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Abstract
Key message We assessed even-aged stand vertical distributions of LiDAR returns and found that tree species, age, 
and crown cover each have a distinct pattern that together explains up to 47% of the variation.
Abstract Light detection and ranging (LiDAR) provides information on the vertical structure of forest stands enabling 
detailed and extensive ecosystem study. The vertical structure is often summarized by scalar features and data-reduction 
techniques that limit the interpretation of results. Instead, we quantified the influence of three variables, species, crown 
cover, and age, on the vertical distribution of airborne LiDAR returns from forest stands. We studied 5428 regular, even-aged 
stands in Quebec (Canada) with five dominant species: balsam fir [Abies balsamea (L.) Mill.], paper birch (Betula papyrifera 
Marsh), black spruce [Picea mariana (Mill.) BSP], white spruce (Picea glauca Moench) and aspen (Populus tremuloides 
Michx.). We modeled the vertical distribution against the three variables using a functional general linear model and a novel 
nonparametric graphical test of significance. Results indicate that LiDAR returns from aspen stands had the most uniform 
vertical distribution. Balsam fir and white birch distributions were similar and centered at around 50% of the stand height, 
and black spruce and white spruce distributions were skewed to below 30% of stand height ( p<0.001). Increased crown 
cover concentrated the distributions around 50% of stand height. Increasing age gradually shifted the distributions higher in 
the stand for stands younger than 70-years, before plateauing and slowly declining at 90–120 years. Results suggest that the 
vertical distributions of LiDAR returns depend on the three variables studied.

Keywords Boreal forest · LiDAR remote sensing · Tree species · Functional data analysis · Stand structure

Introduction

The distribution of vegetation within canopies varies with 
tree allometry and competition strategies, leading to varia-
tions in canopy structure and ultimately, in environmental 
conditions (Purves et al. 2007; Thorpe et al. 2010; Pretzsch 
and Dieler 2012). Species-specific canopy structures create 
different microhabitats, light conditions, and microclimates, 
which in turn influence the rates at which stands sequester 
carbon. Species have different carbon allocation strategies 
that evolve during the growth season, relative to above and 
below-ground carbon allocation. Examples include growing 
fruit, deploying leaves, and growing roots for better access to 
nutrients and water (De Pury and Farquhar 1997; Lacointe 
2000; Stark et al. 2012). These growth and allocation strate-
gies result in distinct species-specific tree shapes.

Traditionally, the characterization of stand vertical dis-
tribution of aboveground biomass required either on-site 
estimation of biomass per vertical layer (often requiring 
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destructive measurements), scaffolding, or tree climbing, 
all of which are time-consuming and limit surveys to small 
areas (MacArthur and Horn 1969; Aber 1979; Bassow and 
Bazzaz 1997; Tackenberg 2007).

The increasing availability of data collected remotely 
from airborne, spaceborne, and terrestrial sensors has 
improved our understanding of forest dynamics (White et al. 
2013; Wulder et al. 2012; Beland et al. 2019). Among these 
sensors, light detection and ranging (LiDAR) has the abil-
ity to penetrate the canopy and provide information on the 
spatial location of reflective material. LiDAR is increasingly 
used to perform both extensive and highly detailed imag-
ing of forest. It uses a laser, at a precisely known location 
and orientation, to record a 3D scene. A discrete LiDAR 
pulse is reflected back to the sensor by the vegetation as 
it penetrates the canopy. The sensor then records the total 
travel time of the pulse and its energy to deduce the distance 
from the sensor to the location of reflection. LiDAR can 
be used from both the ground, and an aircraft to provide 
different perspectives on the forest. Terrestrial LiDAR pro-
vides highly detailed structural information about individual 
trees, but its extent is limited to a few hundreds of meters 
(Beland et al. 2019; Crespo-Peremarch et al. 2020). Airborne 
LiDAR, on the other hand, is typically less detailed than 
terrestrial LiDAR but can be used for extensive landscape 
measurements.

Airborne LiDAR has been used to characterize vertical 
canopy structure, crown shape, and aboveground biomass 
for entire ecosystems (Lefsky et al. 2002; Parker et al. 2004; 
Coops et al. 2007; Stark et al. 2012; Harding et al. 2001; Cao 
et al. 2014; Ellsworth and Reich 1993; Papa,  2020). It has 
also been used to identify tree species (Heinzel and Koch 
2011, 2012; Vaughn et al. 2012; Axelsson et al. 2018; Hovi 
et al. 2016; Fassnacht et al. 2016; Budei et al. 2018; Fedrigo 
et al. 2018) and to study stand characteristics such as age, 
crown cover, and basal area (Korhonen et al. 2011; Racine 
et al. 2014; White et al. 2013; Karna et al. 2019). Airborne 
LiDAR is an important tool for biomass quantification and 
offers the opportunity to explore large-scale phenomena that 
could only be observed on the field (Vierling et al. 2008, 
2010; Seavy et al. 2009; Karna et al. 2020).

One limitation of the airborne LiDAR data is its inability 
to distinguish differences in foliage condition or in species 
spectral variation. This is because it lacks the spectral infor-
mation commonly used to classify species such as varia-
tions in red, green, and blue or near-infrared multispectral 
imagery. In response, the most common strategy for dis-
tinguishing species using LiDAR has been to differentiate 
individual tree shapes and texture (Holmgren and Persson 
2004; Kim et al. 2011; Fassnacht et al. 2016), and add spec-
tral information from multispectral imagery. More recently 
multispectral LiDAR has also been used to distinguish stand 
species (Budei et al. 2018; Budei and St-Onge 2018).

Most studies on species classification using aerial LiDAR 
have focused on species identification based on individual 
tree crowns. However, tree crown delineation requires a 
large number of LiDAR returns and highly accurate regis-
tration of ground observations (Ørka et al. 2009; Muss et al. 
2011). Using a small observation area such as an individual 
tree crown causes a loss in the shape of the vertical distribu-
tion of LiDAR returns. This is due to a decrease in the num-
ber of LiDAR returns, causing the distribution to become a 
collection of random variates. Thus, although the accuracy 
of species identification would be improved by a very high 
point density in excess of 10 pt/m2 (Fassnacht et al. 2016), 
it is difficult to apply and validate these approaches for use 
over large areas and with less-dense LiDAR datasets.

An alternative to individual tree-crown extraction 
approaches is the application of area-based approaches [see 
e.g. White et al. (2013)]. This approach generally uses a 
pixel or a stand on which LiDAR returns are aggregated 
and predictors are derived before being used in a model to 
predict forest attributes. Predictors are often derived from 
the vertical distribution of LiDAR returns: the number of 
LiDAR returns per height slice. The vertical distribution of 
LiDAR returns is often presented as quantiles, projections 
of quantiles (such as principal component analysis), or para-
metric functions (such as a Fourier, beta or Weibull func-
tions), which are used to predict stand attributes (Mehtätalo 
2006; Coops et al. 2007; Racine et al. 2014; Maltamo et al. 
2005; Palace et al. 2015; Magnussen et al. 1999; Riggins 
et al. 2009; Falkowski et al. 2009). The area-based method 
can be effective with a point density as low as 1 pt/m2, which 
reduces cost and require less processing compared to tree-
crown approaches (White et al. 2013).

Lowering the minimum LiDAR point density thresh-
old for species classification would increase the number of 
potential surveys where this method could be applied, and 
at the same time reduce the cost of acquisition. The species 
information could then be used for extensive forest manage-
ment, or landscape-scale studies. One way to achieve area-
based species mapping is to increase our understanding of 
the interaction between LiDAR and stand-level vegetation. 
However, the vertical distribution of LiDAR returns is dif-
ficult to analyze without resorting to dimension reduction, 
a method that generally limits the interpretability of results.

We hypothesize that using functional general linear mod-
els (GLM) and a novel non-parametric graphical test of sig-
nificance (Mrkvička et al. 2019) would allow us to link the 
forest attributes to the vertical distribution of returns from 
low-density LiDAR surveys. The test provides a framework 
to compare a function (i.e. the vertical distribution of LiDAR 
returns) against categorical and continuous variables, as well 
as a visual understanding of the effects of the variables on 
the function. Versions of non-parametric graphical tests have 
been applied to economical data (Mrkvička et al. 2020), and 
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non-parametric inference is commonly used in neuroimag-
ing (Winkler et al., 2014). However, to our knowledge, our 
study is the first to use a functional GLM combined with a 
non-parametric graphical test of significance in the field of 
ecology or remote sensing.

The information contained in the vertical distribution of 
LiDAR returns is closely related to the distribution of the 
vegetation. Reduced crown cover (the proportion of area 
covered by vegetation; Gonsamo,  2013) typically increased 
the probability for the LiDAR returns to reach lower vegeta-
tion (Hilker et al. 2010), while age influences the vertical 
position of the crown within a stand (Coops et al. 2009; 
Racine et al. 2014). Using direct foliage measurements, 
Aber (1979) observed that the vertical concentration of the 
foliage evolved with stand age, and that the end point of 
forest succession seemed to reach an equilibrium where the 
foliage was relatively evenly distributed within the canopy. 
Martin-Ducup et al. (2016) noted that crown cover and stand 
maturity affected the shapes of the crown of sugar maples 
when measured using terrestrial LiDAR.

The shapes of different species influence the distribution 
of LiDAR returns, but the interpretations from most stud-
ies are limited and hard to generalize across ecosystems or 
LiDAR surveys (Fassnacht et al. 2016). Some studies explic-
itly compared the vertical distribution of LiDAR returns 
between species. For example, Ørka et al. (2009) found 
that the first and last returns were more dispersed in Birch 
(Betula spp.) stands than in Norway spruce [Picea abies (L.) 
Karst.]. The vertical distribution of first returns was also 
skewed toward the top of the canopy, and increased stand 
height was shown to influence the overall return distribution 
(Ørka et al. 2009).

In this study, we verify that we can differentiate the dis-
tinct patterns for individual species in the vertical distribu-
tion of LiDAR returns from a low-density area-based survey. 
We hypothesize that the use of a functional GLM combined 
with a non-parametric graphical test of significance makes 

it possible to identify these inter-species differences in the 
vertical distribution patterns after stand crown cover and age 
effects are accounted for.

Methods

Study area

The study was conducted in Matane Wildlife Reserve (Que-
bec, Canada, 48° 41′ N, 66°58′ W) and covering 1600  km2 
(Fig. 1). The reserve is a mixed forest dominated by balsam 
fir [Abies balsamea (L.) Mill.], paper birch (Betula papyrif-
era Marsh), and black spruce [Picea mariana (Mill.) BSP]. 
Other species in the reserve include white spruce (Picea 
glauca Moench), aspen (Populus tremuloides Michx.), Nor-
way spruce [Picea abies (L.) Karst.], jack pine (Pinus bank-
siana Lamb.), and other non-commercial deciduous species. 
Most of the reserve is subject to active commercial logging. 
Logging activities in that area have been documented since 
1962; 27% of the area has been harvested (mostly total 
harvesting) and half of that has been replanted. Two per-
cent of the stands originated from natural perturbations 
(e.g. windthrow, insect epidemic, fire) and the remaining 
71% was undocumented.

Data

Airborne imagery and LiDAR were acquired during the 
summer of 2007. All data were collected by the Quebec 
Ministry of Natural Resources as part of their decennial for-
est mapping program. The LiDAR survey used a nominal 
point density of 3 points/m2 with an Optech ALTM 2050 
sensor that recorded the first and last returns at 40 kHz. The 
survey was flown at 1200 m above ground, with a flight 
overlap of 30% and a maximal scan angle of 15° from nadir 
and a footprint diameter of 25 cm.

Fig. 1  Location of Matane Wildlife Reserve (left panel) and selected stands within the study area (right panel, dark patches)
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Airborne photography was conducted using a Leica ADS-
40 pushbroom camera at a resolution of 0.2 m for panchro-
matic, and 0.5 m for near-infrared, green, and blue bands 
(NIR, G, B respectively centered on 860, 560, and 460 nm); 
the side overlap was 40% to ensure complete coverage of 
the area. This imagery was used to partition the territory 
into stands following provincial guidelines adapted from 
MRNQ (2007) by expert photo-interpreters. Using digital 
stereopsis (virtual 3D vision) from the forward and nadir-
facing ADS-40 sensor images, the expert photo-interpreters 
identified tree species by integrating information on land-
scape positions, crown shapes, textures, and colors. Every 
photo was segmented into homogeneous stands using spe-
cies, crown cover, height, and geomorphic criteria. Each 
stand was classified based on species composition, crown 
cover, age, height, and other ecological variables using a 
combination of photography, ground-control points, and his-
torical data, which was used as a reference. Stand age was 
estimated using ground control plots where trees were cored. 
This information was then combined with available archives, 
height, and ecology to estimate age from aerial photography. 
Stand age was divided into six regular classes: 10 (0–20), 
30 (21–40), 50 (41–60), 70 (61–80), 90 (81–100), and 120 
(101, ∞), and irregular age classes (such as uneven-aged 
and multi-stratum stands). Crown cover was also estimated 
by visually comparing the proportion of open ground with 
the space occupied by the mature tree crowns. Crown cov-
ert was categorized in 9 classes: 10 (5–14), 20 (15–24), 30 
(25–34), 40 (35–44), 50 (45–54), 60 (55–64), 70 (65–74), 
80 (75–84), and 90 (85–100). Species were identified by 
their distinctive features in the composite images of near-
infrared, green, and blue (NIR + G + B) mapped onto red, 
green, and blue (R, G, B) channels, and their frequent asso-
ciations in forest stands (Table 1). Finally, the interpretation 
of the aerial images relied on the ground-control points and 
the ecological knowledge of the photo-interpreters. We used 
this photo-interpreted forest map as our reference data for 
species, crown cover, and age.

Even-aged stands are less complex than irregular stands 
when analyzed from a vertical structure point of view. 
Therefore, we focused our analysis on even-aged stands 
where clearly dominant species represented at least 50% of 
the stand cover. Using a low threshold for species dominance 
increased the number of usable observations for the analysis. 
This improved the ability of the analysis to detect effects but 
also increased the noise from other co-dominant species.

LiDAR data processing

The steps required to prepare LiDAR data for processing 
are summarized in Fig. 2. We excluded stands with average 
LiDAR sampling rates below 2 pt/m2 or an area of less than 
4 ha to ensure a sufficient number of LiDAR returns. From 

the remaining stands, we kept only those with a dominant 
species that was observed at least in 100 stands: aspen, bal-
sam fir, black spruce, paper birch, and white spruce. From 
the 22,365 stands on the original forest map, we reduced 
our dataset to 5428 stands representing 35% of the study 
area (Fig. 1). Stand area distributions were similar for all 
selected species (median of 9 ha, minimum of 4 ha, maxi-
mum of 137 ha).

We registered the LiDAR returns by scaling their height 
between 0 and 1 to allow comparisons across stands of dif-
ferent heights. We subtracted the ground elevation from the 
absolute point cloud elevation (Muss et al. 2011). For each 
stand, LiDAR returns were binned into a vertical distribu-
tion histogram of 39 height slices from their highest LiDAR 
return (Coops et al. 2007; Harding et al. 2001). We then 
divided each slice count by the total number of points in 
the stand, so the vertical distribution of each stand summed 
to one, regardless of their inconsistent shapes, areas, and 
LiDAR point densities.

Statistical analysis

We used a novel method that builds on the functional data 
analysis field (Ramsay and Silverman 2005) to compare 
the complete vertical distribution of LiDAR returns. Most 
studies of species classification have focused on the accu-
racy of classifiers and the value of predictors for species 
identification (Fassnacht et al. 2016), often using dimen-
sion reduction to decrease and decorrelate the number of 
predictors. Some of these reduction methods include lin-
ear discriminant analysis and principal component analysis 
(Koenig and Höfle 2016; Räty et al. 2016; Axelsson et al. 
2018). However, dimension reduction diminishes the ability 
to understand the effect of individual variables and interpret 
the results of the model.

To compare inter- and intraspecific variations in the 
distribution of LiDAR returns and the effect of three vari-
ables, we used a nonparametric graphical test of significance 
(Mrkvička et al. 2019; Myllymäki and Mrkvička 2020). We 
modeled the vertical distributions of LiDAR returns as a 
function of dominant species, crown cover, and age using 
the general linear model

where, for every scaled height h , d(h) is the N × 1 vec-
tor of observed LiDAR distributions at scaled height h , and 
�sp(h) , �cc(h) , and �age(h) are the parameter vectors related 
to species in Xsp , crown cover in Xcc , and age in Xage ; �(h) is 
the vector of random errors with mean zero and finite vari-
ance �2(h) . The crown cover was considered a continuous 
variable, while species and age were considered categori-
cal variables (given that the last age class was open). This 

(1)
d(h) = �0(h) + Xsp ⋅ �sp(h) + Xcc ⋅ �cc(h) + Xage ⋅ �age(h) + �(h),
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model that incorporates all three variables is referred to as 
the full model.

We studied the effect of each variable after accounting 
for the other variables (also called the nuisance factors 
by Freedman and Lane (1983)) using the methodology 

illustrated in Fig. 3. We tested the effect of each three vari-
ables using the following null hypothesis: �sp,m(h) = 0 for 
all m and h , �cc(h) = 0 for all h , and �age,l(h) = 0 for all l 
and h , where m and l refer to the elements of the parameter 
vectors �sp(h) and �age(h) for each species and age groups, 

Table 1  Description of tree 
shapes, associated species, 
preferred conditions, and colors

Species Silhouette Interpretation description1,2 Associated species2

Abies 
balsamea

Mesic sites. Narrow conic crown 
with a sharp and thin summit that is 
frequently pale due to accumulated 
cones that are more reflective than 
foliage. Brown, slightly pink tint. 
Browner and pinker than white 
spruce.

Trembling aspen, white 
birch, white spruce, black 
spruce, red spruce, and 
eastern hemlock

Betula 
papyrifera

Avoids sites with poor drainage. 
Flat half-sphere shape. Crown is 
highly mingled with neighbors and 
exhibits an irregular texture that 
makes it hard to identify individual 
crowns even at higher resolutions. 
Dark pink tint between yellow birch 
and maples.

Various species including 
other birches, pines, 
spruces, hemlocks, 
poplars, maples, balsam 
fir, northern red oak, and 
pin cherry

Picea 
mariana

Sites with poor drainage. Crown is 
thin and narrow, spirelike, with 
sharp summit and compact foliage. 
When located on well-drained 
upland sites, principal branches are 
shorter than other spruces. Lower 
branches droop and tips are 
upturned. Upper part of the crown is 
often very dense and oddly shaped 
with many cones. Brown, slightly 
pink when young. Paler than white 
spruce.

Tamarack in the southern 
part of the range. Jack 
pine, white spruce, 
balsam fir, white birch, 
trembling aspen in the 
northern part of the range

Picea 
glauca

Mid slope sites with good to 
moderate drainage. Broad conical 
crown is star-shaped, ragged, 
irregular, densely foliated, and 
spirelike in northern parts of its 
range. Principal branches are bushy, 
generally horizontal, and sometimes 
sloping downward in the lower part 
of the crown, with tips gradually 
upturned. Brown, slightly pink 
when young. Darker than black 
spruces.

Trembling aspen, white 
birch, black spruce, and 
balsam fir

Populus 
tremuloides

All sites except those with poor 
drainage. Short, rounded, light bulb-
shaped crown. Usually taller than 
surroundings when mixed. Crown 
surface looks blurred and smooth 
because of its small leaves. Orange-
tinted pink.

White spruce, black 
spruce, balsam fir, white 
birch, balsam poplar and 
jack pine

1 Colors are based on (NIR + G + B mapped to R, G, B channels)
2 Adapted from Farrar (1995), Leboeuf and Vaillancourt (2013a) and Leboeuf and Vaillancourt (2013b)
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respectively. The � coefficients of the discrete factors were 
constrained to sum to zero. The corresponding three null 
models were obtained by removing the studied variable from 
the full model (Eq. 1):

We used the coefficients of the variable of interest (the 
left-out � in Eqs. 2–4) for the statistical test as suggested 
by Mrkvička et al. (2019). For the continuous crown cover 
variable, the test statistic we used was the vector �cc(h) for 

(2)d(h) = �0(h) + Xcc ⋅ �cc(h) + Xage ⋅ �age(h) + �(h),

(3)d(h) = �0(h) + Xsp ⋅ �sp(h) + Xage ⋅ �age(h) + �(h),

(4)d(h) = �0(h) + Xsp ⋅ �sp(h) + Xcc ⋅ �cc(h) + �(h).

all h ; and for age, the test was based on the values of the 
effect �age,l(h) of all the age groups l for all h . To examine 
species differences, the test was based on all differences 
�sp,m(h) − �sp,n(h) for species m and n with 1 ≤ m < n ≤ 5.

The test we used relies on two procedures: (1) the Freed-
man-Lane algorithm (described in details by Winkler et al. 
2014, p. 385) to permute the residuals of the null model 
and create the reference distribution of the coefficients 
under the null hypothesis, and (2) the global extreme rank 
length envelope test to build a null global envelope for the 
above-mentioned test statistics and correct for the multi-
ple tests conducted along h (Myllymäki et al. 2017). The 
Freedman-Lane algorithm includes all the steps ranging 
from the simulation under the null hypothesis to the final 
estimation of the chosen test statistic (Fig. 3). We used 2999 

Fig. 2  Step-by-step preparation 
of the LiDAR data
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random permutations to build the distributions under the 
null hypothesis. The global extreme rank length envelope 
test (Myllymäki et al., 2017; Mrkvička et al., 2020) was 
then constructed from the test statistics calculated from the 
empirical vertical distribution of LiDAR returns and the 
2999 permuted data sets.

The null hypothesis was rejected if the empirical test vec-
tor left the 98% global envelope at any point. To account for 
the three variables tested (species, crown cover, and age), we 
used a Bonferroni adjusted significance level � = 0.05∕3 in 
addition to the inherent correction applied within the global 
extreme rank length envelope test to account for multiple h . 
We observed that the variances of the model residuals were 
heterogeneous for all the variables (Winkler et al. 2014). 
Following Mrkvička et al. (2020), we transformed the matrix 
of vertical LiDAR returns distribution (Fig. 3) by scaling 
the functions di of each group j according to their variance 
dispersion. The initial di,j function was transformed into a 
Si,j (scaled) function by

(5)Si,j(h) =
di,j(h) − d̄j(h)
�

Var
�

dj(h)
�

⋅

√

Var(d(h)) + d̄j(h)

where the group sample variance Var
(

dj(h)
)

 is used to 
correct for unequal variance among groups. The group sam-
ple mean d̄j(h) and overall variance Var(d(h)) are used to 
preserve the original scale of the mean and variability of 
the functions.

Our experiments with simulated data showed that trans-
forming all groups at once (by combining all group levels) 
removed the heterogeneity of the variance. However, this 
required there to be sufficient observations in all categories, 
which was not the case for our data. We, therefore, relied 
on the successive application of the transformation (Eq. 5) 
for each of the three variables, and we found that the order 
in which the transformation is applied can reintroduce het-
erogeneity of variance. We settled on the successive trans-
formation of crown cover, age, and species which provided 
the best results and reduced heterogeneity. We verified the 
importance of the correlation by running Breusch–Pagan 
test of heteroscedasticity (Breusch and Pagan 1979) using 
the squared residuals 

(

d(h) − d̂(h)
)2 on the left-hand side of 

the reduced Eqs. 2–4. While the test indicated significant 
heteroscedasticity in some areas of the curves, the coefficient 
of determination was less than 4% for all variables and all h , 
which confirmed that no further adjustments were required.

Fig. 3  Description of the steps 
of the graphical test of signifi-
cance of a variable (e.g. species) 
on the vertical distribution of 
LiDAR returns
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We performed the analysis using R version 3.6.3 (R Core 
Team 2020), the GET package (Mrkvička et al. 2019; Myl-
lymäki and Mrkvička 2020), and Lastools (Isenburg 2012) 
to correct and extract the LiDAR data.

Results

The comparisons from the nonparametric graphical test of 
significance confirm that the differences between all spe-
cies, after accounting for age and crown cover, were sig-
nificant ( p < 0.001) (Fig. 4). We observed two groups of 
species where differences were significant but small: bal-
sam fir–paper birch, and black spruce–white spruce. Dif-
ferences between balsam fir and paper birch were small and 

Fig. 4  Nonparametric graphical tests of significance comparing spe-
cies using contrasts: the observed difference between the coefficients 
of two species (black curve), where the species in the rows are sub-
tracted from the species in the columns (e.g. first column, second row 
is the aspen − balsam fir contrast). The 98% global envelope (grey 
bands), shows the area of acceptance of the null hypothesis (no effect, 

p<0.001) obtained from the permutations of the residuals of the null 
model (Eq. 2). The observed curve that is outside the envelope is in 
bold. Panels above the diagonal are the reflection of the observed 
functions and the global envelope from the lower part (the tests were 
performed only once)
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localized at 65–70% and below 12% of stand height. White 
spruce and black spruce also had small localized differences 
at 22–30% and 5–8% of stand height. However, some dif-
ferences between groups of species were larger (indicated 
by the bold lines in Fig. 4): black and white spruces had 
the lowest distribution of LiDAR returns when compared to 
other species. Black spruce had fewer returns than balsam 
fir between 38 and 62% of stand height (40–57% for paper 
birch), while it had more returns below 28% of stand height 

(30% for paper birch). The vertical distribution of LiDAR 
returns for aspens had a distinctive shape when compared 
to every other species: it did not display a prominent peak, 
which made the distribution more uniform than for other 
species (Figs. 5, 6). Aspen was significantly different from 
other species ( p<0.001) except in the areas between 57 and 
60% of height, and 8–18% for balsam fir and paper birch 
specifically. Overall, the areas with the largest differences 

Fig. 5  Vertical distribution of LiDAR returns as a function of crown cover (columns) and species (rows). Black lines represent the median distri-
bution; shaded areas represent 95% and 50% local variation envelopes
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between species were located at around 5, 25, 50, and 70% 
of stand height.

An increase in crown cover was associated with a 
decrease in the density of LiDAR returns below 33% of 
stand height, while the density of LiDAR returns above 
38% increased (Fig. 7). The largest increase was concen-
trated around the middle height (50%), while the largest 
reduction effect occurred closer to the ground (around 
3% height). Figure 5 displays the vertical distribution of 

LiDAR returns for each species per crown cover (including 
the effect of age). The increased crown cover concentrated 
the returns at around 50% of the stand height, except in 
the case of aspen, where the peak was higher in the stand 
(around 80% of stand height), and white spruce, where the 
peak was lower (around 20%). Although the black spruce 
peak was centered at 50% of the stand height for high val-
ues of crown cover, the observed variability was skewed 
toward the lower stand heights. Some species were more 

Fig. 6  Vertical distribution of LiDAR returns as a function of age (columns) and species (rows). Black lines represent the median distribution; 
shaded areas represent 95% and 50% local variation envelopes
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widely represented in younger or older age classes, which 
inflated the variation envelopes. The model from Fig. 7 
accounted for this effect.

Increased age was associated with a gradual upwards shift 
in LiDAR return distribution (Fig. 8). This shift occurred 
until 70 years of age, when a plateau was reached. The effect 
of age was significant at most stand height between 10 and 
70 years of age.

Stands that were in the 10- and 30-year age groups had an 
abundance of returns below 28% and 41% of stand height, 
respectively, and fewer returns above 33% and 49%, respec-
tively. However, the effect is reversed in stands in the 50- and 
70-year groups, where age inflated the distribution between 
38 and 97% of stand height (44–100% for 70 years), and 
deflated it below 31% of stand height (38% for 70 year). The 
significant age effects for stands in the 90- and 120-year age 
groups were smaller, and occurred below 69% and 44% of 
the stand height, respectively ( p<0.001). These stands also 
had an abundance of returns in the middle and upper part of 
the stand (38–68% for 90 year; 33–44% for 120 year). For 
stands that were in the 90- and 120-year groups, there were 
reduced numbers of returns below 28% and 23% of stand 
height, respectively.

Overall, the rate of change in the vertical distribution of 
LiDAR returns gradually decreased as the age increased. 
For example, changes in the distribution between 10 and 
30  years were larger than the changes between 70 and 
90 years. Areas of higher variability for age groups were 
located around 5%, 20%, and 50% of stand height. Figure 6 
displays the median vertical distribution of LiDAR returns 
for each species, by age class (including the crown cover 
effect). The young white spruce and black spruce stands 

Fig. 7  Nonparametric graphical tests of significance for crown cover. 
The observed coefficient (black curve) and the 98% global envelope 
(grey band) that shows the area of acceptance of the null hypothesis 
(no effect, p<0.001) obtained from permutations of the residuals of 
the null model (Eq. 3). The observed curve that is outside the enve-
lope is in bold

Fig. 8  Nonparametric graphical tests of significance for age. The 
observed coefficients of the six age groups (black curves), and the 
98% global envelope (grey bands below the diagonal) that shows 

the area of acceptance of the null hypothesis (no effect, p<0.001) 
obtained from the permutations of the residuals of the null model 
(Eq. 4). The observed curve outside the envelope is in bold
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displayed a high degree of asymmetry toward the lower part 
of the stand that disappeared in older stands.

The coefficient of determination for the models varied 
across stand heights (Fig. 9). The most correlated areas 
for every model were around 5–15% and 46–54% of stand 
height. All models displayed a sharp decline between 28 
and 40%. The highest R2 was for the full model at 0.47 
(at 10–13% of stand height) and 0.42 (at 49–51% of stand 
height). The model that excluded the species variable (Eq. 2) 
produced a difference in R2 of more than 0.10 for 72–92% 

stand height compared to the full model. When the crown 
cover variable was excluded from the model (Eq. 3) for 
between 0–21% and 46–67% of stand height, there was a 
difference in R2 of more than 0.10 with the full model. The 
model that excluded the age variable (Eq. 4) produced a 
difference in R2 of more than 0.10 with the full model at 
18–38% and 62–64% of stand height.

Discussion

Our objective was to study the influence of species, crown 
cover, and age on the vertical distribution of LiDAR 
returns. We found that even-aged stands exhibit species-
specific patterns that predictably evolve with crown cover 
and age. We observed two groups of species: the first, 
balsam fir and paper birch had more symmetrical vertical 
distributions of LiDAR returns that were centered between 
40 and 60% of stand height, and the second, white spruce 
and black spruce, had distributions of LiDAR returns that 
were generally skewed lower in the stand (below 30% of 
the stand height). Aspen displayed a more even distribu-
tion of LiDAR returns with a higher proportion of returns 
higher in the stand compared to other species.

While individual trees are plastic and can adapt to var-
ious light and environmental conditions, we found that 
stands of the same species share similar vertical charac-
teristics. These characteristics distinguish them from other 
species. This observation is consistent with previous field 
observations that were conducted over a smaller area using 
different measurement methods (Purves et al. 2007). How-
ever, we expected clearer vertical distribution patterns 
along shade-tolerance gradients or between conifer and 
deciduous trees; we found that patterns of paper birch were 
more similar to those of balsam fir (a shade-tolerant) than 
aspen, another shade-intolerant deciduous. Since we used 
the dominant species to classify each stand, the similar 
vertical distribution patterns could be the result of the fre-
quent occurrence of balsam fir and paper birch within the 
same stand. The effect of species associations could be 
controlled by using a higher dominance threshold than the 
50% we used. However, we found that using a 60% domi-
nance made little difference to the conclusions, whereas a 
higher threshold removed too much data for some species.

The results in this paper demonstrate that vertical 
LiDAR return distribution can be useful for species classi-
fication. Based on these findings, models could be trained 
to link these vertical distributions to species and then used 
to estimate species occurrence over the landscape. Many 
studies performing species classification with LiDAR 
use the vertical distribution of LiDAR returns (Fassnacht 
et al. 2016), however, the approach developed here allows 
the drivers of cover and age to also be integrated into the 

Fig. 9  Comparison of R2(h) of the full model (Eq. 1), and the three 
reduced models (Eqs. 2–4) where one variable (either Species, Crown 
Cover, or Age) was excluded
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estimation, thereby making the species prediction more 
robust when applied more broadly.

Additional evidence is required to establish whether the 
relationships between vertical density of LiDAR returns 
and the species, crown cover, and age are specific to our 
study area. Including other variables, such as LiDAR scan 
angle and abiotic factors, might improve the model, mak-
ing it more applicable to other study areas or complex 
stand structures.

The increased crown cover led to an increased concen-
tration of the vertical distribution of LiDAR returns to 
higher in the stand. In turn, stands with decreased crown 
cover exhibited a vertical distribution of LiDAR returns 
that was more dispersed and lower to the ground, with 
fewer returns higher in the stand. The gradual displace-
ment of LiDAR returns from below 33% to above 38% 
associated with crown cover was also apparent when we 
compared the variance explained by the models in Fig. 9 
where crown cover appeared to explain at least 25% of the 
variance of the full model below 21% and between 46 and 
67% of stand height.

Increased age was associated with the vertical distribu-
tion of LiDAR returns being displace higher in the stand for 
up to 70 years, followed by a plateau or decline in the 90- 
and 120-year-old groups. The rate of change between age 
groups decreased as the age increased. Vertical distribution 
of LiDAR returns from younger stands appeared to undergo 
a rapid transformation in the 10-year group, which gradu-
ally decelerated and stabilized in the 70-year-old group. 
The 90- and 120-year-old groups displayed the least amount 
of change. While it is well established that absolute stand 
height varies predictably with age, the changes we observed 
here are relative to the maximal height of the stand.

The effect of age was akin to that of crown cover: as the 
age or crown cover increased, there was an increased con-
centration of points in the upper part of the stand. However, 
age explained the variation slightly higher in the stand than 
the crown cover (between 18–38% and 62–64% of stand 
height). Unlike Aber (1979) who observed a stable distri-
bution of foliage at the end point of forest succession, the 
vertical distribution of LiDAR returns of the 120-year group 
displayed a small concentration of returns at 33–44% of 
stand height and a small decrease below 23% of stand height.

The most pronounced differences in vertical distributions 
of LiDAR returns occurred below 80% of stand height. The 
upper sections of the stand often yielded very small differ-
ences in distribution while the lower section yielded large 
variations. The distribution of LiDAR returns in the upper 
and lower sections of the stand can heavily dependent on the 
LiDAR survey parameters and species crown shape (Rous-
sel et al. 2017, 2018). This might make these sections more 
variable across different surveys. Nonetheless, the full model 
(Eq. 1) still explained 20% of the variability from the ground 

up to 90% of the stand height. The difference in variability 
explained by the species model compared to the full model 
was greatest at heights above 72%, and peaked at around 
80% of the stand height (Fig. 9). One possible explanation 
for this is that the section encompassing 74–90% of stand 
height exhibited considerable differences between aspen and 
all other species.

A common challenge associated with functional data 
analyses is making functions comparable, a process called 
registration (Ramsay et al. 2009). We registered the ver-
tical distributions of LiDAR returns by using the highest 
measured LiDAR return of each stand. However, this reg-
istration makes the distributions potentially more affected 
by extremely high LiDAR returns and could explain, in 
part, why the upper section of the stands had a lower R2. 
For example, in young stands where there might only be 
a single remaining mature tree, the vertical distribution of 
LiDAR returns could be compressed. Using a height quan-
tile as a registration point, such as 95% height rather than 
the highest return, could reduce the chances of compression 
and improve the vertical distributions. In addition to com-
pression, the vertical distribution of LiDAR returns can be 
distorted by strong slopes (Liu et al. 2017). Furthermore, the 
occlusion of vegetation in lower stand parts underestimates 
the density of vegetation. Some of the noise in the verti-
cal distribution can be mitigated by using correction meth-
ods such as voxels, or partly accounting for laser incidence 
angle, footprint size, and pulse density (Wilkes et al. 2016; 
Roussel et al. 2017, 2018).

There was a decline in R2 between 31 and 46% of the 
stand height, where age explained most of the variance of 
the full model (Fig. 9). While the reasons for the decline 
are unknown, this section of stand height is associated with 
an increase in LiDAR returns in the 120-year-old group. 
This vertical section of the stands also seems to be a transi-
tion for the spruce group and the balsam fir–paper birch 
group between lower distributions and distributions centered 
around 50% of the stand height. The decrease in R2 might 
be attributed to the intersection of these two distributions.

The nonparametric graphical test of significance that we 
used is slightly liberal because is based on the Freedman-
Lane algorithm which uses an approximation from permu-
tations (Mrkvička et al. 2019). However, this permutation 
method is regarded in the literature as one of the best meth-
ods when there are confounding variables (Anderson and 
Robinson 2001; Winkler et al. 2014). The graphical output 
from our analyses is advantageous, especially for identify-
ing the sections of rejection. This graphical interpretation 
allowed us to determine the relative heights at which the 
differences in species, crown cover, and age occurred. When 
interpretability is desired, we think that this method could 
complement, and in some cases replace other methods of 
analysis for the vertical distribution of LiDAR returns, such 
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as the principal component analysis or linear discriminant 
analysis (Fedrigo et al. 2019).

In a review of tree species classification using remote 
sensing, Fassnacht et al. (2016) noted that most studies 
pursued the optimization of classification accuracy and 
provided little information on the causal understanding 
of species discrimination. Using nonparametric graphi-
cal tests of significance can help us understand the evolu-
tion of forest structure by highlighting the association of 
variables with the distribution of reflective material. In 
our study, we applied this method to a selection of simple 
stands (that are even-aged with clear species dominance) 
to visually understand the effect of each of these factors. 
Further work is necessary in order to apply this method to 
multi-species or irregular stands.

The median stand area in our study area was 9 ha, which 
is large compared to other area-based approaches. This 
allowed for the aggregation of LiDAR returns to identify 
specific patterns. Stands are by design the most homogene-
ous unit of the forest landscape, and vertical LiDAR dis-
tributions are more reliable for identifying species when 
there is a sufficient number of aggregated returns grouped 
together. To determine the optimal area for observing 
these patterns will require additional research.

Conclusion

LiDAR vertical distributions can provide an understand-
ing of the interplay between tree species, crown cover, 
and age. The use of functional generalized linear mod-
els combined with graphical tests of significance enabled 
us to interpret the differences in distributions caused by 
multiple variables. Using airborne LiDAR surveys makes 
it is possible to identify ecosystems that are at multiple 
evolutionary stages. Vertical LiDAR distribution patterns 
variations can be observed and eventually linked to struc-
tural and functional dynamics. Our results show that indi-
vidual species feature distinctive vertical distributions of 
LiDAR returns that concentrate with crown cover and rise 
with age. Balsam fir and paper birch had similar vertical 
distributions of LiDAR returns, as did white spruce and 
black spruce. Aspen was the most unique species, yielding 
a more uniform distribution of LiDAR returns and a peak 
in the upper part of the stand. The balsam fir and paper 
birch group exhibited a peak centered at around 50% of 
stand height, while the distributions from the white spruce 
and black spruces groups were skewed to below 30% of 
the stand height. Increases in crown cover concentrated 
the distributions of all species at around 50% of the stand 
height and deflated the distribution below 33%. The effect 
of age was more diffuse across the whole stand height. 

Age increase was associated with a gradual displace-
ment of the vertical distribution higher in the stands up 
to 70 years. The distribution of the 90– and 120-year-old 
groups then plateaued and slowly declined. These results 
could improve our understanding of the evolution of the 
forest structure in changing conditions and could be used 
for LiDAR stand-level species classification.
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