) have also been sequenced (Ma et al. 2013; Zhang 
et al. 2020).

Cultivation of plants

In early 2018, two individuals of each of the four clones 
from axenic tissue cultures were transferred to soil. They 
were slowly adapted to growth outside in an experimental 
field of the University of Bonn via stepwise growth in a cli-
mate chamber (6 weeks) and a greenhouse (6 weeks). Plants 
were left outside in pots for the first 2 years and were always 
strongly cut-back in autumn of 2018 and 2019.

Pot volumes were continuously adapted to plant size 
(about 2 m height in 2 years) leading to a final pot volume 
of 40 L filled with standardized soil (Einheitserde Classic 
Type Topf 1.5, Einheitserde Werksverband e.V., Germany). 
A constant drop irrigation system secured adequate water 
supply to the plants. Weather conditions were monitored by 
an MWS 9–5 system (Reinhardt System- und Messelectronic 
GmbH, Germany). The daily light integral (DLI) was calcu-
lated by integrating the photosynthetically active radiation 
(PAR) of a given day (Fig. 1). During the year 2020, the 
mean temperature ranged between 6 and 22 °C, the pre-
cipitation between 6 and 102 mm, and the DLI was between 
122 and 1555 mol  m−2  month−1. Especially the study period 
(April to September) was characterized by arid climatic 
conditions with high light radiation, high temperature, and 
significantly reduced amounts of precipitation compared to 
other years.

Leaf sampling

Leaves were harvested in the third year of the plants growing 
outside (2020) from newly forming branches in spring. Both 
leaf growth and development were monitored starting from 
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bud break on a weekly basis. Thus, leaf age over the grow-
ing season could exactly be identified. Leaf areas were fully 
developed within the fifth week after bud break. Leaves were 
harvested at the age of 5, 11, and 17 weeks. Towards the 
end of the season (September 2020), another set of 5-week-
old leaves, which started to grow mid of August 2020, was 
harvested (Fig. 1). To ensure that the harvested leaves did 
not show early macroscopically “invisible” signs of disease 
infection, the chlorophyll content of five leaves for each 
clone and harvesting time was estimated with a Force A 
device (Dualex Scientific, France).

Leaf anatomical and morphological analysis

The projected lamina surface areas of leaves from each har-
vest were measured using a scanner (Canon, Japan). Leaf 
fresh mass and leaf dry mass (also used to calculate the 
relative water content) of leaves from each harvest were 
measured using an analytical balance (Sartorius, Germany) 
with a resolution of ± 0.01 mg. Leaf mass per area (LMA, 
mg  cm−2) was calculated by dividing the leaf dry mass by 
its projected lamina surface area. The relative water content 
was calculated as a percentage: (fresh mass—dry mass)/
fresh mass × 100.

Contrary to all other morphological parameters, the 
presence of stomata and contact angles of water were deter-
mined only with 11-week-old leaves. Stomatal presence was 
determined by light microscopy after taking imprints with 
nail polish from both leaf sides. Adaxial leaf surfaces of 
all four clones were analyzed by scanning electron micros-
copy (SEM; S200 Cambridge Instruments, Great Britain). 1 

 cm2 leaf segments were mounted to aluminum sample stubs 
using double-sided adhesive tape and dried over silica gel for 
at least 24 h. Dried samples were sputter-coated (SCD 040, 
Balzers Union, Germany) with gold for 30 s using 30 mA 
current (ca. 15 nm thickness). Leaves were examined by 
SEM at 15 kV accelerating voltage and a working distance 
of 11 mm. Contact angles of water were measured on adaxial 
leaf sides using a Drop Shape Analyzer (Krüss, Germany). 
Leaf samples were fixed to glass slides using double-sided 
adhesive tape. Five droplets of 10 µl were placed on each 
leaf. Three independent leaves were investigated for each 
clone.

Cuticular wax composition analysis

The wax composition of 5-, 11- and 17-week-old leaves 
grown in spring and of 5-week-old leaves grown in summer 
was analyzed. Wax extraction was obtained by tightly plac-
ing chloroform-filled glass vials with broad rims on adaxial 
leaf sides. Thus, leaf areas for wax extraction were precisely 
defined (0.30  cm2 for the narrow P. euphratica leaves and 
1.28  cm2 for the leaves of the other 3 clones). Glass vials 
closed with the leaves were turned upside down for 10 s and 
slightly shaken to ensure an efficient wax extraction. Previ-
ous tests with other species had shown that longer extrac-
tion would rather result in tissue damages by  CHCl3 leading 
to contaminations with internal lipids (Bringe et al. 2006; 
Richardson et al. 2005). For each biological replicate, four 
extracts from the adaxial leaf side were pooled. Four to six 
independent leaves of each clone were taken for analytical 
investigations. The internal standard for wax quantification 

Fig. 1  Mean temperature per 
month (°C), sum of monthly 
precipitation (mm), and monthly 
sum of daily light integral (DLI, 
mol  m−2  month−1) during the 
year 2020. DLIs of each day of 
a given month are summarized 
to yield the monthly sum. Bud 
break and leaf harvesting times 
are indicated by arrows
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(10  µg C24 alkane, Tetracosane, Fluka, Germany) was 
added to chloroform before wax extraction. Chloroform 
was completely evaporated at 60 °C under a gentle stream 
of nitrogen. Samples were derivatized for 45 min at 70 °C 
after adding again 250 µl chloroform, 20 µl BSTFA (N,O-
Bis(trimethylsilyl)trifluoroacetamide, Macherey–Nagel, 
Germany) and 20 µl pyridine (Sigma Aldrich, Germany). 
Derivatization leads to the formation of trimethylsilyl (TMS) 
esters and ethers of alcohols and acids (Hauke and Schreiber 
1998). 1 µl of each sample was analyzed by gas chroma-
tography equipped with on-column injection. Flame ioni-
zation detection coupled to gas chromatography (GC-FID: 
6890 N) was used for the quantitative determination of wax 
amounts. Mass spectrometry coupled to gas chromatography 
(GC–MS: 7890B) was used for the qualitative identification 
of wax compounds. Compounds were identified based on 
fragmentation patterns using an in-house created mass spec-
tral library. Conditions after sample injection were 50 °C for 
2 min, a temperature increase of 40 °C  min−1 up to 200 °C, 
2 min at 200 °C, 3 °C  min−1 up to 310 °C and finally 30 min 
at 310 °C. The flow rate of the hydrogen (GC-FID) or helium 
(GC–MS) carrier gas was 2 ml  min−1 and DB-1 columns 
(30 m length, 0.32 mm diameter, 0.2 µm coating thickness; 
Agilent J&W) were employed.

Leaf stomatal and residual (cuticular) transpiration

All transpiration measurements have been performed with 
fully developed 5-week-old leaves formed in the beginning 
(April to May) and the end (August to September) of the 
growing season. Stomatal conductances were measured 
using an SC-1 Leaf Porometer (Decagon, USA) in the morn-
ing between 10 to 11 a.m. Residual (cuticular) transpiration 
was measured using intact leaves. Leaves were harvested 
at the experimental field in the morning, stored in sealed 
plastic bags, and transported within 60 min to the institute. 
With all stomata fully closing after cutting off leaves, sub-
sequent measurements will mainly represent cuticular tran-
spiration (Kerstiens 1996). Due to the unavoidable delays 
in measurements, stomatal transpiration of each leaf before 
abscission was evaluated right at the site of harvest using the 
leaf porometer. After measuring the fresh mass and deter-
mination of leaf areas in the institute, leaves were stored at 
25 °C in plastic boxes over activated silica gel (2% relative 
humidity). Decreasing leaf masses were measured every 
20 min up to 6 h. For each measurement, rates of water loss 
per area and time (g  m−2  s−1) were measured. Permeances 
(m  s−1) were calculated by dividing rates of water loss by 
the driving force (concentration gradient of water inside the 
leaf minus outside). Since leaves were kept at 2% humidity, 
the driving force for residual (cuticular) transpiration was 
essentially given by the water concentration inside the leaf, 
which was assumed to be close to  106 g  m−3. To allow direct 

comparison, stomatal transpirations (measured in the field 
in mmol  m−2  s−1) were converted into permeances (m  s−1) 
according to McDermitt (1990). The permeance of each 
measurement period was plotted against its corresponding 
estimated relative water deficit, which was calculated from 
water loss divided by the leaf fresh mass of the respective 
measurement period. Stomatal transpirations of intact leaves 
were assumed to be measured at a relative water deficit close 
to zero.

Statistical analysis

Numbers of investigated biological replicates were between 
3 and 6 leaves for each clone, experiment, and harvest. Sta-
tistical tests (two-sample t test or one-way ANOVA with 
Fisher’s LSD post hoc test) at a significance level of p ≤ 0.05 
were applied (OriginPro 20, OriginLab Corporation, USA). 
Statistical differences were tested on the 95% level. Boxplots 
or means with standard deviation are shown.

Results

Bud break and leaf morphology

Bud break (Fig. 1) and leaf development of P. trichocarpa, 
was always 1 week earlier (calendar week 14 in 2020) than 
the 2 clones of P. × canescens (calendar week 15). Bud 
break and leaf development of P. euphratica was 1 week 
delayed (calendar week 16). After a strong cut-back of the 
plants in calendar week 28, the very same pattern of bud 
break and development of the 4 clones was observed after 
a 3- to 5-week recovery period in calendar weeks 31, 32, 
and 33. In the fifth week leaves had fully expanded, result-
ing in mean projected leaf areas of about 32  cm2 (both 
clones of P. × canescens), 16  cm2 (P. trichocarpa), and 8 
 cm2 (P. euphratica) at a leaf age of 5 weeks (Fig. 2). Dense 
trichomes were still visible on the abaxial sides of clones 
of P. × canescens, less for P.  trichocarpa, and none for 
P. euphratica. Adaxial surfaces were devoid of any visible 
trichomes for all clones (Fig. 2). Stomata could only be iden-
tified in light microscopy and SEM on the lower leaf side of 
both P. × canescens clones (hypostomatous leaves), whereas 
P. trichocarpa and P. euphratica were amphistomatous.

Although fresh mass per leaf area varied significantly 
between 16 and 36 mg  cm−2, the LMA was very similar 
with 6–8 mg  cm−2 for each clone (Fig. 3a). This was due 
to differences in the relative water content with P. euphra-
tica having a water content of 80% compared to the 3 other 
clones with 61 to 65% (Fig. 3b). Chlorophyll contents for all 
clones and harvests were between 25 and 35 µg  cm−2 with 
no obvious seasonal trends (no data shown). Also all other 
morphological parameters (projected lamina surface area, 
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chlorophyll content, mass per area, and relative water con-
tent) estimated for each clone and harvest were not changing 
after leaves were fully developed and also not for the newly 
grown leaves of 5 weeks age after the strong cut-back in July 
(no data shown).

Contact angles on adaxial leaf sides of both clones of 
P. × canescens varied between 85° to 90° whereas con-
tact angles were slightly lower on leaves of P. trichocarpa 
(70.8°). Leaf surfaces of P. euphratica were hardly wettable 
since they showed contact angles of around 160° (Fig. 3c).

Scanning electron microscopic investigations

A low abundance of epicuticular wax crystals (granules 
and platelets) was visible on adaxial leaf surfaces of both 
clones of P. × canescens (Fig. 4a, b). P. trichocarpa had a 
smooth leaf surface with only very few visible wax crystals 
(Fig. 4c). P. euphratica showed a very dense coverage with 
epicuticular wax platelets (Fig. 4d). Folds and edges on the 
leaf surface of P. trichocarpa (Fig. 4c) are considered to be 
drying artifacts.

Fig. 2  Representative morphology of 5-week-old poplar leaves har-
vested in May. Leaves of all 4 clones were fully developed at this 
point. Abaxial leaf sides of all clones except isobilateral leaves of 
P. euphratica are covered by trichomes. Stomata were found on adax-
ial leaf sides of P. × canescens clones (hypostomatous) and on both 
leaf sides of P. trichocarpa and P. euphratica (amphistomatous)

Fig. 3  Mass per surface area a, relative water content b, and contact 
angles of water c of 11-week-old poplar leaves (A × T and T × A: 
P. × canescens; P.  tri.: P.  trichocarpa; and P.  euph.: P.  euphratica). 
The data shown in a and b is representative of all evaluated leaf 

cohorts. Means with standard deviations are shown (n = 3–6 for a and 
b; n = 15 for c). Significant differences at p ≤ 0.05 are indicated by 
differential letters (ANOVA)
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Cuticular wax composition

Five substance classes of linear long-chain aliphatic com-
pounds (acids, aldehydes, alcohols, alkanes, and esters) of 
cuticular waxes were identified in 5-week-old leaves of both 
hybrids of P. × canescens and P. trichocarpa (Fig. 5a–c). 
Cuticular wax of P. euphratica was composed of only the 
three substance classes acids, aldehydes, and alcohols. 
Alkanes and esters were completely missing (Fig.  5d). 
Chain lengths of the esters ranged from C34 to C46, chain 
lengths of the 4 other substance classes ranged from C20 to 
C31 (Fig. 5). Alcohols, alkanes, and esters were the three 
prominent substance classes in both P. × canescens hybrids 
(Fig.  5e). In P.  trichocarpa, only alcohols and alkanes 
were the two most prominent substance classes, whereas 
only alcohols were the most prominent substance class 
in P. euphratica (Fig. 5e). Total amounts of wax varied 
between 24  and 41 µg  cm−2 with one of the P. × canescens 
clones (A × T) having the lowest wax amount and the other 
P. × canescens clone (T × A) having the highest wax amount 
(Fig. 5e).

The qualitative wax composition did not significantly 
change over the season with increasing leaf ages (5 weeks 
to 11 weeks and 17 weeks) of leaves formed in spring and 
with 5-week-old leaves formed in summer (Fig. 6b, d, f, h). 
There was a tendency that total amounts of wax in hybrid 
A × T (24, 22, and 19 µg  cm−2) and P. trichocarpa (27, 20, 
and 14 µg  cm−2) continuously decreased from 5-week- over 
11-week- to 17-week-old leaves (Fig. 6a, c). Five-week-old 
leaves of all four clones newly formed in summer had about 
1.5- (A × T) to twofold (T × A, P. tri, and P. euph) lower wax 
amounts compared to 5-week-old leaves formed in spring 
(Fig. 6a, c, e, g).

Stomatal and residual (cuticular) transpiration

Stomatal conductances of leaves harvested in May and Sep-
tember were between 250 and 350 mmol  m−2  s−1, which 
equals 75–115 ×  10–9 m  s−1 (Fig. 7). After leaf abscission, 
permeances (m  s−1) steeply decreased by 1–2 orders of mag-
nitude (Fig. 7). The linear region between relative water defi-
cits of 0.1 to 0.5 represents residual (cuticular) transpiration.

Fig. 4  Scanning electron pictures of adaxial leaf surfaces of 11-week-
old poplar leaves. Clones of P. × canescens do show a low abundance 
of wax granules (a A × T; b T × A). The surface of P.  trichocarpa 

(c) is smooth with very few wax crystals (arrow). P.  euphratica is 
densely covered with wax platelets (d)
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All values on the plateaus, between relative water deficits 
ranging from about 0.1 to 0.5, were used to calculate the per-
meance means of 5-week-old leaves of each clone, harvested 
in spring (May) and summer (September) (Fig. 8). Mean 
residual permeances varied between 1.7 to 1.9 ×  10–9 m  s−1 
(T × A and A × T) and 10 to 11.3 ×  10–9 m  s−1 (P. tri and 
P. euph) for leaves harvested in spring. In most instances, 
lower permeances were calculated for leaves harvested in 
summer. They were 0.9 to 2.4 ×  10–9 m  s−1 for T × A and 
A × T and 4.8 to 6.5 ×  10–9 m  s−1 for P. trichocarpa and 
P. euphratica, respectively (Fig. 8).

Discussion

As the spring bud break of a full-grown poplar tree is 
under tight genetic control and needs a specific tempera-
ture sum for initiation (Jansson and Douglas 2007), parallel 
leaf development leads to all primary leaves being almost 
the same age at any given date. Leaf morphology of both 
P. × canescens clones appears to be intermediate between 
those of parent species P. alba and P. tremula (Eckenwalder 
1996; Isebrands and Richardson 2014; Lexer et al. 2005) 

and also morphological parameters of P. trichocarpa and 
P. euphratica leaves are in accordance to those previously 
reported (Al Afas et al. 2007; Calagari et al. 2006; Ceule-
mans et al. 1987; Liu et al. 2015; Xu et al. 2016). The suc-
culent, lanceolate leaves of P. euphratica observed here are 
known to fulfill a water storage function especially in young 
trees that do not yet develop into the reproductive phase 
(Ottow et al. 2005; Xu et al. 2016). This higher water content 
obviously represents an adaptation to the hot and dry climate 
where P. euphratica is naturally growing. Amphistomaty 
of P. euphratica leaves is broadly reported as a key mor-
phological trait (Liu et al. 2015; Mirzaie-Nodoushan et al. 
2015; Zheng et al. 2007; Zhou et al. 2010) potentially to 
compensate for thicker leaf laminas and reduce distances of 
diffusion into the tissue. In P. trichocarpa, which normally 
is hypostomatic, amphistomaty is hypothesized to be intro-
duced by hybridizations (Al Afas et al. 2006, 2007; Ceule-
mans et al. 1984; Dillen et al. 2008; Dunlap and Stettler 
2001; Gornall and Guy 2007; McKown et al. 2014; Schulte 
and Hinckley 1987).

Each cuticular surface structure observed in this study 
is in concordance with previous reports in the literature 
(Alfaro-Tapia et al. 2007; Guzmán et al. 2014; Huang et al. 

Fig. 5  Qualitative (a, b, c, and d) and quantitative (e) composition 
of adaxial cuticular wax of the 4 poplar clones (A × T and T × A: 
P. × canescens; P.  tri.: P.  trichocarpa; and P.  euph.: P.  euphratica). 
Cuticular wax was extracted from 5-week-old fully developed leaves 

and the qualitative wax composition is representative of all measured 
leaf cohorts. Means with standard deviations (n = 4–6 leaves) are 
shown
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2018; Meng et al. 2019; Schreiber et al. 2006; Szuba et al. 
2019; Xu et al. 2016; Zheng et al. 2007) but to our knowl-
edge, their influence on wettability has not been reported for 
poplar before. The observed low abundance of wax granules 
of both P. × canescens clones and P. trichocarpa resulted in 
moderate contact angles varying between 70° and 90°. In 
contrast to this, the very rough leaf surface with dense wax 
platelets of P. euphratica resulted in contact angles of almost 
160°. On such a superhydrophobic surface (Wang and Jiang 
2007) water immediately forms spherical droplets that will 
roll off even at the lowest angles of tilt, commonly referred 
to as the “Lotus effect” (Barthlott and Neinhuis 1997). This 
is typically associated with self-cleaning abilities of plants 
when subjected to rain (Barthlott and Neinhuis 1997). How-
ever, this property appears to be useless if the plant is grow-
ing in environments with yearly precipitations close to zero. 
Instead, we suggest that these wax platelets on P. euphratica 
leaves must accomplish a different function. In a hot and 
dry habitat pronounced three-dimensional epicuticular wax 
crystalloids should help in efficiently reflecting light and 
thereby protect leaves from heat and harmful UV radiation 
(Shepherd and Griffiths 2006). The cuticular wax morphol-
ogy of P. euphratica is dominated by wax platelets, which 
have been described to be formed by primary alcohols (Bar-
thlott et al. 1998; Ensikat et al. 2006; Koch and Barthlott 
2006) that are also representing the major substance class in 
P. euphratica wax as it was found here. For example barley, 
a member of the Graminaceae family also originating from 
arid regions, is known to exhibit a comparable epicuticular 
wax structure and alcohol-dominated wax chemistry (Rich-
ardson et al. 2005). For the other three clones, the forma-
tion of epicuticular wax crystalloids by self-assembly (Koch 
et al. 2004) may be less favored, as they are composed of 
a broader mixture of substance classes. Nonetheless, wax 
crystals on adaxial sides of P. trichocarpa leaves have also 
been reported to consist of mainly alcohols, as analyzed by 
secondary ion mass spectrometry (SIMS) (Kulkarni et al. 
2018).

In our study, both clones of P. × canescens had a very 
similar wax composition which was dominated by alcohols, 
alkanes, and esters. This is different from a previous analysis 
of the wax composition of clone A × T where wax esters 
were completely missing, but considerably longer chain 
lengths (C31 to C35) of all other functional groups were 
described (Meng et al. 2019). These differences in composi-
tion and quantity of each substance class might be attributed 

to different environmental growth conditions and leaf ages 
investigated. But differences might also arise from the meth-
odological approaches used. Unlike our approach using on-
column injection for cuticular wax analysis, a split/splitless 
injection for GC analysis will not recover long-chain wax 
esters since they will be trapped in the liner of the injector. 
Similar methodological limitations were encountered when 
analyzing cuticular waxes of P. trichocarpa since in a quali-
tative isotope ratio mass spectrometry (IRMS) analysis only 
alkanes were described as the wax fraction (Kahmen et al. 
2011). However, the alkanes were very similar to the alkanes 
found in our study. In addition, a MALDI-TOF-MS analy-
sis after cryo-adhesive-isolation of epicuticular waxes of 
P. trichocarpa identified 19 individual compounds belong-
ing to the functional groups of alcohols, alkanes, and esters 
(Kulkarni et al. 2018), again sharing a high similarity to our 
own results. Further qualitative and quantitative differences 
are encountered when comparing the leaf wax composi-
tion of P. euphratica trees cultivated in Germany to plants 
grown outside in their natural habitat in Inner Mongolia (Xu 
et al. 2016). Acids, aldehydes, and alcohols but not alde-
hydes and esters were identified as main substance classes 
when investigating juvenile (lanceolate) leaves grown in 
Germany in our study, whereas considerable amounts of 
alkanes were detected after GC-FID/MS analysis of leaves 
sampled from their natural habitat in Mongolia (Xu et al. 
2016). Reductions in wax amounts of older leaves (11 and 
17 weeks) observed in our study are attributed to potential 
wax degradation. Abrasion or erosion of surface lipids has 
been reported (Cameron et al. 2006; Hauke and Schreiber 
1998; Neinhuis and Barthlott 1998), especially if plants are 
grown outside where mechanical stimuli as wind and rain 
are significantly higher (Shepherd and Griffiths 2006). When 
leaves of the exact same age (5-week-old) that developed 
in spring (May) or summer (September) were compared, 
significantly lower total wax amounts were found for the 
summer leaves of all 4 clones. We hypothesize that a much 
lower irradiance in the second growth period of the year 
might be one of the key factors leading to a reduced wax 
accumulation (Baker 1974).

Values of permeances measured here for intact poplar 
leaves are in a similar range when compared to permeances 
of intact leaves, leaf disks, or isolated astomatous cuticu-
lar membranes of different species (Kirsch et  al. 1997; 
Schreiber 2001; Schreiber and Riederer 1996; Schreiber 
and Schönherr 2009). The hypostomaty of P. × canescens 
offers the advantage of isolating astomatous cuticles of 
the adaxial leaf side. This allows measuring true rates of 
cuticular transpiration for P. × canescens (Schreiber et al. 
2006). Permeances of P. × canescens clones measured here 
vary between 0.9 and 2.4 ×  10–9 m  s−1 and they are very 
similar to permeances of 2.7 ×  10–9 m  s−1 measured with 
isolated astomatous P. × canescens cuticles from a mature 

Fig. 6  Absolute (a, c, e, g) and relative (b, d, f, h) amounts of 
adaxial leaf wax over the growing season of 2020 (A × T and T × A: 
P. × canescens; P.  tri.: P.  trichocarpa; and P.  euph.: P.  euphratica). 
Means with standard deviations (n = 4–6) of the total wax amounts 
are shown. Differential letters (ANOVA) and asterisks (t test) indicate 
significant differences at p ≤ 0.05

◂
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grey poplar tree growing outside in Bonn (Schreiber et al. 
2006). This is a very good indication that residual rates of 
transpiration measured with intact P. × canescens leaves are 
in fact reflecting cuticular rates of transpiration. Different 
from both P. × canescens clones, it was described that some 
clones of P. trichocarpa are unresponsive in stomatal closure 
towards stress (Schulte and Hinckley 1987), and also for 
P. euphratica stomata have been reported to show a non-
uniform behavior (Zheng et al. 2007). This described incom-
plete closure of stomata of P. trichocarpa and P. euphra-
tica might explain why residual permeances were about 
10 times higher compared to both P. × canescens clones. 
Thus, residual transpiration measured with P. trichocarpa 
and P. euphratica might to some extent represent overesti-
mations of the true cuticular transpiration (Burghardt and 
Riederer 2003; Kerstiens 1996), whereas those measured 
for both clones of P. × canescens fit very well to the previ-
ously reported cuticular transpiration (Schreiber et al. 2006). 

When comparing both sets of 5-week-old leaves grown in 
spring and summer, it is evident that the leaves of three of 
the four poplar clones harvested in September show twofold 
lower permeances, even though total wax amounts of all 
clones are between 1.5- and twofold lower. This is a further 
example that higher wax amounts do not necessarily corre-
late with lower rates of cuticular transpiration and vice versa 
(Jetter and Riederer 2016; Sánchez et al. 2001; Schreiber and 
Riederer 1996; Zeisler-Diehl et al. 2018). Instead of cuticu-
lar wax amounts, it has been suggested that the mean carbon 
chain length of wax molecules might represent a potential 
feature negatively correlating with the transpiration prop-
erties of cuticles (Hauke and Schreiber 1998; Leide et al. 
2007; Macková et al. 2013; Riederer and Schneider 1990). 
Except for one P. × canescens clone (A × T), lower rates of 
residual (cuticular) transpiration of leaves harvested in sum-
mer were in fact observed alongside higher weighted mean 
carbon chain lengths of the cuticular wax (Fig. 9). Since 

Fig. 7  Representative stomatal and residual (cuticular) transpiration 
measured with 5-week-old leaves harvested in May (A × T and T × A: 
P. × canescens; P.  tri.: P.  trichocarpa; and P.  euph.: P.  euphratica). 
Stomatal transpirations of leaves (shown at relative water deficits of 

0) were measured in the field. Residual (cuticular) transpirations were 
measured with detached leaves at relative leaf water deficits between 
0.1 and 0.5. Single values of 6 leaves per clone are shown
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P. euphratica is growing in an arid and hot climate, it was 
initially hypothesized by us that P. euphratica should be 
characterized by a considerably lower residual (cuticular) 
transpiration compared to P. × canescens and P. trichocarpa. 
But the typical xeromorphic adaptations of P. euphratica 
such as smaller and succulent leaves, which can help to 

survive after long periods of stomatal closure in response 
to stress (Bueno et al. 2019), are obviously more important 
than low rates of residual (cuticular) transpiration. In addi-
tion, roots of P. euphratica in their natural environment must 
have constant contact with the groundwater table (Aishan 
et al. 2015; Chen et al. 2006; Zhou et al. 2010), making true 
water limitations even in an arid climate a less abundant 
scenario. As a consequence, this will allow keeping both, 
stomatal and residual rates of transpiration high, which is 
essential in cooling the leaves in a hot and dry habitat (Lange 
1959).

Conclusion

In terms of leaf morphology, wax composition, and residual 
(cuticular) transpiration both clones of P. × canescens are not 
very different, which ensures good comparability of eco-
physiological data acquired with either clone. The geneti-
cally more distant P. trichocarpa and P. euphratica (Cervera 
et al. 2005) had different leaf morphologies, cuticular wax 
compositions, and significantly higher residual (cuticular) 
transpiration rates. Physiological transport experiments that 
might require isolated astomatous cuticles can be performed 
with clones of P. × canescens. In addition, highly efficient 
transformations of both parent species of P. × canescens 
(Fladung et al. 1997; Ma et al. 2019) make this hybrid a 
valuable candidate for the creation and investigation of dif-
ferent mutant lines in the future, whereas P. trichocarpa is 
the best genetically characterized Populus species to date 
and may serve as a reference for extensive genome stud-
ies. In contrast, the environmentally driven specialization 
of cuticular wax structure and composition together with a 
fairly high residual (cuticular) transpiration of P. euphratica 
make it an interesting species for future stress-physiological 
studies.
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